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Motivation

• DL-program: consistent ontology O + rules P
(loose coupling combination approach)

• DL-atoms serve as query interfaces to O
• Possibility to add information from P to O

prior to querying it allows for bidirectional
information flow

However, information exchange between P and O can cause
inconsistency of the DL-program (absence of answer sets).

! [Eiter et al, IJCAI’2013] Repair answer sets and algorithm for repairing
ontology data part, but the latter lacks practicality.

In this work: Algorithm for DL-program repair based on support sets for
DL-atoms. Effective for ontologies in DL-LiteA.
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DL-LiteA

• Lightweight Description Logic for accessing large data sources

• Concepts and roles model sets of objects and their relationships

C → A | ∃R R → P|P−

• A DL-LiteA ontology O = 〈T ,A〉 consists of:

• TBox T specifying constraints at the conceptual level
C1 v C2, C1 v ¬C2,
R1 v R2, R1 v ¬R2, (funct R)

• ABox A specifying the facts that hold in the domain
A(b) P(a, b)

Example
T =

{
Child v ∃hasParent
Female v ¬Male

}
A =

{
hasParent(john, pat)
Male(john)

}
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• A DL-LiteA ontology O = 〈T ,A〉 consists of:

• TBox T specifying constraints at the conceptual level
C1 v C2, C1 v ¬C2,
R1 v R2, R1 v ¬R2, (funct R)

• ABox A specifying the facts that hold in the domain
A(b) P(a, b)

• For query derivation: single ABox assertion

• For inconsistency: at most two ABox assertions

• Classification is tractable

[Calvanese et al., 2007]
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Example: DL-program

Π = 〈O,P〉 is a DL-program

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =


(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat)


• Interpretation: I = {ischildof (john, alex), boy(john), hasfather(john, pat)}
• Satisfaction relation: I |=O boy(john); I |=O DL[; hasParent](john, pat)

I |=O DL[Male ] boy ; Male](pat)

• Semantics: in terms of answer sets, i.e. founded models (weak, flp, . . . )

• I is a weak and flp answer set
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Example: Inconsistent DL-program

Π = 〈O,P〉

is inconsistent!

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john), pat 6= alex ,
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex)
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No answer sets
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Example: Inconsistent DL-program

Π = 〈O,P〉 is consistent!

O =

 (1) Child v ∃hasParent

(4) Male(pat)

(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john), pat 6= alex ,
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex)


I1 = {ischildof (john, alex), boy(john)}
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Ground Support Sets

d = DL[Male ] boy ; Male](pat); T = {Female v ¬Male}

When is d true under interpretation I?

• Male(pat) ∈ A
• boy(pat) ∈ I

• boy(alex) ∈ I; Female(alex) ∈ A

where Ad = {Pp(t) | P ] p ∈ λ} ∪ {¬Pp(t) | P −∪ p ∈ λ}

Definition
S ⊆ A ∪Ad is a ground support set for a ground DL-atom d = DL[λ; Q](t) w.r.t.
O = 〈T ,A〉 if either

(i) S = {P(c)} and Td ∪ S |= Q(t) or

(ii) S = {P(c),P′(d)}, s.t. T ∪ S is inconsistent,

where c ∪ d has at most three distinct constants
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Ground Support Sets

d = DL[ Male ] boy︸ ︷︷ ︸
λ

; Male](pat); Td = {Female v ¬Male; Maleboy v Male}

When is d true under interpretation I?

• Male(pat) ∈ A
• Maleboy (pat) ∈ Ad , s.t. boy(pat) ∈ I

• Maleboy (alex) ∈ Ad , s.t. boy(alex) ∈ I; Female(alex) ∈ A
where Ad = {Pp(t) | P ] p ∈ λ} ∪ {¬Pp(t) | P −∪ p ∈ λ}
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Ground Support Sets

Definition
S ⊆ A ∪Ad is a support set for d = DL[λ; Q](t) w.r.t. O = 〈T ,A〉 if either

(i) S = {P(c)} and Td ∪ S |= Q(t) or

(ii) S = {P(c),P′(d)}, s.t. Td ∪ S is inconsistent.

