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Abstract. Recent advances in information extraction have led to the so-called
knowledge graphs (KGs), i.e., huge collections of relational factual knowledge.
Since KGs are automatically constructed, they are inherently incomplete, thus
naturally treated under the Open World Assumption (OWA). Rule mining tech-
niques have been exploited to support the crucial task of KG completion. How-
ever, these techniques can mine Horn rules, which are insufficiently expressive to
capture exceptions, and might thus make incorrect predictions on missing links.
Recently, a rule-based method for filling in this gap was proposed which, how-
ever, applies to a flattened representation of a KG with only unary facts. In this
work we make the first steps towards extending this approach to KGs in their
original relational form, and provide preliminary evaluation results on real-world
KGs, which demonstrate the effectiveness of our method.

1 Introduction

Motivation. Recent advances in information extraction have led to the so-called knowl-
edge graphs (KGs), i.e. huge collections of rriples (subject predicate object) ac-
cording to the RDF data model [[17]]. These triples encode facts about the world and
can be straightforwardly represented by means of unary and binary first-order logic
(FOL) predicates. The unary predicates are the objects of the RDF type predicate, while
the binary ones correspond to all other RDF predicates, e.g., {alice type researcher)
and (bob isMarriedTo alice) from the KG in Fig. [1] refer to researcher(alice) and
isMarriedTo(bob, alice) respectively. Notable examples of KGs are NELL [4], DBpe-
dia [1l], YAGO [23] and Wikidata [9].

Since KGs are automatically constructed, they are inherently incomplete. There-
fore, they are naturally treated under the Open World Assumption (OWA). The task of
completion (also known as link prediction) is of crucial importance for the curation of
KGs. To this aim, rule mining techniques (e.g., [S412]) have been exploited to automat-
ically build rules able to make predictions on missing links. However, they mine Horn
rules, which are insufficiently expressive to capture exceptions, and might thus deduce
incorrect facts. For example, the following rule

rl : livesIn(Y,Z) < isMarriedTo(X,Y), livesIn(X, Z)
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Fig. 1: Example of a Knowledge Graph

can be mined from the KG in Fig. and used to produce the facts livesIn(alice,berlin),
livesIn(dave,chicago) and livesIn(lucy, amsterdam). Observe that the first two pre-
dicted facts might actually be wrong. Indeed, both alice and dave are researchers, and
the rule r1 could be suspected to have researcher as a potential exception.

Challenges. Exception handling has been traditionally faced in ILP by learning non-
monotonic logic programs, i.e., programs with negations [1526425l6J18]]. However,
there are several important obstacles that prevent us from using the off-the-shelf non-
monotonic ILP algorithms. First, the target predicates can not be easily identified, since
we do not know which parts of the considered KG need to be completed. A standard
way of addressing this issue would be just to learn rules for all the different predicate
names occurring in the KG. Unfortunately, this is unfeasible in our case given the huge
size of KGs. Second, the negative examples are not available, and they can not be easily
obtained from, e.g., domain experts due to - once again - the huge size of KGs. A natu-
ral solution to cope with this issue is to learn rules from positive examples only. Third,
the definition of a language bias turns out to be cumbersome since the schema of the
KG is usually not available.

To overcome the obstacles mentioned above, it turns out to be appropriate to treat
the KG completion problem as an unsupervised relational learning task, and exploit
algorithms for relational association rule mining such as [[12]]. In [11] these techniques
are applied to first learn a set of Horn rules, which subsequently can be revised by
adding negated atoms to their bodies in order to account for exceptions. However, the
proposed approach applies only to a flattened representation of a KG containing just
unary facts.

Contributions. In this work we extend the results from [11]] to KGs in their original
relational form. More specifically, we reformulate the KG completion problem as a
theory revision problem, where, given a KG and a set of (previously learned) Horn
rules, the task is to compute a set of nonmonotonic rules, such that the revised ruleset
is more accurate for link prediction than the original one. Essentially, we are interested
in tackling a theory revision problem, in which, as possible revision operations, we are
only allowed to add negated atoms to the antecedents of the rules.



