Learning Rules from Incomplete KGs Using Embeddings max planck institut informatik

livesIn

Vinh Thinh Ho¹, Daria Stepanova¹, Mohamed Gad-Elrab¹, Evgeny Kharlamov², Gerhard Weikum¹

hvthinh@mpi-inf.mpg.de, dstepano@mpi-inf.mpg.de, gadelrab@mpi-inf.mpg.de, evgeny.kharlamov@cs.ox.ac.uk, weikum@mpi-inf.mpg.de ¹Max Planck Institute for Informatics, Saarbrücken, Germany

²University of Oxford, Oxford, United Kingdom

1. Motivation and Contributions

Knowledge graphs: huge collections of positive unary and binary facts treated under Open World Assumption (e.g. *isMarriedTo(clara, dave), researcher(dave)*)

Rule-based approach

Embedding-based approach

+ Interpretable + Allow for reasoning - Not extendable - Local patterns

- Hard to interpret - No reasoning + Extendable (e.g., text) + Global patterns

Chicago is located on the shores of lake Michigan. Dave Smith, a Chicago famous US

 $livesIn(Z, Y) \leftarrow livesIn(X, Y), marriedTo(X, Z)$

 $conf(r) = |\overrightarrow{|+|}| = 0.5$

Our approach: rule-based with embeddings support

Challenges:

- Structurally different output
- Large embedding size
- Large rule search space

Contributions:

- Framework for rule learning with external sources
- Hybrid embedding based rule measure
- Experiments on real world KGs

3. General Architecture

Problem statement:

Given: $\mathcal{P} = (\mathcal{G}, f)$

- Knowledge graph \mathcal{G}
- **Probability function** f: trusfulness of G's missing facts

Find: Ordered set of **rules**, which

• **Describe** \mathcal{G} well and **predict** highly probable facts based on f

2. Our Proposal: Rule Learning with External Sources

Our solution:

Hybrid rule quality function to prune search space of rules *r*:

- $\mu(r,\mathcal{P}) = (1-\lambda) \times \mu_1(r,\mathcal{G}) + \lambda \times \mu_2(\mathcal{G}_r,\mathcal{P})$
- **Descriptive quality** μ_1 of rule *r* over \mathcal{G} :

 $\mu_1: (r, \mathcal{G}) \mapsto \alpha \in [0, 1]$

- \Rightarrow any classical rule measure, e.g., confidence
- Predictive quality μ_2 of r: trustfulness of predictions \mathcal{G}_r made by r on \mathcal{G}

 $\mu_2: (\mathcal{G}_r, \mathcal{P}) \mapsto \alpha \in [0, 1]$

 \Rightarrow capture **information about missing facts** in \mathcal{G} that are relevant for r

- Weighting factor $\lambda \in [0, 1]$ to control the distribution of μ_1 and μ_2
- ▶ Realization of f and μ_2 relying on embeddings:

 $f(fact) = 0.5 \times (1/subject_rank(fact) + 1/object_rank(fact))$

$$\mu_2(\mathcal{G}_r, \mathcal{P}) = \frac{\sum_{fact \in \mathcal{G}_r \setminus \mathcal{G}} f(fact)}{|\mathcal{G}_r \setminus \mathcal{G}|}$$

4. Rule Refinement

5. Experiments

- Extended AMIE [Galárraga, et al, VLDB 2015] (additions are in blue):
- Refinement operators: add

- Approximation of complete KG: original
- Available KG: random 80% of
- original KG, preserving the distribution of facts over predicates.

 $e\text{-conf}(r, \mathcal{G}) = conf(r', \mathcal{G})$ where $r' : body^{-}(r) \leftarrow body^{+}(r)$, not head(r)

Embedding models:

TransE, HoIE, SSP (with text)

Examples of mined rules:

 r_1 : nationality $(X, Y) \leftarrow graduated_from(X, Z), in_country(Z, Y), not research_uni(Z)$ r_2 : scriptwriter_of $(X, Y) \leftarrow$ preceded_by (X, Z), scriptwriter_of (Z, Y), not tv_series (Z)