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Abstract. Clustering entities over knowledge graphs (KGs) is an asset
for explorative search and knowledge discovery. KG embeddings have
been intensively investigated, mostly for KG completion, and have poten-
tial also for entity clustering. However, embeddings are latent and do not
convey user-interpretable labels for clusters. This work presents ExCut,
a novel approach that combines KG embeddings with rule mining meth-
ods, to compute informative clusters of entities along with comprehen-
sible explanations. The explanations are in the form of concise combi-
nations of entity relations. ExCut jointly enhances the quality of entity
clusters and their explanations, in an iterative manner that interleaves
the learning of embeddings and rules. Experiments on real-world KGs
demonstrate the effectiveness of ExCut for discovering high-quality clus-
ters and their explanations.

1 Introduction

Motivation. Knowledge graphs (KGs) are collections of triples of the form
〈subject predicate object〉 used for important tasks such as entity search, question
answering and text analytics, by providing rich repositories of typed entities
and associated properties. For example, Tedros Adhanom is known as a health
expert, director of the World Health Organization (WHO), alumni of the University
of London, and many more.

KGs can support analysts in exploring sets of interrelated entities and discov-
ering interesting structures. This can be facilitated by entity clustering, using
unsupervised methods for grouping entities into informative subsets. Consider,
for example, an analyst or journalist who works on a large corpus of topically
relevant documents, say on the Coronavirus crisis. Assume that key entities in
this collection have been spotted and linked to the KG already. Then the KG
can guide the user in understanding what kinds of entities are most relevant.
With thousands of input entities, from health experts, geo-locations, political
decision-makers all the way to diseases, drugs, and vaccinations, the user is
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likely overwhelmed and would appreciate a group-wise organization. This task
of computing entity clusters [4,6,16] is the problem we address.

Merely clustering the entity set is insufficient, though. The user also needs to
understand the nature of each cluster. In other words, clusters must be explain-
able, in the form of user-comprehensible labels. As entities have types in the
KG, an obvious solution is to label each cluster with its prevalent entity type.
However, some KGs have only coarse-grained types and labels like “people”
or “diseases” cannot distinguish health experts from politicians or virus diseases
from bacterial infections. Switching to fine-grained types, such as Wikipedia cat-
egories, on the other hand, causes the opposite problem: each entity is associated
with tens or hundreds of types, and it is unclear which of these would be a good
cluster label. The same holds for an approach where common SPO properties
(e.g., educatedIn UK) are considered as labels. Moreover, once we switch from a
single KG to a set of linked open data (LOD) sources as a joint entity repository,
the situation becomes even more difficult.
Problem Statement. Given a large set of entities, each with a substantial set of
KG properties in the form of categorical values or relations to other entities, our
problem is to jointly tackle: (i) Clustering: group the entities into k clusters of
semantically similar entities; (ii) Explanation: generate a user-comprehensible
concise labels for the clusters, based on the entity relations to other entities.
State-of-the-Art and Its Limitations. The problem of clustering relational
data is traditionally known as conceptual clustering (see, e.g., [25] for overview).
Recently, it has been adapted to KGs in the Semantic Web community [6,16].
Existing approaches aim at clustering graph-structured data itself by, e.g., intro-
ducing novel notions of distance and similarity directly on the KG [4,5]. Due to
the complexity of the data, finding such universally good similarity notions is
challenging [5].

Moreover, existing relational learning approaches are not sufficiently scalable
to handle large KGs with millions of facts, e.g., YAGO [26] and Wikidata [30].
Clustering entities represented in latent space, e.g., [12,31], helps to overcome
this challenge, yet, the resulting clusters are lacking explanations, clustering
process is prone to the embedding quality, and hyperparameters are hard to
tune [5]. Explaining clusters over KGs, such as [27,28] focus on the discovery
of explanations for given perfect clusters. However, obtaining such high-quality
clusters in practice is not straightforward.
Approach. To address the above shortcomings, we present ExCut, a new
method for computing explainable clusters of large sets of entities. The method
uses KG embedding as a signal for finding plausible entity clusters, and com-
bines it with logical rule mining, over the available set of properties, to
learn interpretable labels. The labels take the form of concise conjunctions
of relations that characterize the majority of entities in a cluster. For exam-
ple, for the above Coronavirus scenario, we aim at mining such labels as
worksFor(X ,Y ) ∧ type(Y , health org) ∧ hasDegreeIn(X , life sciences) for a
cluster of health experts, type(X, disease) ∧ causedBy(X,Y ) ∧ type(Y, virus)
for a cluster of virus diseases, and more. A key point in our approach is that
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these labels can in turn inform the entity embeddings, as they add salient infor-
mation. Therefore, we interleave and iterate the computation of embeddings and
rule mining adapting the embeddings using as feedback the information inferred
by the learned rules.
Contributions. Our main contributions can be summarized as follows:

– We introduce ExCut, a novel approach for computing explainable clusters,
which combines embedding-based clustering with symbolic rule learning to
produce human-understandable explanations for the resulting clusters. These
explanations can also serve as new types for entities.

– We propose several strategies to iteratively fine-tune the embedding model
to maximize the explainability and accuracy of the discovered clusters based
on the feedback from the learned explanations.

– We evaluate ExCut on real-world KGs. In many cases, it out-performs state-
of-the-art methods w.r.t. both clustering and explanations quality.

We made the implementation of ExCut and the experimental resources publicly
available at https://github.com/mhmgad/ExCut.