Our approach combines standard relational association rule mining techniques with
a FOIL-like supervised learning algorithm, which is used to detect exceptions. More
specifically, we propose a method that proceeds in four steps as follows: First, for every
Horn rule we determine the normal and abnormal substitutions, i.e., substitutions that
satisfy (resp. do not satisfy) the considered rule. Second, we compute the so-called
exception witness sets, i.e., sets of predicates that are potentially involved in explaining
why abnormal substitutions fail to follow the rule (e.g., researcher in our example).
Third, we construct candidate rule revisions by adding a single exception at a time. We
devise quality measures for nonmonotonic rules to quantify their strength w.r.t the KG.
We consider the crosstalk between the rules through the novel partial materialization
technique instead of revising rules in isolation. Fourth, we rank rule revisions according
to these measures to determine a ruleset that not only describes the data well but also
shows a good predictive power by taking exceptions into account.

The contributions of our paper are:

— A theory revision framework, based on nonmonotonic relational rule learning, for
capturing exceptions in rule-based approaches to KG completion.

— A methodology for computing exception candidates, measuring their quality, and
ranking them taking into account the interaction among the rules.

— Experiments with the YAGO3 and IMDB KGs, which demonstrate the gains of our
method for rule quality as well as fact quality when performing KG completion.

Structure. Sec. [2|introduces preliminaries on nonmonotonic logic programming and
relational association rule mining. Sec. [3]describes our theory revision framework and
the methodology. Sec. []reports on experimental results, while Sec. [5|and Sec.[6|discuss
the related work and conclude the paper respectively.

2 Preliminaries

Nonmonotonic Logic Programming. We consider logic programs in their usual def-
inition [22] under the answer set semantics. In short, a (nonmonotonic) logic program
P is a set of rules of the form

H <+ B,not E 1

where H is a standard first-order atom of the form a(X) known as the rule head and de-
noted as head(r), B is a conjunction of positive atoms of the form b1 (Y1), ..., bx(Yx)
to which we refer as body+(7‘), and not FE, with slight abuse of notation, denotes a
conjunction of atoms not byt1(Yg41),...,not b,(Yy). Here, not is the so-called
negation as failure (NAF) or default negation. The negated part of the body is denoted
as body~ (r). The rule r is positive or Horn if body~ (r) = (. X, Y1, ..., Yy are tuples
of either constants or variables whose length corresponds to the arity of the predicates
a,by,...,b, respectively. The signature of P is given as X'p = (P,C), where P and C
are resp. sets of predicates and constants occurring in P.

A logic program P is ground if it consists of only ground rules, i.e. rules without
variables. Ground instantiation Gr(P) of a nonground program P is obtained by sub-
stituting variables with constants in all possible ways. The Herbrand universe HU (P)
(resp. Herbrand base HB(P)) of P, is the set of all constants occurring in P, i.e.



HU(P) = C (resp. the set of all possible ground atoms that can be formed with predi-
cates in P and constants in C). We refer to any subset of HB(P) as a Herbrand inter-
pretation. By MM (P) we denote the set-inclusion minimal Herbrand interpretation of
a ground positive program P.

An interpretation I of P is an answer set (or stable model) of P iff I € MM (P'),
where P! is the Gelfond-Lifschitz (GL) reduct [13] of P, obtained from Gr(P) by
removing (i) each rule r such that body™ (r) N I # 0, and (ii) all the negative atoms
from the remaining rules. The set of answer sets of a program P is denoted by AS(P).
Example 1. Consider the program

_J (1) livesIn(brad, berlin); (2) isMarriedTo(brad, ann);
) 3) livesIn(Y, Z) « isMarriedTo(X, Y), livesIn(X, Z), not researcher(Y)

The ground instantiation Gr(P) of P is obtained by substituting X, Y, Z with brad, ann
and berlin respectively. For I = {isMarriedTo(brad, ann), livesIn(ann, berlin),

livesIn(brad, berlin)}, the GL-reduct P! of P contains the rule livesIn(ann, berlin) <
livesIn(brad, berlin), isMarriedTo(brad, ann) and the facts (1), (2). As I is a mini-
mal model of PZ, it holds that I is an answer set of P. O

Following the common practice in ILP, we consider only safe rules (i.e., variables in the
negated part must appear in some positive atoms) with linked variables [14].

