Towards Nonmonotonic Relational Learning from Knowledge Graphs

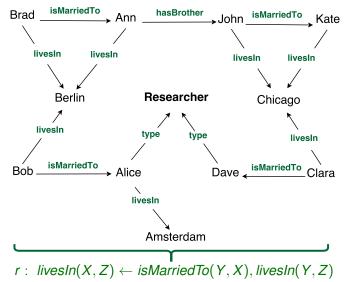
Hai Dang Tran¹, <u>Daria Stepanova¹</u>, Mohamed Gad Elrab¹, Francesca A. Lisi², Gerhard Weikum¹

¹Max Planck Institute for Informatics, Saarbrücken, Germany

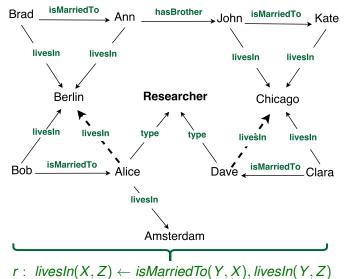
²Università degli Studi di Bari "Aldo Moro", Bari, Italy

- Knowledge Graphs: huge collections of (subject predicate object) triples (bob isMarriedTo alice), (alice type researcher)
- Encode positive unary/binary facts under Open World Assumption (OWA) isMarriedTo(bob, alice), researcher(alice)
- KGs are automatically constructed, possibly incomplete and inaccurate

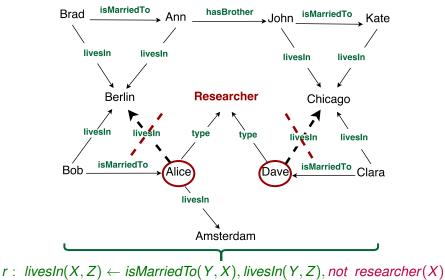
Horn rule mining to complete KGs, [Galárraga et al., 2015]



Horn rule mining to complete KGs, [Galárraga et al., 2015]

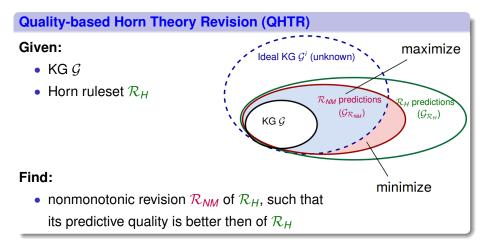


In this work: nonmonotonic rule learning on KGs, OWA is a challenge!



Problem Statement

ILP-based theory revision under CWA [Wrobel, 1996], ...



Conflicting Predictions

Ensure quality of exceptions by minimizing conflicts

$$\mathcal{R}_{NM}^{aux} = \begin{cases} r1: \ livesln(X, Z) \leftarrow isMarTo(Y, X), \ livesln(Y, Z), not \ res(X) \\ r1^{aux}: \ not_livesln(X, Z) \leftarrow isMarTo(Y, X), \ livesln(Y, Z), res(X) \\ r2: \ livesln(X, Z) \leftarrow bornln(X, Z), not \ immigrant(X) \\ r2^{aux}: \ not_livesln(X, Z) \leftarrow bornln(X, Z), \ immigrant(X) \end{cases}$$

 $\{\mathit{livesIn}(c, d), \mathit{not_livesIn}(c, d)\} \in \mathcal{G}_{\mathcal{R}_{\mathit{NM}}^{\mathit{aux}}}$ are conflicting predictions

Intuition: researcher might be a strong exception for *r1*, but application of *r2* to the KG could weaken it; less conflicts less weak exceptions

Approach Overview

Experiments

Problem Statement

Quality-based Horn Theory Revision (QHTR)

Given:

- KG *G*
- Horn ruleset \mathcal{R}_H

Find:

- nonmonotonic revision \mathcal{R}_{NM} of \mathcal{R}_{H} , such that
 - number of conflicting predictions made by $\mathcal{R}_{\textit{NM}}^{\textit{aux}}$ is **minimal**
 - average conviction $conv(r, G) = \frac{1 supp(r, G)}{1 conf(r, G)}$ is maximal [Azevedo and Jorge, 2007]

Related Work

• First-order theory revision

. . .