2 Preliminaries

Knowledge Graphs. KGs represent interlinked collections of factual infor-
mation, encoded as a set of 〈subject predicate object〉 triples, e.g.,
〈tedros adhanom directorOf WHO〉. For simplicity, we write triples as in predicate
logics format, e.g., directorOf (tedros adhanom, WHO). A signature of a KG G is
ΣG = 〈P,E〉, where P is a set of binary predicates and E is a set of entities,
i.e., constants, in G.
KG Embeddings. KG embeddings aim at representing all entities and relations
in a continuous vector space, usually as vectors or matrices called embeddings.
Embeddings can be used to estimate the likelihood of a triple to be true via a
scoring function: f : E×P×E → R. Concrete scoring functions are defined based
on various vector space assumptions: (i) The translation-based assumption, e.g.,
TransE [1] embeds entities and relations as vectors and assumes vs + vr ≈ vo

for true triples, where vs,vr,vo are vector embeddings for subject s, relation r
and object o, resp. (ii) The linear map assumption, e.g., ComplEx [29] embeds
entities as vectors and relations as matrices. It assumes that for true triples, the
linear mapping Mr of the subject embedding vs is close to the object embedding
vo : vsMr ≈ vo. The likelihood that these assumptions of the embedding
methods hold should be higher for triples in the KG than for those outside.
The learning process is done through minimizing the error induced from the
assumptions given by their respective loss functions.
Rules. Let X be a set of variables. A rule r is an expression of the form
head ← body , where head , or head(r), is an atom over P ∪ E ∪ X and body,
or body(r), is a conjunction of positive atoms over P ∪ E ∪ X. In this work,
we are concerned with Horn rules, a subset of first-order logic rules with only

https://github.com/mhmgad/ExCut
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Fig. 1. An example KG with potential COVID-19 cases split into two entity clusters (in
green and red). Black edges are relevant for the potential explanations of these clusters.

positive atoms, in which every head variable appears at least once in the body
atoms.

Example 1. An example of a rule over the KG in Fig. 1 is r :
has(X ,covid19) ←worksWith(X,Y),has(Y,covid19) stating that coworkers of
individuals with covid19 infection, potentially, also have covid19.

Execution of rules over KGs is defined in the standard way. More precisely,
let G be a KG, r a rule over ΣG , and a an atom, we write r |=G a if there is a
variable assignment that maps all atoms of body(r) into G and head(r) to the
atom a. Rule-based inference is the process of applying a given rule r on G, which
results in the extension Gr of G defined as: Gr = G ∪ {a | r |=G a}.

Example 2. Application of the rule r from Example 1 on the KG G from Fig. 1
results in r |=G has(e2, covid19) and r |=G has(e3, covid19). Hence, Gr = G ∪
{has(e2, covid19), has(e3, covid19)}.

3 Model for Computing Explainable Clusters

Given a KG, a subset of its entities and an integer k, our goal is to find a “good”
split of entities into k clusters and compute explanations for the constructed
groups that would serve as informative cluster labels. E.g., consider the KG in
Fig. 1, the set of target entities {e1, . . . , e6} and the integer k = 2. One of the
possible solutions is to put e1−3 into the first cluster C1 and the other three
entities into the second one C2. Explanations for this split would be that C1

includes those who got infected via interacting with their coworkers, while the
others were infected after visiting a risk area. Obviously, in general there are
many other splits and identifying the criteria for the best ones is challenging.

Formally, we define the problem of computing explainable entity clusters as
follows:

Definition 1 (Computing Explainable Entity Clusters Problem).
Given: (i) a knowledge graph G over ΣG = 〈P,E〉; (ii) a set T ⊆ E of target
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entities; (iii) a number of desired clusters k > 1; (iv) an explanation language
L; and (v) an explanation evaluation function d : 2L × 2T × G → [0..1]
Find: a split C = {C1, . . . Ck} of entities in T into k clusters and a set of
explanations R = {r1, . . . , rk} for them, where ri ∈ L, s.t. d(R, C,G) is maximal.

3.1 Explanation Language

Explanations (i.e., informative labels) for clusters can be characterized as con-
junctions of common entity properties in a given cluster; for that Horn rules are
sufficient. Thus, our explanation language relies on (cluster) explanation rules
defined as follows:

Definition 2 (Cluster Explanation Rules). Let G be a KG with the signa-
ture ΣG = 〈P,E〉, let C ⊆ E be a subset of entities in G, i.e., a cluster, and X
a set of variables. A (cluster) explanation rule r for C over G is of the form

r : belongsTo(X, eC) ← p1(X1), . . . , pm(Xm ), (1)

where eC �∈ E is a fresh unique entity representing the cluster C, belongsTo �∈ P
is a fresh predicate, and body(r) is a finite set of atoms over P and X ∪ E.

Example 3. A possible explanation rule for C1 = {e1, e2, e3} in G from Fig. 1 is

r : belongsTo(X, eC1) ← worksWith(X ,Y ), has(Y ,covid19)

which describes C1 as a set of people working with infected colleagues.

Out of all possible cluster explanation rules we naturally prefer succinct
ones. Therefore, we put further restrictions on the explanation language L by
limiting the number of rule body atoms (an adjustable parameter in our method).

3.2 Evaluation Function

The function d from Definition 1 compares solutions to the problem of explain-
able entity clustering w.r.t. their quality, and ideally d should satisfy the follow-
ing two criteria: (i) Coverage: Given two explanation rules for a cluster, the one
covering more entities should be preferred and (ii) Exclusiveness: Explanation
rules for different clusters should be (approximately) mutually exclusive.

The coverage measure from data mining is a natural choice for satisfying (i).

