Rule Learning from Knowledge Graphs Guided by Embedding Models

Vinh Thinh Ho¹, <u>Daria Stepanova¹</u>, Mohamed Gad-Elrab¹, Evgeny Kharlamov², Gerhard Weikum¹

¹Max Planck Institute for Informatics, Saarbrücken, Germany

²University of Oxford, Oxford, United Kingdom

ISWC 2018

/aluation

Conclusion

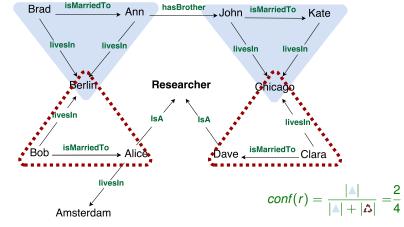
Rule Learning from KGs



Conclusion

Rule Learning from KGs

Confidence, e.g., WARMER [Goethals and den Bussche, 2002] CWA: whatever is missing is false

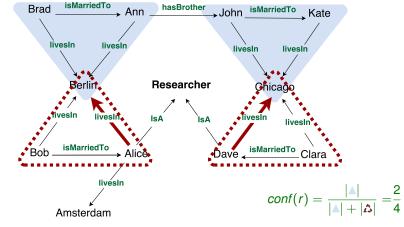


r: $livesIn(X, Y) \leftarrow isMarriedTo(Z, X), livesIn(Z, Y)$

Conclusion

Rule Learning from KGs

Confidence, e.g., WARMER [Goethals and den Bussche, 2002] CWA: whatever is missing is false

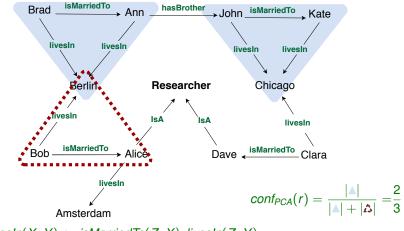


r: $livesIn(X, Y) \leftarrow isMarriedTo(Z, X), livesIn(Z, Y)$

Conclusion

Rule Learning from KGs

PCA confidence AMIE [Galárraga *et al.*, 2015] PCA: Since Alice has a living place already, all others are incorrect.

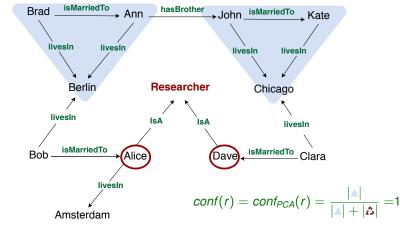


 $r: \textit{ livesIn}(X,Y) \gets \textit{isMarriedTo}(Z,X), \textit{livesIn}(Z,Y)$

Conclusion

Rule Learning from KGs

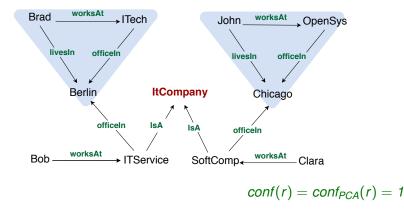
Exception-enriched rules: [ISWC 2016, ILP 2016]



r: $livesIn(X, Y) \leftarrow isMarriedTo(Z, X)$, livesIn(Z, Y), not isA(X, researcher)

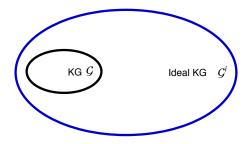
Absurd Rules due to Data Incompleteness

Problem: rules learned from highly incomplete KGs might be absurd.

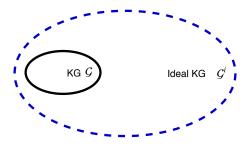


livesIn(X, Y) \leftarrow *worksAt*(X, Z), *officeIn*(Z, Y), *not isA*(Z, *itCompany*)

 $\mu(\pmb{r},\mathcal{G}^i)$: measure quality of the rule r on \mathcal{G}^i



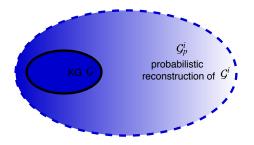
 $\mu(\mathbf{r}, \mathcal{G}^i)$: measure quality of the rule \mathbf{r} on \mathcal{G}^i , but \mathcal{G}^i is unknown