. . .

. . .

- RUTH [Adé et al., 1994]
- FORTE [Richards and Mooney, 1995]

Learning nonmonotonic programs

- [Dimopoulos and Kakas, 1995]
- ILASP [Law et al., 2015]
- ILED [Katzouris et al., 2015]

Outlier detection in logic programs

• [Angiulli and Fassetti, 2014]

Mining rules with exceptions

• [Suzuki, 2006]

Approach Overview

Extension of our results from [Gad-Elrab et al., 2016] to binaries

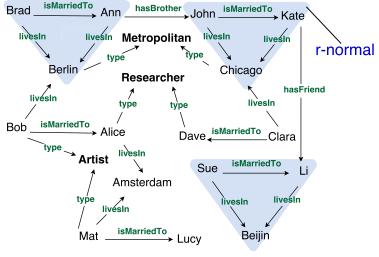
Step 1. Mine predictive association rules in the form of first-order Horn clauses, [Galárraga *et al.*, 2015]

Step 2. Determine normal and abnormal substitutions for every $r \in \mathcal{R}_H$

Step 3. Find all exception candidates for every rule

Step 4. Rank exception candidates and select the locally best ones

Step 2: (Ab)normal Substitutions



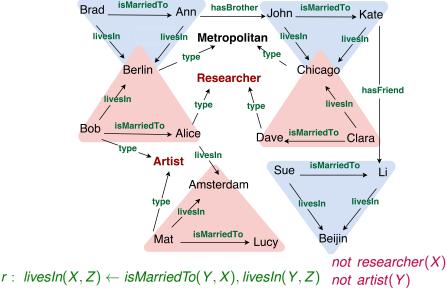
r: $livesIn(X, Z) \leftarrow isMarriedTo(Y, X), livesIn(Y, Z)$

Step 2: (Ab)normal Substitutions



r: $livesIn(X, Z) \leftarrow isMarriedTo(Y, X), livesIn(Y, Z)$

Step 3: Exception Candidates



Step 4: Exception Ranking

$$r1 \dots \{\underline{e_1}, e_2, e_3, \dots\}$$
$$r2 \dots \{\underline{e_1}, \underline{e_2}, e_3, \dots\}$$
$$r3 \dots \{\underline{e_1}, e_2, e_3, \dots\}$$

Finding globally best revision is expensive, too many candidates!

- Naive ranking: pick for r ∈ R_H a revision r' with the highest conv(r, G)
- Partial materialization: first materialize all rules apart from *r*, then pick a revision with the highest $\frac{conv(r, G') + conv(r^{aux}, G')}{2}$
- Ordered part. mat. (OPM): same as part. mat., but materialize only rules ordered higher then *r* based on *conv*

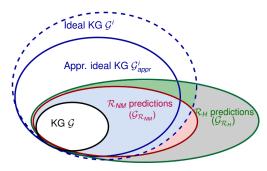
Preliminary Experiments

- \mathcal{G}^{i}_{appr} : IMDB (movie) KG¹: \approx 600.000 facts, \approx 40 relations E.g., *directedBy*, *actedIn*
- \mathcal{G} : random. rem. 20% from \mathcal{G}_{appr}^{i} for every relation
- \mathcal{R}_H : $h(X, Y) \leftarrow p(X, Z), q(Z, Y)$ mine from \mathcal{G}
- Exception types: $e_1(X)$, $e_2(Y)$, $e_3(X, Y)$
- OPM ranker, predictions are computed by answer set solver dlv²

