Towards Practical Deletion Repair of Inconsistent DL-programs

Thomas Eiter Michael Fink Daria Stepanova

Knowledge-Based Systems Group, Institute of Information Systems, Vienna University of Technology http://www.kr.tuwien.ac.at/

DL workshop 2014 –July 18, 2014

- DL-program: consistent ontology O + rules P (loose coupling combination approach)
- DL-atoms serve as query interfaces to $\mathcal O$
- Possibility to add information from $\mathcal P$ to $\mathcal O$ prior to querying it allows for bidirectional information flow

- DL-program: consistent ontology O + rules P (loose coupling combination approach)
- DL-atoms serve as query interfaces to $\mathcal O$
- Possibility to add information from $\mathcal P$ to $\mathcal O$ prior to querying it allows for bidirectional information flow

However, information exchange between \mathcal{P} and \mathcal{O} can cause **inconsistency** of the DL-program (absence of answer sets).

! [Eiter *et* al, *IJCAI*'2013] Repair answer sets and algorithm for repairing ontology data part, but the latter **lacks practicality**.

- DL-program: consistent ontology O + rules P (loose coupling combination approach)
- DL-atoms serve as query interfaces to $\mathcal O$
- Possibility to add information from $\mathcal P$ to $\mathcal O$ prior to querying it allows for bidirectional information flow

However, information exchange between \mathcal{P} and \mathcal{O} can cause **inconsistency** of the DL-program (absence of answer sets).

! [Eiter *et* al, *IJCAI*'2013] Repair answer sets and algorithm for repairing ontology data part, but the latter **lacks practicality**.

In this work: Algorithm for DL-program repair based on support sets for DL-atoms. Effective for ontologies in DL-Lite_A.

DL-programs

Support Sets for DL-atoms

Repair Answer Set Computation

Experiments

Conclusion

DL-Lite_A

- Lightweight Description Logic for accessing large data sources
- Concepts and roles model sets of objects and their relationships

$$C o A \mid \exists R \qquad R o P \mid P^-$$

- A *DL-Lite*_A ontology $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ consists of:
 - TBox \mathcal{T} specifying constraints at the conceptual level

$$\begin{array}{ccc} C_1 \sqsubseteq C_2, & C_1 \sqsubseteq \neg C_2, \\ R_1 \sqsubseteq R_2, & R_1 \sqsubseteq \neg R_2, & (funct \ R) \end{array}$$
• ABox \mathcal{A} specifying the facts that hold in the domain $A(b) \qquad P(a,b)$

DL-Lite_A

- Lightweight Description Logic for accessing large data sources
- Concepts and roles model sets of objects and their relationships

$$C
ightarrow A \mid \exists R \qquad R
ightarrow P \mid P^{-}$$

- A *DL-Lite*_A ontology $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ consists of:
 - TBox \mathcal{T} specifying constraints at the conceptual level

$$\begin{array}{ccc} C_1 \sqsubseteq C_2, & C_1 \sqsubseteq \neg C_2, \\ R_1 \sqsubseteq R_2, & R_1 \sqsubseteq \neg R_2, \\ \end{array} \text{ (funct } R)$$

• ABox \mathcal{A} specifying the facts that hold in the domain $A(b) \quad P(a,b)$

Example
$$\mathcal{T} = \begin{cases} Child \sqsubseteq \exists hasParent \\ Female \sqsubseteq \neg Male \end{cases}$$
 $\mathcal{A} = \begin{cases} hasParent(john, pat) \\ Male(john) \end{cases}$

DL-Lite_{\mathcal{A}}

- Lightweight Description Logic for accessing large data sources
- Concepts and roles model sets of objects and their relationships

 $C
ightarrow A \mid \exists R \qquad R
ightarrow P \mid P^-$

- A *DL-Lite*_A ontology $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ consists of:
 - TBox \mathcal{T} specifying constraints at the conceptual level

$$\begin{array}{ccc} C_1 \sqsubseteq C_2, & C_1 \sqsubseteq \neg C_2, \\ R_1 \sqsubseteq R_2, & R_1 \sqsubseteq \neg R_2, \\ \end{array} (funct R)$$
• ABox \mathcal{A} specifying the facts that hold in the domain $A(b) \quad P(a,b)$

- For query derivation: single ABox assertion
- For inconsistency: at most two ABox assertions
- Classification is tractable

[Calvanese et al., 2007]

Example: DL-program

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$ is a DL-program

$$\mathcal{O} = \begin{cases} (1) \ Child \sqsubseteq \exists hasParent \ (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child \ (5) \ Male(john) \\ (3) \ Female \sqsubseteq \neg Male \ (6) \ hasParent(john, pat) \end{cases}$$