Conclusion

Probabilistic Reconstruction of Ideal KG

 $\mu(\mathbf{r}, \mathcal{G}_{p}^{i})$: measure quality of r on \mathcal{G}_{p}^{i}

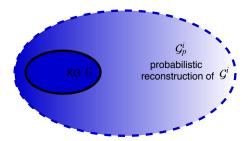


valuation

Conclusion

Hybrid Rule Measure

 $\mu(\mathbf{r}, \mathcal{G}_{p}^{i}) = (1 - \lambda) \times \mu_{1}(\mathbf{r}, \mathcal{G}) + \lambda \times \mu_{2}(\mathbf{r}, \mathcal{G}_{p}^{i})$



Evaluation

Conclusion

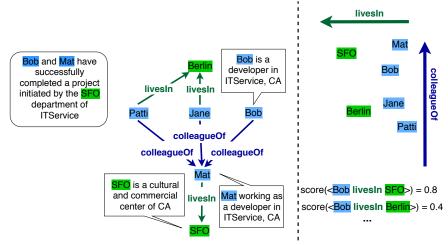
Hybrid Rule Measure

$$\mu(\mathbf{r}, \mathcal{G}_{p}^{i}) = (1 - \lambda) \times \mu_{1}(\mathbf{r}, \mathcal{G}) + \lambda \times \mu_{2}(\mathbf{r}, \mathcal{G}_{p}^{i})$$

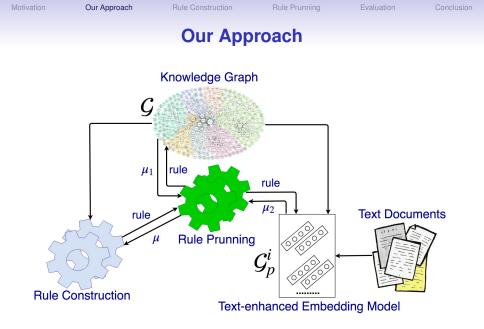
- $\lambda \in [0..1]$: weighting factor
- μ_1 : descriptive quality of rule *r* over the available KG \mathcal{G}
 - confidence
 - PCA confidence
- μ₂: predictive quality of *r* relying on Gⁱ_p (probabilistic reconstruction of the ideal KG Gⁱ)

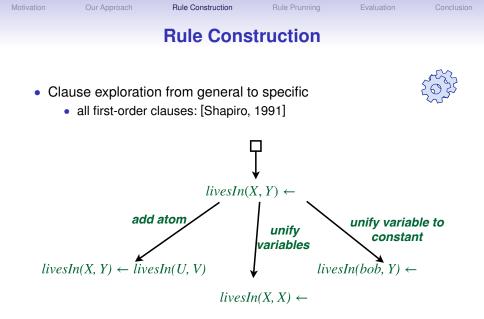
KG Embeddings

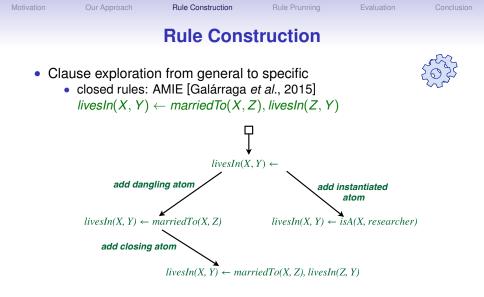
- Popular approach to KG completion, which proved to be effective
- Relies on translation of entities and relations into vector spaces

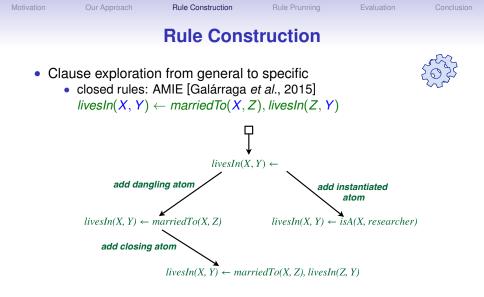


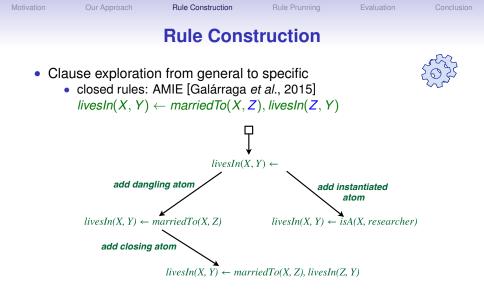
TransE [Bordes et al., 2013], SSP [Xiao et al., 2017], TEKE [Wang and Li, 2016]