SuppO(d) is a set of all support sets for d .

d = DL[Male ] boy ; Male](pat); Td = {Female v ¬Male; Maleboy v Male}

Support sets:

• S1 = {Male(pat)}, coherent with any I

• S2 = {Maleboy (pat)}, coherent with I ⊇ boy(pat)

• S3 = {Maleboy (alex); Female(alex)}, coherent with I ⊇ boy(alex)

where Ad = {Pp(t) | P ] p ∈ λ} ∪ {¬Pp(t) | P −∪ p ∈ λ}
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Ground Support Sets

Definition
S ⊆ A ∪Ad is a support set for d = DL[λ; Q](t) w.r.t. O = 〈T ,A〉 if either

(i) S = {P(c)} and Td ∪ S |= Q(t) or

(ii) S = {P(c),P′(d)}, s.t. Td ∪ S is inconsistent.

SuppO(d) is a set of all support sets for d .

I |=O d iff there exists S ∈ SuppO(d), which is coherent with I.
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Nonground Support Sets

d = DL[Male ] boy ; Male](pat), Td = {Female v ¬Male; Maleboy v Male}

Support sets:

• S1 = {Male(pat)}
• S2 = {Maleboy (pat)}
• S3 = {Maleboy (c); Female(c)} c ∈ C

Definition
S = {P(Y),P′(Y′)} (S = {P(Y)}) is a nonground support set for
d = DL[λ; Q](X) w.r.t. T if for every θ : V ← C it holds that

• Sθ is a support set for dθ w.r.t. OC = 〈T ,AC〉, where AC : set of all
possible assertions over C.
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d(X) w.r.t. T if for every θ : V → C it holds that Sθ is a support set for d(Xθ)
w.r.t. OC = 〈T ,AC〉, where AC is a set of all possible assertions over C.

Nonground support sets are compact representations of ground ones.

Completeness: family of nonground support sets S for d(X) is complete w.r.t. O
if for every θ : X→ C and S ∈ SuppO(d(Xθ)) some S′ ∈ S exists, s.t. S = S′θ′.

Complete support families alow to avoid access to O during DL-atom evaluation.
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Nonround Support Set Computation
d = DL[Male ] boy ; Male](X ); T = {Female v ¬Male}

• Construct Td :

Td = T ∪ {Maleboy v Male}

• Compute classification Cl(Td ) (e.g. using ASP techniques):

cl(Td ) = Td ∪{Male v ¬Female; Maleboy v ¬Female}∪{P v P | P ∈ P}

• Extract suport sets from Cl(Td ):

• S1 = {Male(X )}
• S2 = {Maleboy (X )}
• S3 = {Maleboy (Y ),¬Male(Y )}
• S4 = {Maleboy (Y ),Female(Y )}

 {S1,S2,S3,S4} is complete!

• S5 = {Male(Y ),¬Male(Y )}
• S6 = {Male(Y ),Female(Y )}

}
O is consistent!
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Repair Answer Set Computation

X Compute complete support families S for all DL-atoms of Π

• Construct Π̂ from Π = 〈O,P〉:
• Replace all DL-atoms a with normal atoms ea
• Add guessing rules on values of a: ea ∨ nea

• For all Î ∈ AS(Π̂) : Dp = {a | ea ∈ Î}; Dn = {a | nea ∈ Î}

X Ground support sets in S wrt. Î and A: S Î
gr ← Gr(S, Î,A)

X Find A′, such that
X For all a ∈ Dp: there is S ∈ S Î

gr (a), s.t.
S ∩ A′ 6= ∅ or S ⊆ Aa

X For all a′ ∈ Dn: for all S ∈ S Î
gr (a′):

S ∩ A′ = ∅ and S 6⊆ Aa′

X Minimality check of Î|Π wrt. Π′ = 〈O′,P〉, O′ = 〈T ,A′〉
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Repair Answer Set Computation

SupRAnsSet is sound and complete
wrt. deletion repair answer sets.
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Experiments
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Related Work

• Inconsistenies in DL-LiteA ontologies:
• Consistent query answering over DL-Lite ontologies

based on repair technique [Lembo et al., 2010], [Bienvenu, 2012]

• QA to DL-LiteA ontologies that miss expected tuples
(abductive explanations corresponding to repairs)
[Calvanese et al., 2012]

• Support sets in other works
• Support sets for HEX-programs [Eiter et al, AAAI’2014]

as more abstract structures
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Conclusion and Future Work

Conclusions:
• Ground and nonground support sets for DL-atoms

• Allow evaluation of DL-atoms avoiding ontology access

• Support sets for DL-LiteA are small and efficiently computable

• Effective sound and complete algorithm SupRAnsSet for deletion
repair computation based on support sets