Example: DL-program

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$ is a DL-program

 $\mathcal{O} = \left\{ \begin{array}{l} (1) \ Child \sqsubseteq \exists hasParent \ (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child \ (5) \ Male(john) \\ (3) \ Female \sqsubseteq \neg Male \ (6) \ hasParent(john, pat) \end{array} \right\}$ $\mathcal{P} = \left\{ \begin{array}{l} (7) \ ischildof(john, alex); \ (8) \ boy(john); \\ (9) \ hasfather(john, pat) \leftarrow \mathsf{DL}[Male \uplus boy; Male](pat), \\ \mathsf{DL}[; hasParent](john, pat) \end{array} \right\}$

Example: DL-program

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$ is a DL-program

$$\mathcal{O} = \left\{ \begin{array}{l} (1) \ Child \sqsubseteq \exists hasParent \ (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child \ (5) \ Male(john) \\ (3) \ Female \sqsubseteq \neg Male \ (6) \ hasParent(john, pat) \end{array} \right\}$$
$$\mathcal{P} = \left\{ \begin{array}{l} (7) \ ischildof(john, alex); \ (8) \ boy(john); \\ (9) \ hasfather(john, pat) \leftarrow \mathsf{DL}[Male \uplus boy; Male](pat), \\ \mathsf{DL}[; hasParent](john, pat) \end{array} \right\}$$

- Satisfaction relation: *I* ⊨^O boy(john); *I* ⊨^O DL[; hasParent](john, pat)
 I ⊨^O DL[Male ⊎ boy; Male](pat)
- Semantics: in terms of answer sets, i.e. founded models (weak, flp, ...)
- I is a weak and flp answer set

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$ $\mathcal{O} = \left\{ \begin{array}{l} (1) \ Child \sqsubseteq \exists hasParent \ (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child \ (5) \ Male(john) \\ (3) \ Female \sqsubseteq \neg Male \ (6) \ hasParent(john, pat) \end{array} \right\}$ $\mathcal{P} = \begin{cases} (7) \text{ ischildof}(john, alex); & (8) \text{ boy}(john); \\ (9) \text{ hasfather}(john, pat) \leftarrow \mathsf{DL}[\text{Male} \uplus \text{ boy}; \text{Male}](pat), \\ \mathsf{DL}[; \text{ hasParent}](john, pat); \\ (10) \perp \leftarrow \text{ not } \mathsf{DL}[; \text{ Adopted}](john), pat \neq alex, \\ \text{ hasfather}(john, pat), \text{ ischildof}(john, alex), \\ \text{ not } \mathsf{DL}[\text{Child} \uplus \text{ boy}; \neg \text{Male}](alex) \end{cases}$

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$ $\mathcal{O} = \left\{ \begin{array}{l} (1) \ Child \sqsubseteq \exists hasParent \ (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child \ (5) \ Male(john) \\ (3) \ Female \sqsubseteq \neg Male \ (6) \ hasParent(john, pat) \end{array} \right\}$ $\mathcal{P} = \begin{cases} (7) \text{ ischildof(john, alex);} (8) \text{ boy(john);} \\ (9) \text{ hasfather(john, pat)} \leftarrow \text{DL}[\text{Male} \uplus \text{ boy; Male}](\text{pat),} \\ \text{DL}[; \text{ hasParent}](\text{john, pat);} \\ (10) \perp \leftarrow \text{ not DL}[; \text{ Adopted}](\text{john}), \text{pat} \neq \text{alex,} \\ \text{ hasfather(john, pat), ischildof(john, alex),} \\ \text{ not DL}[\text{Child} \uplus \text{ boy; } \neg \text{Male}](\text{alex}) \end{cases}$

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$ $\mathcal{O} = \left\{ \begin{array}{l} (1) \ Child \sqsubseteq \exists hasParent \ (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child \\ (3) \ Female \sqsubseteq \neg Male \\ (6) \ hasParent(john, pat) \end{array} \right\}$ $\mathcal{P} = \left\{ \begin{array}{l} (7) \ ischildof(john, alex); \quad (8) \ boy(john); \\ (9) \ hasfather(john, pat) \leftarrow \mathsf{DL}[\mathit{Male} \uplus boy; \mathit{Male}](pat), \\ \mathsf{DL}[; hasParent](john, pat); \\ (10) \perp \leftarrow not \mathsf{DL}[; \mathit{Adopted}](john), pat \neq alex, \\ hasfather(john, pat), ischildof(john, alex), \\ not \mathsf{DL}[\mathit{Child} \uplus boy; \neg \mathit{Male}](alex) \end{array} \right\}$

