Learning Rules from Incomplete KGs Using Embeddings
Vin Thinh Ho¹, Daria Stepanova¹, Mohamed Gad-Eirab¹, Evgeny Kharlamov², Gerhard Weikum¹
hlthinh@mpi-inf.mpg.de, dstepano@mpi-inf.mpg.de, gadelrab@mpi-inf.mpg.de, evgeny.kharlamov@cs.ox.ac.uk, weikum@mpi-inf.mpg.de
¹Max Planck Institute for Informatics, Saarbrücken, Germany
²University of Oxford, Oxford, United Kingdom

1. Motivation and Contributions

Knowledge graphs: huge collections of positive unary and binary facts treated under Open World Assumption (e.g. isMarriedTo(clara, dave), researcher(dave))

Automatically constructed, thus incomplete ⇒ KG completion task

- Hard to interpret
- Allow for reasoning
- Not extensible
- Local patterns

Rule-based approach

- Interpretable

Embedding-based approach

- No reasoning
- Extensible (e.g., text)
- Global patterns

Our approach: rule-based with embeddings support

Challenges:

- Structurally different output
- Large embedding size
- Large rule search space

Contributions:

- Framework for rule learning with external sources
- Hybrid embedding based rule measure
- Experiments on real world KGs

2. Our Proposal: Rule Learning with External Sources

- Problem statement:

 Given: \(\mathcal{G} = (G, f) \)

 - Knowledge graph \(G \)

 - Probability function \(f: \) truthfulness of \(G \)'s missing facts

 Find: Ordered set of rules, which

 - Describe \(G \) well and predict highly probable facts based on \(f \)

- Our solution:

 Hybrid rule quality function to prune search space of rules \(r: \)

 \[
 \mu(r, \mathcal{P}) = (1 - \lambda) \times \mu_1(r, \mathcal{G}) + \lambda \times \mu_2(G, \mathcal{P})
 \]

 - Descriptive quality \(\mu_1 \) of rule \(r \) over \(G \):

 \[
 \mu_1 (r, \mathcal{G}) \rightarrow \alpha \in [0, 1]
 \]

 - Predictive quality \(\mu_2 \) of \(r \): truthfulness of predictions \(\mathcal{G} \), made by \(r \) on \(G \):

 \[
 \mu_2 (G, \mathcal{P}) \rightarrow \alpha \in [0, 1]
 \]

 - Weighting factor \(\lambda \in [0, 1] \) to control the distribution of \(\mu_1 \) and \(\mu_2 \)

 Realization of \(f \) and \(\mu_2 \) relying on embeddings:

 \[
 f(\text{fact}) = 0.5 \times (1/\text{subject_rank} + 1/\text{object_rank})
 \]

 \[
 \mu_2(G, \mathcal{P}) = \frac{\sum_{\text{source} \in G} f(\text{fact})}{|G|}
 \]

3. General Architecture

4. Rule Refinement

Extended AMIE [Galárraga, et al, VLDB 2015] (additions are in blue):

- Refinement operators: add

 - dangling atom

 - instantiated atom

 - closing atom

 - negated instantiated atom

 - negated closing atom

- Rule filtering:

 - language bias

 - support

 - head coverage

 - confidence

 - embedding-based measure (\(\mu \))

 - exception confidence:

 \[
 e \text{-} \text{conf}(r, \mathcal{G}) = \text{conf}(r', \mathcal{G})
 \]

 where \(r' \) = body(r) → body(r), not head(r)

5. Experiments

- Approximation of complete KG: original

- Available KG: random 80% of original KG, preserving the distribution of facts over predicates.

- Embedding models:

 - TransE, HoloE, SSP (with text)

- Examples of mined rules:

 - \(r_1: \) nationality(\(X, Y \)) ← graduated_from(X, Z), in_country(Z, Y), not research_uni(Z)

 - \(r_2: \) scriptwriter_of(X, Y) ← preceded_by(X, Z), scriptwriter_of(Y, Z), not iv_series(Z)