¹http://imdb.com ²http://dlvsystem.com

Preliminary Experiments

k	avg. conv.		confl.	number of predictions						
				\mathcal{R}_{H}		\mathcal{R}_{NM}		\mathcal{R}_H not \mathcal{R}_{NM}		
	\mathcal{R}_{H}	\mathcal{R}_{NM}	\mathcal{R}_{NM}	all	in \mathcal{G}^i_{appr}	all	in \mathcal{G}^i_{appr}	false 🗸	in \mathcal{G}^i_{appr}	
5	4.08	6.16	0.28	345	161	331	156	0	14	
10	2.91	4.21	0.08	2178	456	2118	450	27	33	
15	2.5	3.42	0.09	3482	629	3348	622	86	48	
20	2.29	3.0	0.13	5278	848	5046	835	157	75	



Preliminary Experiments

	avg. conv.		confl.	number of predictions						
k				\mathcal{R}_{H}		\mathcal{R}_{NM}		\mathcal{R}_H not \mathcal{R}_{NM}		
	\mathcal{R}_H	\mathcal{R}_{NM}	\mathcal{R}_{NM}	all	in ${\cal G}^i_{appr}$	all	in \mathcal{G}^i_{appr}	false 🗸	in \mathcal{G}^i_{appr}	
5	4.08	6.16	0.28	345	161	331	156	0	14	
10	2.91	4.21	0.08	2178	456	2118	450	27	33	
15	2.5	3.42	0.09	3482	629	3348	622	86	48	
20	2.29	3.0	0.13	5278	848	5046	835	157	75	

Table : Top k rule revision results

Examples of revised rules:

 r_1 : writtenBy(X, Z) \leftarrow hasPredecessor(X, Y), writtenBy(Y, Z), **not** is_American_film(X) r_2 : actedIn(X, Z) \leftarrow isMarriedTo(X, Y), directed(Y, Z), **not** is_silent_film_actor(X)

Summary

Contributions:

- Quality-based Horn theory revision framework under OWA
- Approach for computing and ranking exceptions based on partial materialization
- Preliminary experiments on a real-world KG

Further Work:

- Evidence for and against exceptions from text corpora
- Partial completeness
- Causality of rules, probabilities
- More complex rules, e.g. with existentials

References I

Hilde Adé, Bart Malfait, and Luc De Raedt.

RUTH: an ILP theory revision system.

In Methodologies for Intelligent Systems, 8th International Symposium, ISMIS '94, Charlotte, North Carolina, USA, October 16-19, 1994, Proceedings, pages 336–345, 1994.

Fabrizio Angiulli and Fabio Fassetti. Exploiting domain knowledge to detect outliers. Data Min. Knowl. Discov., 28(2):519–568, 2014.

Paulo J. Azevedo and Alípio Mário Jorge. Comparing Rule Measures for Predictive Association Rules. In *Proceedings of ECML*, pages 510–517, 2007.

Yannis Dimopoulos and Antonis C. Kakas. Learning non-monotonic logic programs: Learning exceptions. In Machine Learning: ECML-95, 8th European Conference on Machine Learning, Heraclion, Crete, Greece, April 25-27, 1995, Proceedings, pages 122–137, 1995.

M. Gad-Elrab, D. Stepanova, J. Urbani, and G. Weikum. Exception-enriched Rule Learning from Knowledge Graphs. In *In Proc. of ISWC 2016, to appear*, 2016.

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast Rule Mining in Ontological Knowledge Bases with AMIE+. In VLDB Journal, 2015.

Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event definitions with inductive logic programming. *Machine Learning*, 100(2-3):555–585, 2015.

Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for learning answer set programs, 2015.

References II

Bradley L. Richards and Raymond J. Mooney. Automated refinement of first-order horn-clause domain theories. *Machine Learning*, 19(2):95–131, 1995.

Einoshin Suzuki.

Data mining methods for discovering interesting exceptions from an unsupervised table. J. UCS, 12(6):627–653, 2006.

Stefan Wrobel. First order theory refinement. In Luc De Raedt, editor, Advances in Inductive Logic Programming, pages 14 — 33. IOS Press, Amsterdam, 1996.