• Implementation in DLVHEX and evaluation on a set of benchmarks

Further and future work:
• Extensions to other DLs (e.g. EL)

• Computing preferred repairs
(e.g. σ-selection [Eiter et al, IJCAI’2013])
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DL-program: syntax

Signature: Σ = 〈C, I,P,C,R〉, where
- Σ0 = 〈I,C,R〉 is a DL signature;
- C ⊇ I is a set of constant symbols;
- P is a finite set of predicate symbols of arity ≥ 0, s.t. P ∩ {C ∪ R} = ∅.

DL-atom is of the form DL[S1op1p1, . . . ,Smopmpm; Q](t), m ≥ 0, where

• Si ∈ C ∪ R;

• opi ∈ {], −∪, −∩};
• pi ∈ P (unary or binary);

• Q(t) is a DL-query:
• C(t1), ¬C(t1), t = t1, where C ∈ C;
• R(t1, t2), ¬R(t1, t2), t = t1, t2, where R ∈ R.
• C v D, C 6v D, t = ε, where C,D ∈ C ∪ {>,⊥};

DL-program: Π = 〈O,P〉, O is a DL ontology, P is a set of DL-rules:

a1 ∨ . . . ∨ an ← b1, . . . bk , not bk+1, . . . , not bm,

m ≥ k ≥ 0, ai is a classical literal; bi is a classical literal or a DL-atom.
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DL-program: semantics

Consider grounding grd(Π)= 〈O, grd(P)〉 of Π = 〈O,P〉 over C and P .

Interpretation I is a consistent set of ground literals over C and P .

• for ground literal `: I |=O ` iff ` ∈ I;

• for ground DL-atom a = DL[S1op1p1, . . . ,Smopmpm; Q](c):

I |=O a

iff τ(〈T ,A ∪ λI(a)〉) |= Q(c), where τ(O) is a modular translation of O to
FOL, λI(a) =

⋃m
i=1 Ai (I) is a DL-update of O under I by a:

• Ai (I) = {Si (t) | pi (t) ∈ I}, for opi = ];
• Ai (I) = {¬Si (t) | pi (t) ∈ I}, for opi = −∪;
• Ai (I) = {¬Si (t) | pi (t) 6∈ I}, for −∩.

FLP-reduct ρflpP I of P is a set of ground DL-rules r s.t. I |= b+(r), I 6|= b−(r).
Weak-reduct ρweak P I of P: removes all DL-atoms bi , 1 ≤ i ≤ k and all not bj ,
k < j ≤ m from the rules of ρflpP I .
I is an x-answer set of P iff I is a minimal model of its x-reduct.
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Network Benchmark

O =

 (1) ∃forbid v Block (4) edge(ni , nj )
(2) Broken v Block (5) . . .
(3) Block v ¬Avail (6) . . .



Pguess =



(1) go(X ,Y )← open(X ), open(Y ),DL[; edge](X ,Y ).
(2) route(X ,Z )← route(X ,Y ), route(Y ,Z ).
(3) route(X ,Y )← not DL[Block ] block ; forbid ](X ,Y ), go(X ,Y ).
(4) open(X ) ∨ block(X )← not DL[;¬Avail](X ), node(X ).
(5) negIs(X )← node(X ), route(X ,Y ),X 6= Y .
(6) ⊥ ← node(X ), not negIs(X ).



4 / 4



Network Benchmark

O =

 (1) ∃forbid v Block (4) edge(ni , nj )
(2) Broken v Block (5) . . .
(3) Block v ¬Avail (6) . . .



Pcon =



(1) go(X ,Y )← open(X ), open(Y ),DL[; edge](X ,Y ).
(2) route(X ,Z )← route(X ,Y ), route(Y ,Z ).
(3′) route(X ,Y )← go(X ,Y ), not DL[; forbid ](X ,Y ).
(4′) open(X )← node(X ), not DL[;¬Avail](X ).
(5) negIs(X )← node(X ), route(X ,Y ),X 6= Y .
(6′) ⊥ ← in(X ), out(Y ), not route(X ,Y ).



4 / 4


	Motivation
	DL-programs
	Support Sets for DL-atoms
	Repair Answer Set Computation
	Experiments
	Conclusion
	Appendix