Relational association rule mining. Association rule mining concerns the discovery
of frequent patterns in a data set and the subsequent transformation of these patterns into
rules. Association rules in the relational format have been subject of intensive research
in ILP (see, e.g., [8] as the seminal work in this direction) and more recently in the
KG community (see [12] as the most prominent work). In the following we adapt basic
notions in relational association rule mining to our case of interest.

A conjunctive query @ over G is of the form Q(X) : —p1(X1),...,pm(Xm). Its
right-hand side (i.e., body) is a finite set of possibly negated atomic formulas over G,
while the left-hand side (i.e., head) is a tuple of variables occurring in the body. The an-
swer of Q on G is the set Q(G) := {f(Y) | Y is the head of @ and f is a matching of
@ on G}. Following [8]], the (absolute) support of a conjunctive query @ in a KG G is
the number of distinct tuples in the answer of () on G. The support of the query

Q(X,Y,Z): —isMarriedTo(X,Y), livesIn(X , Z) 2)

over G in Fig.[T]asking for people, their spouses and living places is equal to 6.

An association rule is of the form Q; => @2, such that (); and ()2 are both
conjunctive queries and the body of )1 considered as a set of atoms is included in the
body of @2, i.e., Q1(G") C Q2(G’) for any possible KG G’.

For example, from the above Q(X,Y, Z) and

Q' (X,Y, Z) : —isMarriedTo(X, Y), livesIn(X, Z), livesIn(Y , Z) 3)

we can construct the rule Q => Q’.

In this work we exploit association rules for reasoning purposes, and thus (with
some abuse of notation) treat them as logical rules, i.e., for Q1 => @2 we write
Q2\Q1 + Q1, where Q2\Q; refers to the set difference between Q2 and Q7 con-
sidered as sets. E.g., Q => @’ from above corresponds to 71 from Sec. m



We exploit the rule evaluation measure called conviction [3], as it is accepted to
be appropriate for estimating the actual implication of the rule at hand, and is thus
particularly attractive for our KG completion task. For r : H < B, not E, with H =
h(X,Y) and B, E involving variables from Z 2O XY, the conviction is given by:
1 - Supp(h(Xv Y)ag)

= 4
conv(r,G) 1~ conf(r. Q) 4)

where supp(h(X, Y),G) is the relative support of h(X, Y) defined as follows:

#(X,Y):h(X,)Y)eg
hMX,Y = 5
supp(h(X,Y), 6) FX I X, V) €0« (#Y X hX, V) eq) O
and conf is the confidence of r given as
 H#(X,Y):HeGAZBeG EZG
conf(r,§) = #(X,Y):9ZBE€G EEG ©
- . 1-0.3

Example 2. The conviction of the above rule 71 is conv(r!,G) = T 08— 14 O

3 A Theory Revision Framework for Rule-based KG Completion

3.1 Problem Statement

We start with defining the goal of this work formally. To this aim, let us introduce the
factual representation of a KG G as the collection of facts over the signature Xg =
(C,R,C), where C, R and C are sets of unary predicates, binary predicates and con-
stants, resp. Following [7], we define the gap between the available graph G* and the
ideal graph G', i.e., the graph containing all correct facts with constants and relations
from Yg. that hold in the current state of the world.

Definition 1 (Incomplete data source). An incomplete data source is a pair G =
(G, G*) of two KGs, where G* C G' and Ygo = Xgi.