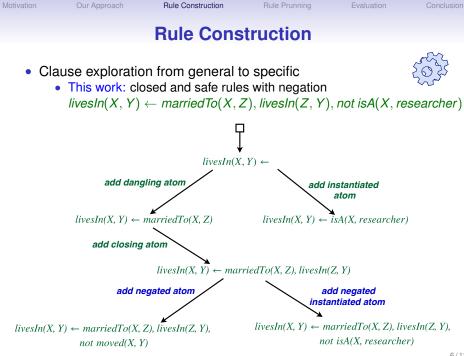


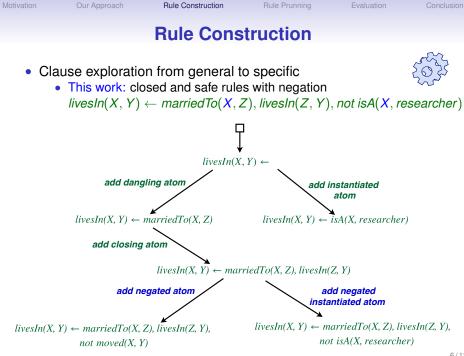


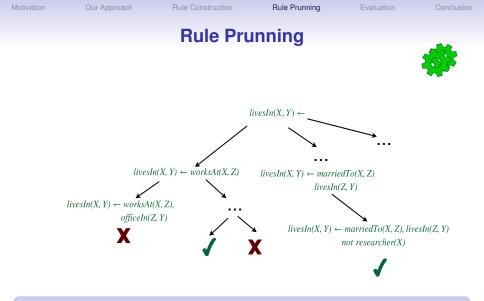












Prune rule search space relying on

• novel hybrid embedding-based rule measure

Embedding-based Rule Quality

- Estimate average quality of predictions made by a given rule r $\mu_2(r, \mathcal{G}_p^i) = \frac{1}{|predictions(r, \mathcal{G})|} \sum_{fact \in predictions(r, \mathcal{G})} \mathcal{G}_p^i(fact)$
 - Rely on truthfulness of predictions made by *r* based on the probabilistic reconstruction Gⁱ_p of Gⁱ

aluation

Conclusion

Embedding-based Rule Quality

- Estimate average quality of predictions made by a given rule r $\mu_2(r, \mathcal{G}_p^i) = \frac{1}{|predictions(r, \mathcal{G})|} \sum_{fact \in predictions(r, \mathcal{G})} \mathcal{G}_p^i(fact)$
 - Rely on truthfulness of predictions made by r based on the probabilistic reconstruction Gⁱ_p of Gⁱ

Example:

 $livesIn(X, Y) \leftarrow marriedTo(X, Z), livesIn(Z, Y)$

• Rule predictions: livesIn(mat, monterey),livesIn(dave, chicago)

 $\mu_{2}(r, \mathcal{G}_{p}^{i}) = \frac{\mathcal{G}_{p}^{i}(<\text{mat} \text{ lives In monterey }>) + \mathcal{G}_{p}^{i}(<\text{dave lives In chicago}>)}{2}$

Embedding-based Rule Quality

- Estimate average quality of predictions made by a given rule r $\mu_2(r, \mathcal{G}_p^i) = \frac{1}{|predictions(r, \mathcal{G})|} \sum_{fact \in predictions(r, \mathcal{G})} \mathcal{G}_p^i(fact)$
 - Rely on truthfulness of predictions made by *r* based on the probabilistic reconstruction Gⁱ_p of Gⁱ

Example:

 $livesIn(X, Y) \leftarrow marriedTo(X, Z), livesIn(Z, Y), not isA(X, surfer)$

• Rule predictions: livesIn(mat, monterey),livesIn(dave, chicago)

$$\mu_2(r, \mathcal{G}_p^i) = \frac{\mathcal{G}_p^i(< \text{dave livesln chicago} >)}{1}$$

