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Rule Learning from KGs

Confidence, e.g., WARMER [Goethals and den Bussche, 2002]
CWA: whatever is missing is false
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r : livesIn(X ,Y )← isMarriedTo(Z ,X ), livesIn(Z ,Y ), not isA(X , researcher)
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Rule Learning from KGs
PCA confidence AMIE [Galárraga et al., 2015]

PCA: Since Alice has a living place already, all others are incorrect.
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Rule Learning from KGs

Exception-enriched rules: [ISWC 2016, ILP 2016]
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Absurd Rules due to Data Incompleteness
Problem: rules learned from highly incomplete KGs might be absurd..

Brad ITechworksAt
John OpenSysworksAt

Berlin Chicago

ITServiceworksAtBob ClaraworksAtSoftComp

IsA

ItCompany

IsA

livesIn officeIn officeInlivesIn

officeIn officeIn

conf (r) = confPCA(r) = 1

livesIn(X ,Y )← worksAt(X ,Z ), officeIn(Z ,Y ), not isA(Z , itCompany)
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Ideal KG

µ(r ,G i): measure quality of the rule r on G i

, but G i is unknown

KG Ideal KG 

 


i
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Probabilistic Reconstruction of Ideal KG

µ(r ,G i
p): measure quality of r on G i
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Hybrid Rule Measure

µ(r ,G i
p) = (1− λ)× µ1(r ,G) + λ× µ2(r ,G i
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Hybrid Rule Measure

µ(r ,G i
p) = (1− λ)× µ1(r ,G) + λ× µ2(r ,G i

p)

• λ ∈ [0..1] :λ ∈ [0..1] :λ ∈ [0..1] : weighting factor

• µ1 :µ1 :µ1 : descriptive quality of rule r over the available KG G
• confidence
• PCA confidence

• µ2 :µ2 :µ2 : predictive quality of r relying on G i
p (probabilistic

reconstruction of the ideal KG G i )

3 / 13



Motivation Our Approach Rule Construction Rule Prunning Evaluation Conclusion

KG Embeddings
• Popular approach to KG completion, which proved to be effective
• Relies on translation of entities and relations into vector spaces

colleagueOf

Jane Bob

Mat

colleagueOf

colleagueOf

livesIn

Berlin

livesIn

SFO

colleagueO
f

livesIn

Patti 

Jane

Bob

Mat
SFO

Berlin

livesIn

Text
Bob is a

developer in
ITService, CA

score(<Bob livesIn SFO>) = 0.8
score(<Bob livesIn Berlin>) = 0.4

...

Patti

Mat working as
a developer in
ITService, CA

Bob and Mat have
successfully

completed a project
initiated by the SFO

department of
ITService

SFO is a cultural
and commercial

center of CA

TransE [Bordes et al., 2013], SSP [Xiao et al., 2017], TEKE [Wang and Li, 2016]
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Our Approach
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Rule Construction

• Clause exploration from general to specific
• all first-order clauses: [Shapiro, 1991]

livesIn(X, Y) ←

add atom 

livesIn(bob, Y) ←

unify variable to
constant

livesIn(X, Y) ← livesIn(U, V)

unify
variables 

livesIn(X, X) ←
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Rule Construction

• Clause exploration from general to specific
• closed rules: AMIE [Galárraga et al., 2015]

livesIn(X ,Y )← marriedTo(X ,Z ), livesIn(Z ,Y )

livesIn(X, Y) ←

add dangling atom 

livesIn(X, Y) ← isA(X, researcher)

add instantiated  
atom

livesIn(X, Y) ← marriedTo(X, Z)

add closing atom 

livesIn(X, Y) ← marriedTo(X, Z), livesIn(Z, Y)
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Rule Construction