Our goal is to learn a set R of nonmonotonic rules from the available graph, such
that their application results in a good approximation of G*. Here, the application of R
to a graph G refers to the computation of answer sets of R U G.

Definition 2 (Rule-based KG completion). Let a factual representation of a KG G be
given over the signature ¥g = (C,R,C) and R be a set of rules mined from G, i.e.
rules over the signature X = (C U R,C). Then, the completion of G w.r.t. R is a
graph Gg constructed from any answer set Gr € AS(RUG).

Note that G is the perfect completion of G%, containing all correct facts over Xga.
Given a potentially incomplete graph G* and a set Ry of Horn rules mined from G¢,
our goal is to add default negated atoms (exceptions) to the rules in Ry and obtain a
revised ruleset Ry, such that the set difference between Q%NM and G’ is as small as
possible. Intuitively, a good revision R yps of Ry is the one that (i) neglects as many
incorrect predictions made by R g7 as possible, while still (ii) preserving as many correct
predictions made by R as possible. Note that G is usually not available, thus we do



not know which predictions are actually correct and which are not. For this reason using
standard ILP measures in our setting to evaluate the quality of a ruleset is impractical.
To still make an estimate of the revision quality we exploit measures from association
rule mining literature. According to our hypothesis, a good ruleset revision is the one
for which the overall rule measure is the highest, while the added negated atoms are not
over-fitting the data, i.e., the negated atoms are actual exceptions rather than noise.

To this end, we devise two quality functions, Grm and qconfiict, that take a ruleset
R and a KG G as input and output a real value, reflecting the suitability of R for data
prediction. In particular, g,,, generalizes any rule measure rm to rulesets as follows

ZTGR Tm(r7 g)

qrm (R, g) = |R‘

: (N
Conversely, qconfiict €stimates the number of conflicting predictions that the rules in R
generate. To measure gconfict for a given R, we create an extended set of rules R,
which contains each nonmonotonic rule » € R together with its auxiliary version r*“*,
constructed as follows: 1) transform 7 into a Horn rule by removing not from negated
body atoms, and 2) replace the head predicate h of r with a newly introduced predicate
not_h which intuitively contains instances which are not in h. Formally,

|{c| p(c), not_p(c) € Grow}|
conflic R, g = 7 5
P ) pEP%(R) {c|not_p(c) € Grou}| €]

where pred(R) is the set of predicates appearing in R, and ¢ C C with 1 < |¢| < 2.
Note that gconfiics i designed to distinguish real exceptions from noise, by considering
the cross talk between the rules in a set, as illustrated in the following example.

Example 3. The predicate researcher is a good exception for 71 w.r.t. G (Fig. 1) with
bornIn(dave, chicago) added, i.e. it explains why for 2 out of 3 substitutions marked
with red triangles the rule 1 is not satisfied. However, this exception becomes less
prominent, whenever 72 : livesIn(X,Y) + bornIn(X,Y), not emigrant(X)is ap-
plied to G. Indeed, after livesIn(dave, chicago) is predicted, the substitution X /clara,
Y /dave, Z / chicago starts satisfying r1, but researcher still holds for dave, which
weakens the predicate researcher as an exception for 1. a

We now define our theory revision problem based on the above quality functions.

Definition 3 (Quality-based Horn theory revision (QHTR)). Given a set Ry of
Horn rules over the signature X, a KG G, and the quality functions ¢, and Geonfiict,
the quality-based Horn theory revision problem is to find a set Ry of rules over X
obtained by adding default negated atoms to body(r) for some r € Ry, such that

(i) ¢rm (Rnm, G) is maximal, and (i) qeonfrict(Rnm, G) is minimal.

Prior to tackling the QHTR problem we introduce the notions of r-(ab)normal sub-
stitutions and Exception Witness Sets (EWSs) that are used in our revision framework.