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle \text{ is inconsistent!}$ $\mathcal{O} = \left\{ \begin{array}{l} (1) \ Child \sqsubseteq \exists hasParent \ (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child \\ (3) \ Female \sqsubseteq \neg Male \\ (6) \ hasParent(john, pat) \end{array} \right\}$ $\mathcal{P} = \begin{cases} (7) \ ischildof(john, alex); \ (8) \ boy(john); \\ (9) \ hasfather(john, pat) \leftarrow \mathsf{DL}[Male \uplus boy; Male](pat), \\ \mathsf{DL}[; \ hasParent](john, pat); \\ (10) \perp \leftarrow not \,\mathsf{DL}[; \ Adopted](john), pat \neq alex, \\ hasfather(john, pat), \ ischildof(john, alex), \\ not \,\mathsf{DL}[Child \uplus boy; \neg Male](alex). \end{cases} \end{cases}$

No answer sets

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$ is consistent! $\mathcal{O} = \left\{ \begin{array}{l} (1) \ Child \sqsubseteq \exists hasParent \\ (2) \ Adopted \sqsubseteq Child \\ (3) \ Female \sqsubseteq \neg Male \\ \end{array} (6) \ hasParent(john, pat) \right\}$ $\mathcal{P} = \begin{cases} (7) \ ischildof(john, alex); \quad (8) \ boy(john); \\ (9) \ hasfather(john, pat) \leftarrow \mathsf{DL}[Male \uplus boy; Male](pat), \\ \mathsf{DL}[; hasParent](john, pat); \\ (10) \perp \leftarrow not \mathsf{DL}[; \ Adopted](john), pat \neq alex, \\ hasfather(john, pat), \ ischildof(john, alex), \\ not \mathsf{DL}[Child \uplus boy; \neg Male](alex) \end{cases} \end{cases}$

 $I_1 = \{ischildof(john, alex), boy(john)\}$

 $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$ is consistent! $\mathcal{O} = \left\{ \begin{array}{l} (1) \ Child \sqsubseteq \exists hasParent \ (4) \ Male(pat) \\ (2) \ Adopted \sqsubseteq Child \ (5) \ Male(john) \\ (3) \ Female \sqsubseteq \neg Male \end{array} \right\}$ $\mathcal{P} = \left\{ \begin{array}{l} (7) \; ischildof(john, alex); \quad (8) \; boy(john); \\ (9) \; hasfather(john, pat) \leftarrow \mathsf{DL}[Male \uplus boy; Male](pat), \\ \mathsf{DL}[; hasParent](john, pat); \\ (10) \perp \leftarrow not \; \mathsf{DL}[; \; Adopted](john), pat \neq alex, \\ \; hasfather(john, pat), \; ischildof(john, alex), \\ \; not \; \mathsf{DL}[Child \uplus boy; \neg Male](alex) \end{array} \right\}$

 $I_1 = \{ischildof(john, alex), boy(john)\}$

 $d = \mathsf{DL}[Male \uplus boy; Male](pat); \mathcal{T} = \{Female \sqsubseteq \neg Male\}$

When is *d* true under interpretation *I*?

 $d = \mathsf{DL}[\mathit{Male} \uplus \mathit{boy}; \mathit{Male}](\mathit{pat}); \mathcal{T} = \{\mathit{Female} \sqsubseteq \neg \mathit{Male}\}$

When is d true under interpretation I?

- $Male(pat) \in \mathcal{A}$
- boy(pat) ∈ I
- $boy(alex) \in I$; $Female(alex) \in A$

 $d = \mathsf{DL}[\underbrace{Male \ \ boy}_{\lambda}; Male](pat); \mathcal{T}_d = \{Female \sqsubseteq \neg Male; Male_{boy} \sqsubseteq Male\}$

When is d true under interpretation I?

- $Male(pat) \in A$
- $Male_{boy}(pat) \in A_d$, s.t. $boy(pat) \in I$
- $Male_{boy}(alex) \in A_d$, s.t. $boy(alex) \in I$; $Female(alex) \in A$

where $\mathcal{A}_d = \{ \mathcal{P}_{\rho}(\mathbf{t}) \mid \mathcal{P} \uplus \rho \in \lambda \} \cup \{ \neg \mathcal{P}_{\rho}(\mathbf{t}) \mid \mathcal{P} \cup \rho \in \lambda \}$

Definition

 $\mathcal{S} \subseteq \mathcal{A} \cup \mathcal{A}_d$ is a support set for $d = \mathsf{DL}[\lambda; Q](\mathbf{t})$ w.r.t. $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ if either

(i)
$$S = \{P(\mathbf{c})\}$$
 and $\mathcal{T}_d \cup S \models Q(\mathbf{t})$ or

(ii) $S = \{P(\mathbf{c}), P'(\mathbf{d})\}$, s.t. $\mathcal{T}_d \cup S$ is inconsistent.

 $Supp_{\mathcal{O}}(d)$ is a set of all support sets for d.