Definition 3 (Explanation Rule Coverage). Let G be a KG, C a cluster
of entities, and r a cluster explanation rule. The coverage of r on C w.r.t. G is

cover(r ,C ,G) =
|{c ∈ C|r |=G belongsTo(c, eC)}|

|C| (2)

Example 4. Consider clusters C1 = {e1, e2, e3}, C2 = {e4, e5, e6} shown in
Fig. 1. The set of potential cluster explanation rules along with their coverage
scores for C1 and C2 respectively, is given as follows:
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r1 : belongsTo(X, eCi) ← type(X, covid19 case) 1 1
r2 : belongsTo(X , eCi ) ← gender(X, male) 0.67 0.33
r3 : belongsTo(X, eCi) ← worksWith(X,Y ), has(Y, covid19) 0.67 0
r4 : belongsTo(X, eCi) ← visited(X ,Y ), listedAs(Y , risk area) 0 1

While addressing (i), the coverage measure does not account for the criteria
(ii). Indeed, high coverage of a rule for a given cluster does not imply a low
value of this measure for other clusters. For instance, in Example 4 r1 is too
general, as it perfectly covers entities from both clusters. This motivates us to
favour (approximately) mutually exclusive explanation rules, i.e., explanation
rules with high coverage for a given cluster but low coverage for others (similar
to [13]). To capture this intuition, we define the exclusive explanation coverage
of a rule for a cluster given other clusters as follows.

Definition 4 (Exclusive Explanation Rule Coverage). Let G be a KG, let
C be a set of all clusters of interest, C ∈ C a cluster, and r an explanation rule.
The exclusive explanation rule coverage of r for C w.r.t. C and G is defined as

exc(r ,C ,C,G)=

⎧
⎪⎨

⎪⎩

0, if min
C′∈C\C

{cover(r ,C ,G)−cover(r ,C ′,G)}≤0

cover(r, C,G)−
∑

C′∈C\C

cover(r,C′,G)

|C\C| , otherwise.

(3)

Example 5. Consider C = {C1, C2},R = {r1, r2, r3, r4} from Example 4 and
the KG G from Fig. 1. We have exc(r1, C1, C,G) = exc(r1, C2, C,G) = 0,
which disqualifies r1 as an explanation for either of the clusters. For r2,
we have exc(r2, C1, C,G) = 0.34 making it less suitable for the cluster C1

than r3 with exc(r3, C1, C,G) = 0.67. Finally, r4 perfectly explains C2, since
exc(r4, C2, C,G) = 1.

Similarly, we can measure the quality of a collection of clusters with their
explanations by averaging their per-cluster exclusive explanation rule coverage.

Definition 5 (Quality of Explainable Clusters). Let G be a KG, C =
{C1, . . . , Ck} a set of entity clusters, and R = {r1, . . . , rk} a set of cluster expla-
nation rules, where each ri is an explanation for Ci, 1 ≤ i ≤ k. The explainable
clustering quality q of R for C w.r.t. G is defined as follows:

q(R, C,G) =
1

|C|
|C|∑

i=1

exc(ri, Ci, C,G) (4)

Realizing the function d in Definition 1 by the above measure allows us to con-
veniently compare the solutions of the explainable clusters discovery problem.

Example 6. Consider G from Fig. 1, the set of target entities T = {e1, . . . , e6},
k = 2, language L of cluster explanation rules with at most 2 body atoms, and
the evaluation function d given as q from Definition 5. The best solution to the
respective problem of computing explainable entity clusters is C = {C1, C2}, R =
{r3, r4}, where C1, C2, r3, r4 are from Example 4. We have that q(R, C,G)=0.83.
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Fig. 2. ExCut pipeline overview.

4 Method

We now present our method ExCut, which iteratively utilizes KG Embedding-
based Clustering and Rule Learning to compute explainable clusters. More specif-
ically, as shown in Fig. 2, ExCut starts with (1) Embedding Learning for a given
KG. Then, it performs (2) Clustering of the entities in the target set over the
learned embeddings. Afterwards, (3) Rule Learning is utilized to induce explana-
tion rules for the constructed clusters, which are ranked based on the exclusive
coverage measure. Using the learned explanation rules, we perform (4) Rule-based
Inference to deduce new entity-cluster assignment triples reflecting the learned
structural similarities among the target entities. Then, ExCut uses the rules and
the inferred assignment triples in constructing feedback to guide the clustering
in the subsequent iterations. We achieve that by fine-tuning the embeddings of
the target entities in Step (5) Embedding Adaptation.

In what follows we present the detailed description of ExCut’s components.

4.1 Embedding Learning and Clustering

Embedding Learning. ExCut starts with learning vector representations of
entities and relations. We adopt KG embeddings in this first step, as they are
well-known for their ability to capture semantic similarities among entities, and
thus could be suited for defining a robust similarity function for clustering rela-
tional data [5]. Embeddings are also effective for dealing with data incomplete-
ness, e.g., predicting the potentially missing fact worksWith(e1 , e7 ) in Fig. 1.
Moreover, embeddings facilitate the inclusion of unstructured external sources
during training, e.g., textual entity descriptions [33].

Conceptually, any embedding method can be used in our approach. We
experimented with TransE [1] and ComplEx [29] as prominent representatives
of translation-based and linear map embeddings. To account for the context
surrounding the target entities, we train embeddings using the whole KG.
Clustering. The Clustering step takes as input the trained embedding vectors
of the target entities and the number k of clusters to be constructed. We perform
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Fig. 3. KG fragments.

clustering relying on the embeddings as features to compute pairwise distances
among the target entities using standard distance functions, e.g., cosine distance.
Various classical clustering approaches or more complex embedding-driven clus-
tering techniques [31] could be exploited here too. In this paper, we rely on the
traditional Kmeans method [17] as a proof of concept.

For KGs with types, the majority of embedding models [1,29] would map
entities of a certain type to similar vectors [31]. For example, e1 and e2 in Fig. 3A
are likely to be close to each other in the embedding space, and thus have a high
chance of being clustered together. An ideal embedding model for explainable
clustering should follow the same intuition even if types in the KG are missing.
In other words, it should be capable of assigning similar vectors to entities that
belong to structurally similar subgraphs of certain pre-specified complexity. For
instance, in Fig. 3B, both e1 and e2 belong to subgraphs reflecting that these
entities are married to politicians with some covid19 symptom, and hence should
be mapped to similar vectors.

