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Motivation Problem Statement Approach Overview Experiments

Motivation
• Knowledge Graphs: huge collections of 〈subject predicate object〉 triples

〈bob isMarriedTo alice〉, 〈alice type researcher〉

• Encode positive unary/binary facts under Open World Assumption (OWA)
isMarriedTo(bob, alice), researcher(alice)

• KGs are automatically constructed, possibly incomplete and inaccurate

Motivation Nonmonotonic Rules Problem Statement

Mining Rules

NELL
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Motivation
Horn rule mining to complete KGs, [Galárraga et al., 2015]

r : livesIn(X ,Z )← isMarriedTo(Y ,X ), livesIn(Y ,Z )
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Motivation
In this work: nonmonotonic rule learning on KGs, OWA is a challenge!

r : livesIn(X ,Z )← isMarriedTo(Y ,X ), livesIn(Y ,Z ),not researcher(X )
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Problem Statement

ILP-based theory revision under CWA [Wrobel, 1996], . . .

Quality-based Horn Theory Revision (QHTR)

Given:
• KG G
• Horn ruleset RH

Find:
• nonmonotonic revision RNM of RH , such that

its predictive quality is better then of RH

Ideal KG G i (unknown)

KG G

RNM predictions
(GRNM )

RH predictions
(GRH )
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Conflicting Predictions

Quality-based Horn Theory Revision (QHTR)

Given:
• KG G
• Horn ruleset RH

Find:
• nonmonotonic revision RNM of RH , such that

Ensure quality of exceptions by minimizing conflicts

Raux
NM =


r1 : livesIn(X ,Z )← isMarTo(Y ,X ), livesIn(Y ,Z ),not res(X )

r1aux : not livesIn(X ,Z )← isMarTo(Y ,X ), livesIn(Y ,Z ), res(X )

r2 : livesIn(X ,Z )← bornIn(X ,Z ),not immigrant(X )

r2aux : not livesIn(X ,Z )← bornIn(X ,Z ), immigrant(X )


{livesIn(c, d), not livesIn(c, d)} ∈ GRaux

NM
are conflicting predictions

Intuition: researcher might be a strong exception for r1, but application of r2 to
the KG could weaken it; less conflicts less weak exceptions
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Problem Statement

Quality-based Horn Theory Revision (QHTR)

Given:
• KG G
• Horn ruleset RH

Find:
• nonmonotonic revision RNM of RH , such that

• number of conflicting predictions made by Raux
NM is minimal

• average conviction conv(r ,G) = 1− supp(r ,G)
1− conf (r ,G) is maximal

[Azevedo and Jorge, 2007]
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Related Work
• First-order theory revision

• RUTH [Adé et al., 1994]
• FORTE [Richards and Mooney, 1995]

. . .

• Learning nonmonotonic programs
• [Dimopoulos and Kakas, 1995]
• ILASP [Law et al., 2015]
• ILED [Katzouris et al., 2015]

. . .

• Outlier detection in logic programs
• [Angiulli and Fassetti, 2014]

. . .

• Mining rules with exceptions
• [Suzuki, 2006]

. . .
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Approach Overview

Extension of our results from [Gad-Elrab et al., 2016] to binaries

Step 1. Mine predictive association rules in the form of first-order
Horn clauses, [Galárraga et al., 2015]

Step 2. Determine normal and abnormal substitutions for every r ∈ RH

Step 3. Find all exception candidates for every rule

Step 4. Rank exception candidates and select the locally best ones
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Step 2: (Ab)normal Substitutions

r : livesIn(X ,Z )← isMarriedTo(Y ,X ), livesIn(Y ,Z )
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Step 2: (Ab)normal Substitutions

r : livesIn(X ,Z )← isMarriedTo(Y ,X ), livesIn(Y ,Z )

6 / 12



Motivation Problem Statement Approach Overview Experiments

Step 3: Exception Candidates

r : livesIn(X ,Z )← isMarriedTo(Y ,X ), livesIn(Y ,Z )
7 / 12
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Step 4: Exception Ranking

r1 . . . . . . . . .{e1, e2, e3, . . .}
r2 . . . . . . . . .{e1, e2, e3, . . .}
r3 . . . . . . . . .{e1, e2, e3, . . .}

Finding globally best revision is expensive, too many candidates!

• Naive ranking: pick for r ∈ RH a revision r ′ with the highest
conv(r ,G)

• Partial materialization: first materialize all rules apart from r , then

pick a revision with the highest
conv(r ,G′) + conv(raux ,G′)

2

• Ordered part. mat. (OPM): same as part. mat., but materialize only
rules ordered higher then r based on conv
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Preliminary Experiments

• G i
appr : IMDB (movie) KG1: ≈ 600.000 facts, ≈ 40 relations

E.g., directedBy , actedIn

• G: random. rem. 20% from G i
appr for every relation

• RH : h(X ,Y )← p(X ,Z ), q(Z ,Y ) mine from G

• Exception types: e1(X ), e2(Y ), e3(X ,Y )

• OPM ranker, predictions are computed by answer set solver dlv2

1http://imdb.com
2http://dlvsystem.com
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Preliminary Experiments

k avg. conv. confl. number of predictions
RH RNM RH not RNM

RH RNM RNM all in G i
appr all in G i

appr false in G i
appr

5 4.08 6.16 0.28 345 161 331 156 0 14
10 2.91 4.21 0.08 2178 456 2118 450 27 33
15 2.5 3.42 0.09 3482 629 3348 622 86 48
20 2.29 3.0 0.13 5278 848 5046 835 157 75

Table : Top k rule revision results

Appr. ideal KG G i
appr

Ideal KG G i

KG G
RNM predictions

(GRNM ) RH predictions
(GRH )
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Preliminary Experiments

k avg. conv. confl. number of predictions
RH RNM RH not RNM

RH RNM RNM all in G i
appr all in G i

appr false in G i
appr

5 4.08 6.16 0.28 345 161 331 156 0 14
10 2.91 4.21 0.08 2178 456 2118 450 27 33
15 2.5 3.42 0.09 3482 629 3348 622 86 48
20 2.29 3.0 0.13 5278 848 5046 835 157 75

Table : Top k rule revision results

Examples of revised rules:

r1 : writtenBy(X ,Z )← hasPredecessor(X ,Y ),writtenBy(Y ,Z ), not is American film(X)

r2 : actedIn(X ,Z )← isMarriedTo(X ,Y ), directed(Y ,Z ), not is silent film actor(X)
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Summary

Contributions:
• Quality-based Horn theory revision framework under OWA

• Approach for computing and ranking exceptions based on partial
materialization

• Preliminary experiments on a real-world KG

Further Work:
• Evidence for and against exceptions from text corpora

• Partial completeness

• Causality of rules, probabilities

• More complex rules, e.g. with existentials
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