Definition 4 (r-(ab)normal substitutions). Let G be a KG, r a Horn rule mined from
G, and let V be a set of variables occurring in r. Then



- NS(r,G) = 9lhead( )9 ody(r)0 C G} is an r-normal set of substitutions;
- ABS(r,G)={0"| body(r)0’ C G, head(r)0’ & G} is an r-abnormal one,
where 0,0’ : V — C.

Example 4. For G from Fig.[l]and r1 we have NS(r1,G) = {6;,02,05}, where 6, =
{X/Brad, Y /Ann, Z | Berlin}; similarly, the most right and bottom blue triangles in
Fig. refer to 05 and 03 resp., while the red ones represent ABS(71,G).

Intuitively, if the given data was complete, then the r-normal and r-abnormal sub-
stitutions would exactly correspond to substitutions for which the rule r holds (resp.
does not hold) in G*. However, some r-abnormal substitutions might be classified as
such due to the OWA. In order to distinguish the “wrongly” and “correctly” classified
substitutions in the r-abnormal set, we construct exception witness sets (EWS).

Definition 5 (Exception Witness Set (EWS)). Let G be a KG, let v be a rule mined
from it, let V be a set of variables occurring in r and X C V. Exception witness set for
rw.rt. G and X is a maximal set of predicates EWS(r,G, X) = {e1,...,ex}, s.t.

- ¢;(X9,) Ggforsomeﬂ € ABS(r,G), 1 <i<kand
- e Xd ,ep(X0) ¢gf0ra119’ € NS(r,G).

Example 5. For G in Fig.[l|and 71 we have that EWS(r, G, Y) = {researcher}. Fur-
thermore, EWS(r,G, X) = {artist}. If brad with ann and john with kate lived in
cities different from berlin and chicago resp., then EWS(r, G, Z) = {metropolitan}.

In general when binary atoms are allowed in the rules, there might be potentially too
many possible EWS's to construct. For a rule with n distinct variables, n? candidate
EWS's might exist. Furthermore, combinations of exception candidates could be an
explanation for some missing links, so the search space of solutions to QHTR problem
is large. In this work, however, we restrict ourselves only to a single predicate as a final
exception, and leave the extensions to arbitrary combinations for future research.

3.2 Methodology

Due to the large number of exception candidates to consider, determining the globally
best solution to the QHTR problem is not feasible in practice especially given the huge
size of KGs. Therefore, we aim at finding an approximately good solution. Intuitively,
our approach is to revise rules one by one finding the locally best revision, while con-
sidering the predictive impact of other rules in a set. Our methodology for solving the
QHTR problem comprises four steps, which we now discuss in details.

Step 1. We start with a KG G and compute frequent conjunctive queries, which are then
cast into Horn rules R ;7 based on some association rule measure rm. For that any state-
of-the-art relational association rule learning algorithm can be used. We then compute
for each rule » € Ry the r-normal and r-abnormal substitutions.

Step 2 and 3. Then, for every r € Ry with 2(X, Y) in the head, we determine
EWS(r,G,X), EWS(r,G,Y)and EWS(r,G, (X, Y)). The algorithm for computing
EWSs is an extended version of the one reported in [[T1]]. Here, we first construct E+ =
{not_h(c,d),st.0 ={X/e,Y/d,...}isin ABS(r,G)}and E- = {not_h(e, f),s.t.



0 ={X/e,Y/f,...}isin NS(r,G)}. A classical ILP procedure learn(E*, E~,G)
(e.g., based on [28]) is then invoked, which searches for hypothesis with not_h(X, Y)
in the head and a single body atom of the form p(X), p’(Y') or p” (X, Y), where p, p’, p”
are predicates from Xg. The target hypothesis should not cover any examples in £,
while covering at least some examples in E. From the bodies of the obtained hypoth-
esis the predicates for EWS sets are extracted.

Then, for every » € Ry we create potential revisions by adding to r a single
negated atom from EWS sets at a time. Overall for each rule this way we obtain
|[EWS(r,G, X)| + |EWS(r,G, Y)| + |[EWS(r,G, (X, Y))| candidate revisions.