• $\mu_2(r, \mathcal{G}_p^i)$ goes down for noisy exceptions

Conclusion

Evaluation Setup

- Datasets:
 - FB15K: 592K facts, 15K entities and 1345 relations
 - Wiki44K: 250K facts, 44K entities and 100 relations
- Training graph \mathcal{G} : remove 20% from the available KG
- Embedding models Gⁱ_p:
 - TransE [Bordes et al., 2013], HolE [Nickel et al., 2016]
 - With text: SSP [Xiao et al., 2017]
- Goals:
 - · Evaluate effectiveness of our hybrid rule measure

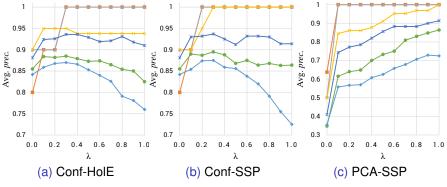
 $\mu(\mathbf{r}, \mathcal{G}_{p}^{i}) = (1 - \lambda) \times \mu_{1}(\mathbf{r}, \mathcal{G}) + \lambda \times \mu_{2}(\mathbf{r}, \mathcal{G}_{p}^{i})$

Compare against state-of-the-art rule learning systems

Conclusion

Evaluation of Hybrid Rule Measure

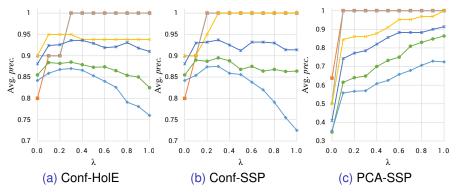
---top_5 ----top_10 ----top_20 ----top_50 ----top_100 ----top_200



Precision of *top-k* rules ranked using variations of μ on FB15K.

Evaluation of Hybrid Rule Measure

---top_5 ----top_10 ----top_20 ----top_50 ----top_100 ----top_200



Precision of *top-k* rules ranked using variations of μ on FB15K.

- Positive impact of embeddings in all cases for $\lambda = 0.3$
- Note: in (c) comparison to AMIE [Galárraga *et al.*, 2015] ($\lambda = 0$)

Rule Prunning

Evaluation

Conclusion

Example Rules

Examples of rules learned from Wikidata

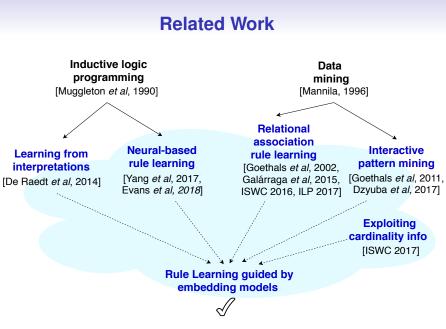
Script writers stay the same throughout a sequel, but not for TV series $r_1 : scriptwriterOf(X, Y) \leftarrow precededBy(Y, Z), scriptwriterOf(X, Z), not isA(Z, tvSeries)$

Nobles are typically married to nobles, but not in the case of Chinese dynasties r_2 : nobleFamily(X, Y) \leftarrow spouse(X, Z), nobleFamily(Z, Y), **not** isA(Y, chineseDynasty)

Rule Prunnin

Evaluation

Conclusion



Conclusion

Conclusion

- Summary:
 - Framework for learning rules from KGs with external sources
 - Hybrid embedding-based rule quality measure
 - Experimental evaluation on real-world KGs
 - Approach is orthogonal to a concrete embedding used

- Outlook:
 - Other rule types, e.g., with existentials in the head or constraints
 - Plug-in portfolio of embeddings
 - Mimic framework of exact learning [Angluin, 1987] by establishing complex queries to embeddings

References I

Dana Angluin. Queries and concept learning. *Machine Learning*, 2(4):319–342, 1987.

Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of NIPS, pages 2787–2795, 2013.

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6):707–730, 2015.

Bart Goethals and Jan Van den Bussche. Relational association rules: Getting warmer. In PDD, 2002.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embeddings of knowledge graphs. In AAAI, 2016.

Ehud Y. Shapiro.

Inductive inference of theories from facts. In Computational Logic - Essays in Honor of Alan Robinson, pages 199–254, 1991.

Zhigang Wang and Juan-Zi Li.

Text-enhanced representation learning for knowledge graph. In *IJCAI*, 2016.

Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan Zhu. SSP: semantic space projection for knowledge graph embedding with text descriptions. In AAAI, 2017.