Despite certain attempts to consider specific graph patterns (e.g., [15]), to
the best of our knowledge none of the existing embedding models is general
enough to capture patterns of arbitrary complexity. We propose to tackle this
limitation (see Sect. 4.3) by passing to the embedding model feedback created
using cluster explanation rules learned in the Step 3 of ExCut.

4.2 Explanation Mining

KG-Based Explanations. KG embeddings and the respective clusters con-
structed in Steps 1 and 2 of our method are not interpretable. However, since
KG embeddings are expected to preserve semantic similarities among entities,
the clusters in the embedding space should intuitively have some meaning. Moti-
vated by this, in ExCut, we aim at decoding these similarities by learning rules
over the KG extended by the facts that reflect the cluster assignments computed
in the Clustering step.

Rule Learning Procedure. After augmenting G with belongsTo(e, eCi ) facts
for all entities e clustered in Ci, we learn Horn rules of the form (1) from Defini-
tion 2. There are powerful rule-learning tools such as AMIE+ [8], AnyBurl [18],
RLvLR [20,21] and RuDiK [22]. Nevertheless, we decided to develop our own
rule learner so that we could have full control over our specific scoring functions
and their integration into the learner’s search strategy. Following [8], we model
rules as sequences of atoms, where the first atom is the head of the rule (i.e.,
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belongsTo(X , eCi ) with Ci being the cluster to be explained), and other atoms
form the rule’s body.

For each cluster Ci, we maintain an independent queue of intermediate rules,
initialized with a single rule atom belongsTo(X , eCi ), and then exploit an iterative
breadth-first search strategy. At every iteration, we expand the existing rules in
the queue using the following refinement operators: (i) add a positive dangling
atom: add a binary positive atom with one fresh variable and another variable
appearing in the rule, i.e., shared variable , e.g., adding worksAt(X ,Y ), where Y
is a fresh variable not appearing in the current rule; (ii) add a positive instantiated
atom: add a positive atom with one argument being a constant and the other
one a shared variable , e.g., adding locatedIn(X , usa), where usa is a constant,
and X appears elsewhere in the rule constructed so far.

These operators produce a set of new rule candidates, which are then filtered
relying on the given explanation language L. Suitable rules with a minimum
coverage of 0.5, i.e., rules covering the majority of the respective cluster, are
added to the output set. We refine the rules until the maximum length specified
in the language bias is reached. Finally, we rank the constructed rules based on
the exclusive explanation coverage (Definition 4), and select the top m rules for
each cluster.

Example 7. Assume that for G in Fig. 1, and T = {e1, . . . , e6}, the embedding-
based clustering resulted in the following clusters C1 = {e1, e2, e4} and C2 =
{e5, e6, e3}, where e4 and e3 are incorrectly placed in wrong clusters. The top
cluster explanation rules for C2 ranked based on exc measure from Definition 4
are:
r1 : belongsTo(X , eC2 ) ← visited(X ,Y ) 0.67
r2 : belongsTo(X , eC2 ) ← gender(X , male) 0.33
r3 : belongsTo(X , eC2 ) ← visited(X ,Y ), listedAs(Y , risk area). 0.33

Inferring Entity-Clusters Assignments. In the Rule-based Inference (Step
4 in Fig. 2), we apply the top-m rules obtained in the Rule Learning step on the
KG to predict the assignments between the target entities and the discovered
clusters over belongsTo relation using standard deductive reasoning techniques.
The computed assignment triples are ranked and filtered based on the exc score
of the respective rules that inferred them.

Example 8. Application of the rules from Example 7 on G
w.r.t. the target entities e1−6 results in the cluster assignment triples:
{belongsTo(e3 , eC2 ), belongsTo(e4 , eC2 ), belongsTo(e2, eC2)}. Note that based on
r1, e4 is assigned to C2 instead of C1.
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Fig. 4. Inferred clusters assignment triples modeling options.

4.3 Embedding Adaptation

Learned explanation rules capture explicit structural similarities among the
target entities. We propose to utilize them to create feedback to guide the
embedding-based clustering towards better explainable clusters. This feedback is
passed to the embedding model in the form of additional training triples reflect-
ing the assignments inferred by the learned rules. Our intuition is that such
added triples should potentially help other similarities of analogous nature to be
discovered by the embeddings, compensating for the embedding-based clustering
limitation discussed in Sect. 4.1.

Specifically, the embedding adaptation (Step 5 in Fig. 2) is summarized as
follows: (a) From the Rule Learning and Rule-based Inference steps, described
above, we obtain a set of cluster assignment triples of the form belongsTo(e, eC)
together with rules inferring them, where e is an entity in the input KG G and
eC is a new entity uniquely representing the cluster C. (b) We then model the
cluster assignments from (a) and rules that produce them using one of our four
strategies described below and store the results in Ginf . (c) A subset Gcontext of
G consisting of triples that surround the target entities is then constructed. (d)
Finally, we fine-tune the embedding model by training it further on the data
compiled from Ginf and Gcontext .
Modeling Rule-Based Feedback. Determining the adequate structure and
amount of training triples required for fine-tuning the embedding model is chal-
lenging. On the one hand, the training data should be rich enough to reflect
the learned structure, but on the other hand, it should not corrupt the cur-
rent embedding. We now present our proposed four strategies for representing
the inferred cluster-assignments along with the corresponding rules as a set of
triples Ginf suitable for adapting the embedding. The strategies are listed in the
ascending order of their complexity.

– Direct: As a straightforward strategy, we directly use the inferred entity-
cluster assignment triples in Ginf as shown in Fig. 4A, e.g., belongsTo(e1 , eC2 ).