 $d = \mathsf{DL}[\mathit{Male} \uplus \mathit{boy}; \mathit{Male}](\mathit{pat}); \mathcal{T}_d = \{\mathit{Female} \sqsubseteq \neg \mathit{Male}; \mathit{Male}_{\mathit{boy}} \sqsubseteq \mathit{Male}\}$

Support sets:

- $S_1 = \{Male(pat)\}, \text{ coherent with any } I$
- $S_2 = \{Male_{boy}(pat)\}, \text{ coherent with } I \supseteq boy(pat)$
- $S_3 = \{Male_{boy}(alex); Female(alex)\}, \text{ coherent with } I \supseteq boy(alex)\}$

Definition

 $S \subseteq A \cup A_d$ is a support set for $d = \mathsf{DL}[\lambda; Q](\mathbf{t})$ w.r.t. $\mathcal{O} = \langle \mathcal{T}, A \rangle$ if either

(i)
$$S = \{P(\mathbf{c})\}$$
 and $\mathcal{T}_d \cup S \models Q(\mathbf{t})$ or

(ii) $S = \{P(\mathbf{c}), P'(\mathbf{d})\}$, s.t. $\mathcal{T}_d \cup S$ is inconsistent.

 $Supp_{\mathcal{O}}(d)$ is a set of all support sets for d.

 $I \models^{\mathcal{O}} d$ iff there exists $S \in Supp_{\mathcal{O}}(d)$, which is coherent with *I*.

 $d = \mathsf{DL}[Male \uplus boy; Male](pat), \mathcal{T}_d = \{Female \sqsubseteq \neg Male; Male_{boy} \sqsubseteq Male\}$

Support sets:

- $S_1 = \{Male(pat)\}$
- $S_2 = \{Male_{boy}(pat)\}$
- $S_3 = \{ Male_{boy}(c); Female(c) \} \ c \in C$

 $d = \mathsf{DL}[Male \ \ boy; Male](X), \mathcal{T}_d = \{Female \sqsubseteq \neg Male; Male_{boy} \sqsubseteq Male\}$

Nonground support sets:

- $S_1 = \{Male(X)\}$
- $S_2 = \{ \textit{Male}_{boy}(X) \}$
- $S_3 = \{ Male_{boy}(Y); Female(Y) \}$

Definition

$$\begin{split} \mathcal{S} &= \{ \mathcal{P}(\mathbf{Y}), \mathcal{P}'(\mathbf{Y}') \} \ (\mathcal{S} = \{ \mathcal{P}(\mathbf{Y}) \}) \text{ is a nonground support set for a DL-atom} \\ d(\mathbf{X}) \text{ w.r.t. } \mathcal{T} \text{ if for every } \theta : \mathcal{V} \to \mathcal{C} \text{ it holds that } \mathcal{S}\theta \text{ is a support set for } d(\mathbf{X}\theta) \\ \text{w.r.t. } \mathcal{O}_{\mathcal{C}} &= \langle \mathcal{T}, \mathcal{A}_{\mathcal{C}} \rangle, \text{ where } \mathcal{A}_{\mathcal{C}} \text{ is a set of all possible assertions over } \mathcal{C}. \end{split}$$

 $d = \mathsf{DL}[\textit{Male} \uplus \textit{boy}; \textit{Male}](X), \mathcal{T}_d = \{\textit{Female} \sqsubseteq \neg \textit{Male}; \textit{Male}_{\textit{boy}} \sqsubseteq \textit{Male}\}$

Nonground support sets:

- $S_1 = \{Male(X)\}$
- *S*₂ = {*Male*_{boy}(*X*)}
- $S_3 = \{ Male_{boy}(Y); Female(Y) \}$

Definition

$$\begin{split} \mathcal{S} &= \{ \mathcal{P}(\mathbf{Y}), \mathcal{P}'(\mathbf{Y}') \} \ (\mathcal{S} = \{ \mathcal{P}(\mathbf{Y}) \}) \text{ is a nonground support set for a DL-atom} \\ d(\mathbf{X}) \text{ w.r.t. } \mathcal{T} \text{ if for every } \theta : V \to \mathcal{C} \text{ it holds that } \mathcal{S}\theta \text{ is a support set for } d(\mathbf{X}\theta) \\ \text{w.r.t. } \mathcal{O}_{\mathcal{C}} &= \langle \mathcal{T}, \mathcal{A}_{\mathcal{C}} \rangle, \text{ where } \mathcal{A}_{\mathcal{C}} \text{ is a set of all possible assertions over } \mathcal{C}. \end{split}$$

Nonground support sets are compact representations of ground ones.