Steps 4. After all potential revisions are constructed, we rank them and determine the
resulting set R yas by selecting for every rule the revision that is ranked the highest.
To find such globally best revised ruleset R s, too many candidate combinations have
to be checked, which is impractical due to the large size of both G and EWS’s. Thus,
instead we incrementally build R yps by considering every r; € Ry and choosing the
locally best revision 7 for it. For that, we exploit three ranking functions: a naive one
and two more sophisticated ones, which invoke the novel concept of partial material-
ization (PM). Intuitively, the idea behind it is to rank candidate revisions not based on
G, but rather on its extension with predictions produced by other, selectively chosen,
rules (grouped into a set R'), thus ensuring a cross-talk between the rules. We now
describe the ranking functions in more details. _

The Naive (N) ranker is the simplest function, which prefers the revision 7} with the
highest value of rm(rf ,G) among all revisions of r;. This selection function produces
a globally best revision with respect to (i) in Def. [3| However, it completely ignores (ii),
and thus might return rules with overly noisy exceptions.

The PM ranker prefers 7 with the highest value of

: J , jous ,
score(r],G) = rm(r7, Gr') +27"m(72 ,Or") ©

where R’ is the set of rules r; € Ry \r; with candidate exceptions from all EWS's for
r; incorporated at once. Informally, Gz contains only facts that can be safely predicted
by the rules from R j\;, i.e., there is no evident reason (candidate exceptions) for not
making these predictions, and thus we can rely on them when revising 7;.

The OPM ranker is similar to PM, but the selected ruleset R’ contains only those
rules whose Horn version appears above the considered rule r; in the ruleset R, or-
dered (O) based on some rule measure, which is not necessarily the same as rm.

4 Evaluation

Our revision approach aims at (1) enhancing the quality of a given ruleset w.r.t. con-
viction, and consequently (2) improving the accuracy of its predictions. Ideally, the set
difference between G, and G’ should be minimized (see Fig. [2|for illustration).

Dataset. An automatic evaluation of the prediction quality requires an ideal graph
G* which is known to be complete as a ground truth. However, obtaining a real life
complete KG is not possible. Therefore, we used the existing KG as an approximation

of G* (Gl,pr)» and constructed the available graph G* by removing from G/, 20% of
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Fig. 2: Relations between the ideal, approximated and available slices of a KG.

topk YAGO IMDB

Re Rn Rpm Ropum|Rn Rn Rpm Ropum
5 1.3784 1.3821 1.3821 1.3821 |2.2670 2.3014 2.3008 2.3014
30 (1.1207 1.1253 1.1236 1.1237 |1.5453 1.5644 1.5543 1.5640
50 [1.0884 1.0923 1.0909 1.0913 [1.3571 1.3749 1.3666 1.3746
60 [1.0797 1.0837 1.0823 1.0829 [1.3063 1.3221 1.3143 1.3219
70 [1.0714 1.0755 1.0736 1.0744 {1.2675 1.2817 1.2746 1.2814
80 [1.0685 1.0731 1.0710 1.0720 |1.2368 1.2499 1.2431 1.2497
100 {1.0618 1.0668 1.0648 1.0659 [1.3074 1.4100 1.3987 1.4098

Table 1: The average conviction for the fop-k Horn rules and their revisions.

the facts for each binary predicate. As a side constraint, we ensure that every node in
G® is connected to at least one other node. We constructed two datasets for evaluating
our approach: (i) YAGO3 [23]], as a general purpose KG, with more than 1.8M entities,
38 relations, and 20.7M facts, and (ii) a domain-specific KG extracted from the IMDBE]
dataset with 112K entities, 38 relations, and 583K fact

Setup. We have implemented our approach in a system prototype EL and conducted
experiments on a multi-core Linux server with 40 cores and 400GB RAM. We start with
mining Horn rules of the form h(X,Z) + p(X,Y),¢(Y,Z) from G* and ranking
them w.r.t. their absolute support. Then, we revise the rules as described in Sec. [3.2]
taking conviction as the rm measure. For every rule we rank the constructed revisions
and pick the one with the highest score as the final result. This process is repeated for
the proposed ranking methods, i.e., Naive, Partial Materialization, and Ordered Partial
Materialization resulting in the rulesets Ry, R pas, and R opps respectively.