– Same-Cluster-as: In the second strategy, we model the inferred assignments
as edges only. As shown in Fig. 4B, we compile Ginf using triples of sameClsAs
relations between every pair of entities belonging to the same cluster as the
learned rules suggest, e.g., sameClsAs(e1, e2). Modeling the cluster assign-
ments using fresh relations allows us to stress the updates related to the target
entities, as no extra entities are added to the KG in this strategy.
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– Rules as Edges: Third, we propose to model the inferred assignments
together with the rules which led to their prediction. More precisely, for every
rule r which deduced belongsTo(e, eCi ), we introduce a fresh predicate pr and
add a triple pr(e, eCi) to the training set Ginf , as illustrated in Fig. 4C. This
allows us to encode all conflicting entity-cluster assignments (i.e., assign-
ments, in which an entity belongs to two different clusters) and supply the
embedding model with richer evidence about the rules that predicted these
assignments.

– Rules as Entities: Rules used in the deduction process can also be modeled
as entities. In the fourth strategy, we exploit this possibility by introducing
additional predicates infers and appliedTo, and for every rule r a fresh entity
er. Here, each belongsTo(e, eCi ) fact deduced by the rule r is modeled in Ginf

with two triples infers(er, eCi ) and appliedTo(er, e) as shown in Fig. 4D.

Embedding Fine-Tuning. At every iteration i of ExCut, we start with the
embedding vectors obtained in the previous iteration i− 1 and train the embed-
ding further with a set of adaptation triples Gadapt . The set Gadapt is composed
of the union of all Ginf

j for j = 1 . . . i and a set of context triples Gcontext . For
Gcontext , we only consider those directly involving the target entities as a sub-
ject or object. E.g., among the facts in the surrounding context of e1, we have
worksAt(e1 , org1 ) and plays(e1, tennis).

Our empirical studies (see the technical report1) showed that including
assignment triples from previous iterations j < i leads to better results; thus, we
include them in Gadapt , but distinguish entity and relation names from different
iterations. Additionally, considering the context subgraph helps in regulating
the change caused by the cluster assignment triples by preserving some of the
characteristics of the original embeddings.

5 Experiments

We evaluate the effectiveness of ExCut for computing explainable clusters. More
specifically, we report the experimental results covering the following aspects: (i)
the quality of the clusters produced by ExCut compared to existing clustering
approaches; (ii) the quality of the computed cluster explanations; (iii) the useful-
ness and understandability of the explanations for humans based on a user study;
(iv) the benefits of interleaving embedding and rule learning for enhancing the
quality of the clusters and their explanations; and (v) the impact of using dif-
ferent embedding paradigms and our strategies for modeling the feedback from
the rules.

5.1 Experiment Setup

ExCut Configurations. We implemented ExCut in Python and configured
its components as follows: (i) Embedding-based Clustering: We extended the
1 Code, data and the technical report are available at https://github.com/mhmgad/

ExCut.

https://github.com/mhmgad/ExCut
https://github.com/mhmgad/ExCut
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Table 1. Datasets statistics.

UWCSE WebKB Terror. IMDB Mutag. Hepatitis LUBM YAGO

Target Entities 209 106 1293 268 230 500 2850 3900
Target Clusters 2 4 6 2 2 2 2 3
KG Entities 991 5906 1392 578 6196 6511 242558 4295825
Relations 12 7 4 4 14 19 22 38
Facts 2216 72464 17117 1231 30805 77585 2169451 12430700

implementation of TransE and ComplEx provided by Ampligraph [3] to allow
embedding fine-tuning. We set the size of the embeddings to 100, and trained
a base model with the whole KG for 100 epochs, using stochastic gradient
descent with a learning rate of 0.0005. For fine-tuning, we trained the model
for 25 epochs with a learning rate of 0.005. Kmeans is used for clustering. (ii)
Rule Learning: We implemented the algorithm described in Sect. 4.2. For exper-
iments, we fix the language bias of the explanations to paths of length two, e.g.,
belongsTo(x, eCi) ← p(x, y), q(y, z), where z is either a free variable or bind to
a constant. (iii) Modeling Rule-based Feedback: We experiment with the four
strategies from Sect. 4.3: direct (belongToCl), same cluster as edges (sameClAs),
rules as edges (entExplCl), and rules as entities (followExpl).
Datasets. We performed experiments on six datasets (Tab. 1) with a pre-
specified set of target entities, which are widely used for relational clustering [4].
Additionally, we considered the following large-scale KGs: (i) LUBM-Courses: a
subset of entities from LUBM syntactic KG [9] describing the university domain,
where target entities are distributed over graduate and undergraduate courses;
and (ii) YAGO-Artwork KG with a set of target entities randomly selected from
YAGO [26]. The entities are uniformly distributed over three types, book, song,
and movie. To avoid trivial explanations, type triples for target entities were
removed from the KG. Table 1 reports the dataset statistics.
Baselines. We compare ExCut to the following clustering methods: (i)
ReCeNT [4], a state-of-the-art relational clustering approach, that clusters enti-
ties based on a similarity score computed from entity neighborhood trees; (ii)
Deep Embedding Clustering (DEC) [32], an embedding-based clustering method
that performs dimensionality reduction jointly with clustering and (iii) Stan-
dard Kmeans applied directly over embeddings: TransE (Kmeans-T) and Com-
plEx (Kmeans-C). This baseline is equivalent to a single iteration of our sys-
tem ExCut. Extended experiments with clustering algorithms that automatically
detect the number of clusters can be found in the technical report.
Clustering Quality Metrics. We measure the clustering quality w.r.t. the
ground truth with three standard metrics: Accuracy (ACC), Adjusted Rand Index
(ARI), and Normalized Mutual Information (NMI) (the higher, the better).
Explanation Quality Metrics. The quality of the generated explanations is
measured using the coverage metrics defined in Sect. 3.2, namely, per cluster cov-
erage (Cov) and exclusive coverage (Exc). In addition, we adapted the “novelty”
metric Weighted Relative Accuracy (WRA) [14], which represents a trade-off
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Table 2. Clustering results of ExCut compared to the baselines.