Definition

 $S = \{P(\mathbf{Y}), P'(\mathbf{Y}')\}$ ($S = \{P(\mathbf{Y})\}$) is a nonground support set for a DL-atom $d(\mathbf{X})$ w.r.t. \mathcal{T} if for every $\theta : V \to C$ it holds that $S\theta$ is a support set for $d(\mathbf{X}\theta)$ w.r.t. $\mathcal{O}_{\mathcal{C}} = \langle \mathcal{T}, \mathcal{A}_{\mathcal{C}} \rangle$, where $\mathcal{A}_{\mathcal{C}}$ is a set of all possible assertions over \mathcal{C} .

Nonground support sets are compact representations of ground ones.

Completeness: family of nonground support sets **S** for $d(\mathbf{X})$ is complete w.r.t. \mathcal{O} if for every θ : $\mathbf{X} \to \mathcal{C}$ and $S \in Supp_{\mathcal{O}}(d(\mathbf{X}\theta))$ some $S' \in \mathbf{S}$ exists, s.t. $S = S'\theta'$.

Complete support families alow to avoid access to O during DL-atom evaluation.

- $d = \mathsf{DL}[\mathit{Male} \uplus \mathit{boy}; \mathit{Male}](X); \mathcal{T} = \{\mathit{Female} \sqsubseteq \neg \mathit{Male}\}$
 - Construct T_d :

• Compute classification $Cl(\mathcal{T}_d)$ (e.g. using ASP techniques):

• Extract suport sets from $CI(\mathcal{T}_d)$:

- $d = \mathsf{DL}[\mathit{Male} \uplus \mathit{boy}; \mathit{Male}](X); \mathcal{T} = \{\mathit{Female} \sqsubseteq \neg \mathit{Male}\}$
 - Construct \mathcal{T}_d : $\mathcal{T}_d = \mathcal{T} \cup \{ \textit{Male}_{\textit{boy}} \sqsubseteq \textit{Male} \}$
 - Compute classification $Cl(\mathcal{T}_d)$ (e.g. using ASP techniques):

• Extract suport sets from $CI(\mathcal{T}_d)$:

- Construct \mathcal{T}_d : $\mathcal{T}_d = \mathcal{T} \cup \{ Male_{boy} \sqsubseteq Male \}$
- Compute classification *Cl*(*T_d*) (e.g. using ASP techniques):
 cl(*T_d*) = *T_d* ∪ {*Male* ⊑ ¬*Female*; *Male_{boy}* ⊑ ¬*Female*} ∪ {*P* ⊑ *P* | *P* ∈ **P**}
- Extract suport sets from $CI(\mathcal{T}_d)$:

- Construct \mathcal{T}_d : $\mathcal{T}_d = \mathcal{T} \cup \{ Male_{boy} \sqsubseteq Male \}$
- Compute classification *Cl*(*T_d*) (e.g. using ASP techniques):
 cl(*T_d*) = *T_d* ∪ {*Male* ⊑ ¬*Female*; *Male_{boy}* ⊑ ¬*Female*} ∪ {*P* ⊑ *P* | *P* ∈ **P**}
- Extract suport sets from $CI(\mathcal{T}_d)$:

•
$$S_1 = \{Male(X)\}$$

• $S_2 = \{Male_{boy}(X)\}$
• $S_3 = \{Male_{boy}(Y), \neg Male(Y)\}$
• $S_4 = \{Male_{boy}(Y), Female(Y)\}$
• $S_5 = \{Male(Y), \neg Male(Y)\}$
• $S_6 = \{Male(Y), Female(Y)\}$

- Construct \mathcal{T}_d : $\mathcal{T}_d = \mathcal{T} \cup \{ \textit{Male}_{boy} \sqsubseteq \textit{Male} \}$
- Compute classification *Cl*(*T_d*) (e.g. using ASP techniques):
 cl(*T_d*) = *T_d* ∪ {*Male* ⊑ ¬*Female*; *Male_{boy}* ⊑ ¬*Female*} ∪ {*P* ⊑ *P* | *P* ∈ **P**}
- Extract suport sets from $Cl(\mathcal{T}_d)$:

•
$$S_1 = \{Male(X)\}$$

• $S_2 = \{Male_{boy}(X)\}$
• $S_3 = \{Male_{boy}(Y), \neg Male(Y)\}$
• $S_4 = \{Male_{boy}(Y), \neg Male(Y)\}$
• $S_5 = \{Male(Y), \neg Male(Y)\}$
• $S_6 = \{Male(Y), Female(Y)\}$

- Construct \mathcal{T}_d : $\mathcal{T}_d = \mathcal{T} \cup \{ Male_{boy} \sqsubseteq Male \}$
- Compute classification *Cl*(*T_d*) (e.g. using ASP techniques):
 cl(*T_d*) = *T_d* ∪ {*Male* ⊑ ¬*Female*; *Male_{boy}* ⊑ ¬*Female*} ∪ {*P* ⊑ *P* | *P* ∈ **P**}
- Extract suport sets from $Cl(\mathcal{T}_d)$:

•
$$S_1 = \{Male(X)\}$$

• $S_2 = \{Male_{boy}(X)\}$
• $S_3 = \{Male_{boy}(Y), \neg Male(Y)\}$
• $S_4 = \{Male_{boy}(Y), Female(Y)\}$
• $S_5 = \{Male(Y), \neg Male(Y)\}$
• $S_6 = \{Male(Y), Female(Y)\}\}$ \mathcal{O} is consistent!