Ruleset quality. In Tab.|I| we report the average conviction for the top-k (k=5,...100)
Horn rules Ry and their revisions for YAGO and IMDB. The results show that the
revision process consistently enhances the avg. ruleset conviction. Moreover, while the
conviction per ruleset naturally decreases with addition of lower quality rules, improve-
ment ratios are increasing with the best enhancement (7.6%) for IMDB top-100 rules.

Prediction quality. To evaluate the quality of ruleset predictions, we sampled a set of
5 Horn rules R iy from the top-50 Horn rules both for IMDB and YAGO and compared

"nttp://imdb.com
Zhttp://people.mpi-inf.mpg.de/~gadelrab/downloads/ILP2016
3https://github.com/htranO10589/nonmonotonic—rule—mining
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predictions outside G, corr. removed, %
Ry Rnv Rpu Ropu|Rx Rn  Repu Ropu |Rn Reu Roprum
L:actedIn 1231 1214 1230 1214 (1148 1131 1147 1131 |90 100 90
I:genre  |629 609 618 609 493 477 482 477 50 20 50
I:hasLang|173 102 125 102 163 92 115 92 60 100 60
I:prodIn (2489 2256 2327 2327 |2488 2255 2326 2326 |10 10 30
52.50 45.16 57.75
Y:direct |41079 39174 39174 39174 |41021 39116 39116 39116 |[100 100 100
Y:grFrom|3519 3456 3456 3456 (3363 3300 3300 3300 (100 100 70
Y:citizOf 3407 2883 2883 2883 (3360 2836 2836 2836 |50 50 70
Y:bornIn |110283 108317 109846 108317109572 107607 109137 107607(90 90 100
85 85 85

Table 2: Predictions of sampled rules and their revisions for IMDB (7) and YAGO (Y).

predicate

them against their revisions w.r.t. the predictive power. For that, we run DLV [20] with
these rulesets and the facts in G and obtained resp. Gr,,, Gry, Grpy aNd GRopy -
Tab. [2) reports for each head predicate appearing in the sampled rules the number of
newly predicted facts, i.e. those not in G* (second column) and the portion of predic-

tions among them that are outside ggw (third column).

First, observe that naturally relatively few predictions can be found in g;ppr (~9%
for IMDB and ~2% for YAGO). This is expected as the latter graph is highly in-
complete. Second, it is important to note that Ry and the revised rulesets produced
roughly the same number of correct predictions within G ;W. E.g., for YAGO we have
Gry\Grpy N ng = (), meaning that the green area within the approximation of the
ideal graph in Fig. [2]is empty, which shows that incorporated exceptions did not spoil

the positive rules with respect to correct predictions in gfwm.

To make the comparison between R and the revised rulesets fair, we need to en-
sure that R ;7 on its own is not completely inaccurate. Indeed, if R ; makes only false
predictions, then adding even irrelevant exceptions will reduce the number of incorrect
instances, thus, improving the ruleset predictive quality. The number of Ry predic-
tions outside ggpm is large, and we do not know the ground truth for these predictions.
Therefore, we had to verify these facts manually using web resources. Obviously such
verification for all of the predictions is not feasible. Hence, we restricted ourselves to
a uniform random sample of 20 predicted facts per head predicate in R ;. Among the
IMDB samples, the precision of 70% has been achieved, while for YAGO we have ob-

tained precision of 30%. This shows that the rules in R iy are not completely erroneous.