Methods UWCSE IMDB Hepatitis Mutagenesis WebKB Terrorist
ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI

B
a
se

li
n
es ReCeNT 0.90 0.60 0.54 0.61 0.02 0.01 0.51 -0.01 0.01 0.77 0.30 0.24 0.52 0.00 -0.25 0.37 0.10 0.13

DEC 0.67 0.17 0.12 0.54 0.00 0.01 0.55 0.01 0.01 0.51 0.00 0.00 0.31 0.03 0.05 0.37 0.16 0.26
Kmeans-T 0.91 0.66 0.51 0.58 0.03 0.08 0.51 0.00 0.00 0.52 0.00 0.00 0.33 0.01 0.06 0.53 0.33 0.44
Kmeans-C 0.54 0.00 0.01 0.53 0.00 0.00 0.52 0.00 0.00 0.73 0.21 0.18 0.49 0.21 0.34 0.51 0.23 0.28

E
x
C

u
t-

T belongToCl 0.99 0.96 0.92 1.00 1.00 1.00 0.83 0.43 0.35 0.68 0.12 0.13 0.43 0.13 0.17 0.52 0.27 0.31
sameClAs 1.00 1.00 1.00 1.00 1.00 1.00 0.56 0.01 0.01 0.65 0.08 0.08 0.36 0.06 0.08 0.35 0.03 0.06
entExplCl 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.41 0.33 0.64 0.07 0.08 0.43 0.13 0.20 0.45 0.17 0.23
followExpl 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.41 0.33 0.64 0.08 0.08 0.44 0.15 0.22 0.45 0.16 0.22

E
x
cu

t-
C belongToCl 0.96 0.85 0.77 1.00 1.00 1.00 0.63 0.07 0.05 0.73 0.21 0.18 0.51 0.23 0.37 0.54 0.26 0.29

sameClAs 0.98 0.91 0.86 1.00 1.00 1.00 0.58 0.02 0.02 0.73 0.21 0.18 0.38 0.08 0.17 0.34 0.03 0.08
entExplCl 0.97 0.88 0.81 0.65 0.08 0.19 0.69 0.15 0.11 0.73 0.21 0.19 0.52 0.24 0.36 0.53 0.25 0.29
followExpl 0.99 0.97 0.94 1.00 1.00 1.00 0.66 0.10 0.08 0.73 0.20 0.18 0.51 0.22 0.34 0.52 0.24 0.29

between the coverage and the accuracy of the discovered explanations. We com-
pute the average of the respective quality of the top explanations for all clusters.
To assess the quality of the solution to the explainable clustering problem from
Definition 1 found by ExCut, we compare the computed quality value to the
quality of the explanations computed over the ground truth.

All experiments were performed on a Linux machine with 80 cores and 500 GB
RAM. The average results over 5 runs are reported.
User Study. To assess the human-understandability and usefulness of the expla-
nation rules, we analyze whether ExCut explanations are the best fitting labels
for the computed clusters based on the user opinion. The study was conducted
on Amazon MTurk.

More specifically, based on the YAGO KG, we provided the user study par-
ticipants with: (i) Three clusters of entities, each represented with three entities
pseudo-randomly selected from these clusters along with a brief summary for
each entity, and a link to its Wikipedia page; (ii) A set of 10 potential expla-
nations composed of the top explanations generated by ExCut and other expla-
nations with high Cov but low Exc. Explanations were displayed in natural
language for the ease of readability. We asked the participants to match each
explanation to all relevant clusters.

A useful explanation is the one that is exclusively matched to the correct
cluster by the participants. To detect useful explanations, for every explanation-
cluster pair, we compute the ratio of responses where the pair is exclusively
matched. Let match(ri , cm) = 1 if the user matched explanation ri to the
cluster cm (otherwise 0). Then, ri is exclusively matched to cm if additionally,
match(ri , cj ) = 0 for all j �= m.

5.2 Experiment Results

In seven out of eight datasets, our approach outperforms the baselines with
regard to the overall clustering and explanation quality metrics. Additionally,
the quality of the computed explanations increases after few iterations.
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Table 3. Quality of Clusters Explanations by ExCut compared to the baselines.

Methods UWCSE IMDB Hepatitis Mutagenesis WebKB Terrorist
Cov Exc WRA Cov Exc WRA Cov Exc WRA Cov Exc WRA Cov Exc WRA Cov Exc WRA

B
a
se

li
n
es ReCeNT 0.91 0.88 0.14 1.00 0.04 0.01 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.93 0.42 0.06

DEC 0.73 0.31 0.07 1.00 0.03 0.01 1.00 0.01 0.00 1.00 0.00 0.00 1.00 0.06 0.01 0.60 0.13 0.02
Kmeans-T 0.83 0.76 0.16 0.74 0.11 0.01 0.81 0.09 0.02 0.75 0.11 0.03 0.75 0.11 0.03 0.49 0.17 0.02
Kmeans-C 0.59 0.06 0.01 0.73 0.04 0.01 0.61 0.09 0.02 0.87 0.30 0.08 0.98 0.04 0.01 0.64 0.28 0.02

E
x
C

u
t-

T belongToCl 0.89 0.89 0.19 1.00 1.00 0.11 0.76 0.64 0.13 0.94 0.39 0.09 0.98 0.12 0.01 0.68 0.26 0.03
sameClAs 0.90 0.90 0.19 1.00 1.00 0.11 0.94 0.45 0.09 0.96 0.50 0.12 0.99 0.04 0.01 0.87 0.49 0.06
entExplCl 0.90 0.90 0.19 1.00 1.00 0.11 0.75 0.64 0.13 0.99 0.48 0.12 0.99 0.10 0.01 0.94 0.80 0.11
followExpl 0.90 0.90 0.19 1.00 1.00 0.11 0.75 0.63 0.13 0.98 0.46 0.11 0.99 0.09 0.01 0.95 0.79 0.11