- Construct \mathcal{T}_d : $\mathcal{T}_d = \mathcal{T} \cup \{ \textit{Male}_{\textit{boy}} \sqsubseteq \textit{Male} \}$
- Compute classification *Cl*(*T_d*) (e.g. using ASP techniques):
 cl(*T_d*) = *T_d* ∪ {*Male* ⊑ ¬*Female*; *Male_{boy}* ⊑ ¬*Female*} ∪ {*P* ⊑ *P* | *P* ∈ **P**}
- Extract suport sets from $CI(\mathcal{T}_d)$:

•
$$S_1 = \{Male(X)\}$$

• $S_2 = \{Male_{boy}(X)\}$
• $S_3 = \{Male_{boy}(Y), \neg Male(Y)\}$
• $S_4 = \{Male_{boy}(Y), Female(Y)\}$
} $\{S_1, S_2, S_3, S_4\}$ is complete!

Repair Answer Set Computation

Compute complete support families S for all DL-atoms of Π

- Construct $\hat{\Pi}$ from $\Pi = \langle \mathcal{O}, \mathcal{P} \rangle$:
 - Replace all DL-atoms a with normal atoms ea
 - Add guessing rules on values of a: e_a ∨ ne_a
- For all $\hat{l} \in AS(\hat{\Pi}) : D_p = \{a \mid e_a \in \hat{l}\}; D_n = \{a \mid ne_a \in \hat{l}\}$
- \checkmark Ground support sets in **S** wrt. \hat{l} and \mathcal{A} : $\hat{\mathcal{S}_{gr}^{\hat{l}}} \leftarrow Gr(\mathbf{S}, \hat{\mathbf{l}}, \mathcal{A})$
- ✓ Find A', such that
 - ✓ For all $a \in D_p$: there is $S \in S_{gr}^{\hat{l}}(a)$, s.t. $S \cap A' \neq \emptyset$ or $S \subseteq A_a$
 - ✓ For all $a' \in D_n$: for all $S \in S_{gr}^j(a')$: $S \cap A' = \emptyset$ and $S \not\subseteq A_{a'}$
 - ✓ Minimality check of $\hat{I}|_{\Pi}$ wrt. $\Pi' = \langle \mathcal{O}', \mathcal{P} \rangle, \, \mathcal{O}' = \langle \mathcal{T}, \mathcal{A}' \rangle$

Repair Answer Set Computation

Algorithm 1: SupRAnsSet: all deletion repair answer sets Input: $\Pi = \langle \mathcal{T} \cup \mathcal{A}, \mathcal{P} \rangle$ **Output**: $flpRAS(\Pi)$ compute a complete set S of nongr. supp. sets for the DL-atoms in Π (a) for $\hat{I} \in AS(\hat{\Pi})$ do **(b)** $D_n \leftarrow \{a \mid e_a \in \hat{I}\}; D_n \in \{a \mid ne_a \in \hat{I}\}; \mathbf{S}_{ar}^{\hat{I}} \leftarrow Gr(\mathbf{S}, \hat{I}, \mathcal{A});$ if $\mathbf{S}_{ar}^{\hat{I}}(a) \neq \emptyset$ for $a \in D_p$ and every $S \in \mathbf{S}_{ar}^{\hat{I}}(a)$ for $a \in D_p$ fulfills $S \cap \mathcal{A} \neq \emptyset$ then (c) for all $a \in D_p$ do (d) if some $S \in \mathbf{S}_{ar}^{I}(a)$ exists s.t. $S \cap \mathcal{A} = \emptyset$ then pick next a (e) else remove each S from $\mathbf{S}_{ar}^{\hat{I}}(a)$ s.t. $S \cap \mathcal{A} \cap \bigcup_{a' \in D} \mathbf{S}_{ar}^{\hat{I}}(a') \neq \emptyset$ if $\mathbf{S}_{ar}^{\hat{I}}(a) = \emptyset$ then pick next \hat{I} (**f**) end $\mathcal{A}' \leftarrow \mathcal{A} \setminus \bigcup_{a' \in D_{\pi}} \mathbf{S}_{ar}^{\tilde{I}}(a');$ (g) if $flpFND(\hat{I}, \langle \mathcal{T} \cup \mathcal{A}', \mathcal{P} \rangle)$ then output $\hat{I}|_{\Pi}$ (h) end end