To assess the impact of the revision methods, we also had to select a uniform sample
due to the large size of the differences between Gr,, and the graphs obtained by apply-
ing revised rulesets. More specifically, we have randomly sampled 10 predictions per
head predicate from Gr, \Gry, Ory \Grpy a0d Gr,, \GR opy, Tesp. The 4th column in
Tab. [2| reports the percentage of erroneous predictions among the sampled facts in the
difference for each revision method (referred to as correctly removed), i.e., gray area in
Fig.[2] For IMDB R opum achieved the best improvement. For YAGO, all of the revi-
sion methods performed equally well. Moreover, the effect of YAGO revisions is more
visible, since Ry for YAGO is of a lower quality than for IMDB as reported earlier.



r; : writtenBy(X, Z) < hasPredecessor(X, Y), writtenBy(Y, Z), not american_film(X)
rg @ actedIn(X, Z) « isMarriedTo(X, Y), directed(Y, Z), not silent_film_actor(X)
r3 : isPoliticianOf (X, Z) < hasChild(X, Y'),isPoliticianOf (Y, Z),not vicepresident OfMexico(X)

Fig. 3: Examples of the revised rules

Running times. Our main goal was to evaluate the predictive quality of computed
rules rather then the running times of the implemented algorithms. Therefore, the latter
are only briefly reported. For the rop-100 Horn YAGO and IMDB rules mined from G¢,
EWS's with an average of 1.6K and 10.9K exception candidates per rule were computed
within 7 and 68 seconds resp. As regards IMDB, the revisions Ry, Rpy, and Ropy
were determined in 9, 62, and 24 seconds resp., while for YAGO, they required 45, 177,
and 112 seconds. Besides, the predictions of each of the rulesets on G* were found via
DLYV, on average, within 8 seconds for IMDB and 310 seconds for YAGO.

Example rules. Fig. [3] shows examples of our revised rules, e.g., r; extracted from
IMDB states that movie plot writers stay the same throughout the sequel unless a movie
is American, and rs learned from YAGO says that ancestors of politicians are also
politicians in the same country with the exception of Mexican vice-presidents.

5 Related Work

Approaches for link prediction are divided into statistics-based (see [24] for overview),
and logic-based (e.g., [12]), which are the closest to our work. The latter basically
extend and adapt previous work in ILP on relational association rule mining. However,
algorithms such as [12] mine only Horn rules, rather than nonmonotonic as we do.

In the association rule mining community, some works studied (interesting) excep-
tion rules (e.g. [27]), i.e., rules with low support and high confidence. Our work differs
as we do not necessarily look for rare rules, but care about their predictive power.

In the context of inductive and abductive logic [10], learning nonmonotonic rules
from complete datasets was considered in several works ([2642506418]]) These methods
rely on CWA and focus on describing a dataset at hand exploiting negative examples,
which are explicitly given unlike in our setting. Learning nonmonotonic rules in pres-
ence of incompleteness was studied in hybrid settings in [[16] and [21]] respectively.
There a background theory or a hypothesis can be represented as a combination of a
DL ontology and Horn or nonmonotonic rules. While the focus of these works is on
the complex interaction between reasoning components, we are more concerned with
techniques for deriving rules with high predictive quality from huge KGs.

6 Conclusions and Future Work

We have presented an approach for mining relational nonmonotonic rules from KGs
under OWA by casting this problem into a theory revision task and exploiting associa-
tion rule mining methods to cope with the huge size of KGs. The approach extends our
previous work [[11]], where this problem was studied for KGs with only unary predicates.

Further extensions to more complex combinations of exceptions as well as more
general types of rules (e.g., with existentials in the head) are a natural future direction.
Moreover enhancing our framework by partial completeness assumptions for certain
(combinations of) predicates/constants is another orthogonal but interesting research
stream. On the practical side, we plan to develop advanced evaluation strategies, which
is very challenging due to the absence of the ideal graph and the large KG size.
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