E
x
C

u
t-

C belongToCl 0.88 0.86 0.18 1.00 1.00 0.11 0.73 0.50 0.12 0.87 0.31 0.08 0.98 0.08 0.01 0.68 0.32 0.02
sameClAs 0.91 0.89 0.19 1.00 1.00 0.11 0.80 0.45 0.11 0.87 0.30 0.08 0.98 0.10 0.01 0.85 0.61 0.07
entExplCl 0.88 0.88 0.19 0.73 0.18 0.01 0.85 0.73 0.18 0.87 0.31 0.08 0.97 0.08 0.01 0.68 0.33 0.03
followExpl 0.90 0.89 0.19 1.00 1.00 0.11 0.81 0.66 0.12 0.87 0.31 0.08 0.97 0.07 0.01 0.67 0.30 0.03

Ground truth 0.92 0.90 0.19 1.00 1.00 0.11 0.92 0.57 0.14 1.00 0.16 0.04 1.00 0.04 0.01 0.64 0.33 0.03

Clustering Quality. Table 2 presents the quality of the clusters computed by
the baselines, in the first 4 rows, followed by ExCut with the four feedback strate-
gies, where ExCut-T and ExCut-C stand for ExCut with TransE and ComplEx
respectively.

For all datasets except for Mutagensis, ExCut achieved, in general, better
results w.r.t. the ACC value than the state-of-the-art methods. Furthermore,
ExCut-T results in significantly better clusters on all datasets apart from Terror-
ists compared to Kmeans-T, i.e., the direct application of Kmeans on the TransE
embedding model. Since the Terrorists dataset contains several attributed pred-
icates (e.g., facts over numerical values), a different language bias for the expla-
nation rules is required.

Our system managed to fully re-discover the ground truth clusters for the
two datasets: UWCSE and IMDB. The accuracy enhancement by ExCut-T com-
pared to the respective baseline (Kmeans-T) exceeds 30% for IMDB and Hep-
atitis. Other quality measurements indicate similar increments.
Explanation Quality. Table 3 shows the average quality of the top explanations
for the discovered clusters, where the average per cluster coverage (Cov) and
exclusive coverage (Exc) are intrinsic evaluation metrics used as our optimization
functions, while the WRA measure is the extrinsic one.

The last row presents the quality of the learned explanations for the ground
truth clusters; these values are not necessarily 1.0, as perfect explanations under
the specified language bias may not exist. We report them as reference points.

ExCut enhances the average Exc and WRA scores of the clusters’ expla-
nations compared to the ones obtained by the baselines. These two measures
highlight the exclusiveness of the explanations; making them more representa-
tive than Cov. Thus, the decrease in the Cov, as in Terrorist, is acceptable, given
that it is in favor of increasing them.

Similar to the clustering results, for UWCSE and IMDB our method achieved
the explanations quality of the ground truth. For other datasets, our method
obtained higher explanations quality than the respective baselines. This demon-
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Table 4. Quality of the clusters and the explanations found in Large-scale KGs.

Methods
LUBM Courses Yago Artwork

ACC ARI NMI Cov Exc WRA ACC ARI NMI Cov Exc WRA

Baselines
DEC 0.92 0.70 0.66 0.96 0.95 0.19 0.56 0.44 0.57 0.92 0.49 0.11
Kmeans-T 0.50 0.00 0.00 0.46 0.03 0.01 0.52 0.42 0.58 0.92 0.42 0.11

ExCut-T

belongToCl 1.00 1.00 1.00 1.00 1.00 0.25 0.82 0.63 0.59 0.85 0.70 0.16
sameClAs 0.88 0.57 0.53 0.91 0.79 0.19 0.97 0.91 0.90 0.95 0.93 0.21
entExplCl 1.00 1.00 1.00 1.00 1.00 0.25 0.97 0.92 0.91 0.95 0.93 0.21
followExpl 1.00 1.00 1.00 1.00 1.00 0.25 0.88 0.73 0.70 0.86 0.78 0.17

Ground truth - - - 1.00 1.00 0.25 - - - 0.95 0.93 0.21

Table 5. Explanations of clusters song, book, and movie from Yago KG. (∀X ∈ Ci)

Kmeans-T ExCut-T

Explanations Cov Exc WRA Explanations Cov Exc WRA

C1

created(Y ,X ), bornIn(Y ,Z ) 0.94 0.55 0.13 created(Y ,X ), type(Y , artist) 0.99 0.96 0.21
created(Y ,X ), type(Y , artist) 0.49 0.45 0.10 created(Y ,X ),won(Y , grammy) 0.57 0.57 0.12
created(Y ,X ), type(Y , writer) 0.52 0.44 0.10 created(Y ,X ), type(Y , person) 0.84 0.48 0.11

C2

directed(Y ,X ) 0.92 0.56 0.11 created(Y ,X ), type(Y , writer) 0.99 0.91 0.19
directed(Y ,X ), gender(Y , male) 0.89 0.54 0.10 created(Y ,X ), diedIn(Y ,Z ) 0.46 0.20 0.04
created(Y ,X ), type(Y , person) 0.71 0.52 0.06 created(Y ,X ) 1.00 0.00 0.05