Repair Answer Set Computation

Algorithm 1: SupRAnsSet: all deletion repair answer sets

Input: $\Pi = \langle \mathcal{T} \cup \mathcal{A}, \mathcal{P} \rangle$ **Output**: $flpRAS(\Pi)$

(a) compute a complete set S of nongr. supp. sets for the DL-atoms in Π

(b) for $\hat{I} \in AS(\hat{\Pi})$ do

SupRAnsSet is sound and complete wrt. deletion repair answer sets.

(e)	if some $S \in \mathbf{S}_{gr}^{\iota}(a)$ exists s.t. $S \cap \mathcal{A} = \emptyset$ then pick next a
	else remove each S from $\mathbf{S}_{gr}^{\hat{I}}(a)$ s.t. $S \cap \mathcal{A} \cap \bigcup_{a' \in D_n} \mathbf{S}_{gr}^{\hat{I}}(a') \neq \emptyset$
(f)	if $\mathbf{S}_{gr}^{\hat{I}}(a) = \emptyset$ then pick next \hat{I}
	end
(g)	$\mathcal{A}' \leftarrow \mathcal{A} \setminus igcup_{a' \in D_n} \mathbf{S}^{\hat{I}}_{gr}(a');$
(h)	if $flpFND(\hat{I}, \langle \mathcal{T} \cup \mathcal{A}', \mathcal{P} \rangle)$ then output $\hat{I} _{\Pi}$
	end
end	

eriments Conclusion

Experiments

Related Work

- Inconsistenies in *DL-Lite_A* ontologies:
 - Consistent query answering over *DL-Lite* ontologies based on repair technique [Lembo *et al.*, 2010], [Bienvenu, 2012]
 - QA to *DL-Lite*_A ontologies that miss expected tuples (abductive explanations corresponding to repairs) [Calvanese *et al.*, 2012]

- Support sets in other works
 - Support sets for HEX-programs [Eiter et al, AAAI'2014] as more abstract structures

Conclusion and Future Work

Conclusions:

- Ground and nonground support sets for DL-atoms
 - Allow evaluation of DL-atoms avoiding ontology access
- Support sets for *DL-Lite_A* are small and efficiently computable
- Effective sound and complete algorithm *SupRAnsSet* for deletion repair computation based on support sets
- Implementation in DLVHEX and evaluation on a set of benchmarks

Further and future work:

- Extensions to other DLs (e.g. *EL*)
- Computing preferred repairs
 (e.g. σ-selection [Eiter et al, IJCAI'2013])

References I

Meghyn Bienvenu.

On the complexity of consistent query answering in the presence of simple ontologies.

In *Proceedings of the 26th AAAI Conference on Artificial Intelligence*, pages 705–711, Toronto, Ontario, Canada, July 2012. American Association for Artificial Intelligence.

Diego Calvanese, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.

Tractable reasoning and efficient query answering in description logics: The DL-Lite family.

Journal of Automated Reasoning, 39(3):385-429, October 2007.

References II

Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni.

The complexity of explaining negative query answers in DL-Lite. In *Proceedings of the 13th International Conference on the Principles of Knowledge Representation and Reasoning*, Rome, Italy, June 2012. American Association for Artificial Intelligence.

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo. Inconsistency-tolerant semantics for description logic ontologies. In *Proceedings of the 19th Italian Symposium on Advanced Database Systems*, pages 103–117, Bressanone/Brixen, Italy, September 2010. Springer.

DL-program: syntax

Signature: $\Sigma = \langle C, I, \mathcal{P}, C, R \rangle$, where

- $\boldsymbol{\Sigma}_0 = \langle \boldsymbol{I}, \boldsymbol{C}, \boldsymbol{R} \rangle$ is a DL signature;
- $\mathcal{C} \supseteq \mathbf{I}$ is a set of constant symbols;
- \mathcal{P} is a finite set of predicate symbols of arity ≥ 0 , s.t. $\mathcal{P} \cap \{\mathbf{C} \cup \mathbf{R}\} = \emptyset$.