• Clause exploration from general to specific
• This work: closed and safe rules with negation

livesIn(X ,Y )← marriedTo(X ,Z ), livesIn(Z ,Y ), not isA(X , researcher)

livesIn(X, Y) ←

add dangling atom 

livesIn(X, Y) ← isA(X, researcher)

add instantiated  
atom

livesIn(X, Y) ← marriedTo(X, Z)

add closing atom 

livesIn(X, Y) ← marriedTo(X, Z), livesIn(Z, Y)

add negated
instantiated atom 

livesIn(X, Y) ← marriedTo(X, Z), livesIn(Z, Y),

not isA(X, researcher)

livesIn(X, Y) ← marriedTo(X, Z), livesIn(Z, Y),

not moved(X, Y)

add negated atom 
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Rule Prunning

livesIn(X, Y) ← worksAt(X, Z),

officeIn(Z, Y)

livesIn(X, Y) ← worksAt(X, Z)

livesIn(X, Y) ←

livesIn(X, Y) ← marriedTo(X, Z)

livesIn(Z, Y)

livesIn(X, Y) ← marriedTo(X, Z), livesIn(Z, Y)

not researcher(X)

...
...

...

Prune rule search space relying on

• novel hybrid embedding-based rule measure
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Embedding-based Rule Quality
• Estimate average quality of predictions made by a given rule r

µ2(r ,G i
p) =

1
|predictions(r ,G)|

∑
fact∈predictions(r ,G)

G i
p(fact)

• Rely on truthfulness of predictions made by r based on the
probabilistic reconstruction G i

p of G i

Example:

livesIn(X ,Y )← marriedTo(X ,Z ), livesIn(Z ,Y )

,not isA(X , surfer)

• Rule predictions: livesIn(mat ,monterey),livesIn(dave, chicago)

µ2(r ,G i
p)=
G i

p(< mat livesIn monterey >)+G i
p(< dave livesIn chicago >)

2

• µ2(r ,G i
p) goes down for noisy exceptions
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Evaluation Setup
• Datasets:

• FB15K: 592K facts, 15K entities and 1345 relations
• Wiki44K: 250K facts, 44K entities and 100 relations

• Training graph G: remove 20% from the available KG

• Embedding models G i
p:

• TransE [Bordes et al., 2013], HolE [Nickel et al., 2016]
• With text: SSP [Xiao et al., 2017]

• Goals:
• Evaluate effectiveness of our hybrid rule measure

µ(r ,G i
p) = (1− λ)× µ1(r ,G) + λ× µ2(r ,G i

p)

• Compare against state-of-the-art rule learning systems
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Evaluation of Hybrid Rule Measure
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Precision of top-k rules ranked using variations of µ on FB15K.

• Positive impact of embeddings in all cases for λ = 0.3

• Note: in (c) comparison to AMIE [Galárraga et al., 2015] (λ = 0)
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Example Rules

Examples of rules learned from Wikidata

Script writers stay the same throughout a sequel, but not for TV series
r1 : scriptwriterOf (X ,Y )← precededBy(Y ,Z ), scriptwriterOf (X ,Z ), not isA(Z , tvSeries)

Nobles are typically married to nobles, but not in the case of Chinese dynasties
r2 : nobleFamily(X ,Y )←spouse(X ,Z ), nobleFamily(Z ,Y ), not isA(Y ,chineseDynasty)
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Related Work

Inductive logic
programming

Data  
mining

Rule Learning guided by
embedding models  

[Goethals et al, 2002, 
Galárraga et al, 2015,
ISWC 2016, ILP 2017]

Relational
association
rule learning 

[Muggleton et al, 1990]

Neural-based
rule learning 

[Yang et al, 2017,
Evans et al, 2018]

[Mannila, 1996]

[Goethals et al, 2011, 
Dzyuba et al, 2017]

Interactive
pattern mining 

Exploiting
cardinality info  

[ISWC 2017]

[De Raedt et al, 2014]

Learning from
interpretations 
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Conclusion

• Summary:
• Framework for learning rules from KGs with external sources
• Hybrid embedding-based rule quality measure
• Experimental evaluation on real-world KGs
• Approach is orthogonal to a concrete embedding used

• Outlook:
• Other rule types, e.g., with existentials in the head or constraints
• Plug-in portfolio of embeddings
• Mimic framework of exact learning [Angluin, 1987] by establishing

complex queries to embeddings
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