DL-atom is of the form $DL[S_1op_1p_1, \ldots, S_mop_mp_m; Q](\mathbf{t}), m \ge 0$, where

- $S_i \in \mathbf{C} \cup \mathbf{R};$
- $op_i \in \{ \uplus, \varTheta, \cap \};$
- $p_i \in \mathcal{P}$ (unary or binary);
- Q(t) is a DL-query:
 - $C(t_1), \neg C(t_1), \mathbf{t} = t_1$, where $C \in \mathbf{C}$;
 - $R(t_1, t_2), \neg R(t_1, t_2), \mathbf{t} = t_1, t_2$, where $R \in \mathbf{R}$.
 - $C \sqsubseteq D, C \not\sqsubseteq D, \mathbf{t} = \epsilon$, where $C, D \in \mathbf{C} \cup \{\top, \bot\}$;

DL-program: $\Pi = \langle \mathcal{O}, P \rangle$, \mathcal{O} is a DL ontology, P is a set of DL-rules:

 $a_1 \vee \ldots \vee a_n \leftarrow b_1, \ldots b_k, not \ b_{k+1}, \ldots, not \ b_m,$

 $m \ge k \ge 0$, a_i is a classical literal; b_i is a classical literal or a DL-atom.

DL-program: semantics

Consider grounding $grd(\Pi) = \langle \mathcal{O}, grd(P) \rangle$ of $\Pi = \langle \mathcal{O}, P \rangle$ over \mathcal{C} and \mathcal{P} .

Interpretation *I* is a consistent set of ground literals over C and P.

- for ground literal ℓ : $I \models^{\mathcal{O}} \ell$ iff $\ell \in I$;
- for ground DL-atom $a = DL[S_1op_1p_1, \ldots, S_mop_mp_m; Q](\mathbf{c})$:

$$I\models^{\mathcal{O}} a$$

iff $\tau(\langle \mathcal{T}, \mathcal{A} \cup \lambda^{I}(a) \rangle) \models Q(\mathbf{c})$, where $\tau(\mathcal{O})$ is a modular translation of \mathcal{O} to FOL, $\lambda^{I}(a) = \bigcup_{i=1}^{m} A_{i}(I)$ is a DL-update of \mathcal{O} under I by a:

•
$$A_i(I) = \{S_i(t) \mid p_i(t) \in I\}, \text{ for } op_i = \uplus;$$

- $A_i(I) = \{\neg S_i(t) \mid p_i(t) \in I\}$, for $op_i = \bigcup$;
- $A_i(I) = \{\neg S_i(t) \mid p_i(t) \notin I\}$, for \cap .

FLP-reduct $\rho_{flp}P^{l}$ of P is a set of ground DL-rules r s.t. $I \models b^{+}(r), I \not\models b^{-}(r)$. Weak-reduct $\rho_{weak}P^{l}$ of P: removes all DL-atoms $b_{i}, 1 \leq i \leq k$ and all not $b_{j}, k < j \leq m$ from the rules of $\rho_{flp}P^{l}$.

I is an *x*-answer set of *P* iff *I* is a minimal model of its *x*-reduct.

Network Benchmark

$$\mathcal{O} = \begin{cases} (1) \exists forbid \sqsubseteq Block \ (4) \ edge(n_i, n_j) \\ (2) \ Broken \sqsubseteq Block \ (5) \ \dots \\ (3) \ Block \sqsubseteq \neg Avail \ (6) \ \dots \end{cases}$$

$$\mathcal{P}_{guess} = \begin{cases} (1) \ go(X, Y) \leftarrow open(X), open(Y), \mathsf{DL}[; edge](X, Y). \\ (2) \ route(X, Z) \leftarrow route(X, Y), route(Y, Z). \\ (3) \ route(X, Y) \leftarrow not \mathsf{DL}[Block \uplus block; forbid](X, Y), go(X, Y). \\ (4) \ open(X) \lor block(X) \leftarrow not \mathsf{DL}[; \neg Avail](X), node(X). \\ (5) \ negls(X) \leftarrow node(X), route(X, Y), X \neq Y. \\ (6) \ \bot \leftarrow node(X), not \ negls(X). \end{cases}$$

Network Benchmark

$$\mathcal{O} = \begin{cases} (1) \exists forbid \sqsubseteq Block \ (4) \ edge(n_i, n_j) \\ (2) \ Broken \sqsubseteq Block \ (5) \ \dots \\ (3) \ Block \sqsubseteq \neg Avail \ (6) \ \dots \end{cases}$$

$$\mathcal{P}_{con} = \begin{cases} (1) \ go(X, Y) \leftarrow open(X), open(Y), \mathsf{DL}[; edge](X, Y). \\ (2) \ route(X, Z) \leftarrow route(X, Y), route(Y, Z). \\ (3') \ route(X, Y) \leftarrow go(X, Y), not \mathsf{DL}[; forbid](X, Y). \\ (4') \ open(X) \leftarrow node(X), not \mathsf{DL}[; \neg Avail](X). \\ (5) \ negls(X) \leftarrow node(X), route(X, Y), X \neq Y. \\ (6') \ \bot \leftarrow in(X), out(Y), not route(X, Y). \end{cases}$$