C3

actedIn(Y ,X ), type(Y , person) 0.58 0.30 0.07 actedIn(Y ,X ) 0.81 0.81 0.19
locatedIn(X ,Y ), hasLang(Y ,Z ) 0.60 0.29 0.07 actedIn(Y ,X ), bornIn(Y ,Z ) 0.79 0.79 0.18
locatedIn(X ,Y ), currency(Y ,Z ) 0.60 0.29 0.07 actedIn(Y ,X ), type(Y , person) 0.78 0.78 0.18

strates the effectiveness of the proposed feedback mechanism in adapting the
embedding model to better capture the graph structures in the input KGs.
Results on Large-Scale KGs. Table 4 presents quality measures for clustering
and explainability of ExCut running with TransE on LUBM and YAGO. ExCut
succeeds to compute the ground truth clusters on LUBM. Despite the noise in
YAGO, it achieves approximately 40% enhancement of the clustering accuracy.
The explanation quality is also improved. ReCent did not scale on LUBM and
YAGO due to memory requirements.
Human-Understanbility. For illustration in Table 5, we present the top-3
explanations for each cluster computed by ExCut along with their quality on
the YAGO KG. In the ground truth, C1, C2, C3 are clusters for entities of the
type Songs, Books, and Movies respectively. One can observe that the explana-
tions generated by ExCut-T are more intuitive and of higher quality than those
obtained using Kmeans-T. The correlation between the explanation relevance
and the used quality metrics can also be observed.

Figure 5 summarizes the results of the 50 responses collected via the user-
study. Each bar shows the ratio of responses exclusively matching explanation
ri to each of the provided clusters. The results show that the majority of the
participants exclusively matched explanations r3 and r10 to movies; r7 and r9
to books; and r6 and r8 to songs. The explanations r3, r6, and r9 have been
learned by ExCut. The high relative exclusive matching ratio to the correspond-
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Fig. 5. Ratio of explanation-to-cluster pairs exclusively matched.

(a) IMDB (b) Hepatitis (c) YAGO Artwork

Fig. 6. ExCut-T clustering and explanations quality over the iterations(x-axis).

ing correct cluster for the ExCut explanations demonstrates their usefulness in
differentiating between the given clusters.
Results Analysis. In Fig. 6, we present a sample for the quality of the clus-
ters and the aggregated quality of their top explanations over 10 iterations of
ExCut-T using the followExpl configuration. In general, clustering and expla-
nations qualities consistently improved over iterations, which demonstrates the
advantage of the introduced embedding fine-tuning procedure. For IMDB, the
qualities drop at the beginning, but increase and reach the highest values at
the third iteration. This highlights the benefit of accumulating the auxiliary
triples for enhancing the feedback signal, thus preventing the embedding tuning
from diverging. The charts also show a correlation between the clustering and
explanation quality, which proves our hypothesis that the introduced exclusive
coverage measure (Exc) is useful for computing good clusters.

With respect to the effects of different embeddings and feedback modeling,
as shown in Tables 2 and 3, we observe that ExCut with TransE is more robust
than with ComplEx regardless of the feedback modeling method. Furthermore,
modeling the feedback using followExpl strategy leads to better results on the
majority of the datasets, especially for large-scale KGs. This reflects the ben-
efit of passing richer feedback to the embedding, as it allows for better entity
positioning in the latent space.
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6 Related Work

Clustering relational data has been actively studied (e.g., [4,6,7,16,25]). The
majority of the existing approaches are based on finding interesting features in
KGs and defining distance measures between their vectors. Our work is con-
ceptually similar, but we let embedding model identify the features implicitly
instead of computing them on the KG directly, which is in spirit of linked data
propositionalization [24].

A framework for explaining given high-quality clusters using linked data
and inductive logic programming has been proposed in [27,28]. While [28] aims
at explaining existing clusters, we focus on performing clustering and explana-
tion learning iteratively to discover high-quality clusters with explanations. The
work [12] targets interpreting embedding models by finding concept spaces in
node embeddings and linking them to a simple external type hierarchy. This is
different from our method of explaining clusters computed over embeddings by
learning rules from a given KG. Similarly, [2] proposes a method for learning
conceptual space representations of known concepts by associating a Gaussian
distribution over a learned vector space with each concept. In [10,23] the authors
introduce methods for answering logical queries over the embedding space. In
contrast, in our work, the concepts are not given but rather need to be discov-
ered.

While the step of explanation learning in our method is an adaptation of [8],
the extension of other exact symbolic rule learning methods [18,22] is likewise
possible. In principle, one can also employ neural-based rule learners for our
needs, such as [20,21,34]; however the integration of our exclusive rule coverage
scoring function into such approaches is challenging, and requires further careful
investigation.

Several methods recently focused on combining [11,35] and comparing [5,19]
rule learning and embedding methods. The authors of [11] propose to rank rules
learned from KGs by relying both on their embedding-based predictive quality
and traditional rule measures, which is conceptually different from our work.
In [35] an iterative method for joint learning of linear-map embeddings and
OWL axioms (without nominals) has been introduced. The triples inferred by
the learned rukes are injected into the KG, before the embedding is re-trained
from scratch in the subsequent iteration. In contrast, the rule-based feedback
generated by ExCut is not limited to only fact predictions, but encodes further
structural similarities across entities. Furthermore, we do not re-train the whole
model from scratch, but rather adapt the embedding of target entities accounting
for the feedback. Finally, unlike [35], the rules that we learn support constants,
which allow to capture a larger variety of explanations.

7 Conclusion

We have proposed ExCut, an approach for explainable KG entity clustering,
which iteratively utilizes embeddings and rule learning methods to compute
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accurate clusters and human-readable explanations for them. Our approach is
flexible, as any embedding model can be used. Experiments show the effective-
ness of ExCut on real-world KGs.

There are several directions for future work. Considering more general rules
(e.g., with negations) in the Rule Learning component of our method or exploit-
ing several embedding models instead of a single one in the Embedding-based
Clustering step should lead to cleaner clusters. Further questions to study include
the analysis of how well our method performs when the number of clusters is
very large, and how the feedback from the rules can be used to determine the
number of clusters automatically.
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30. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

31. Wang, C., Pan, S., Hu, R., Long, G., Jiang, J., Zhang, C.: Attributed graph clus-
tering: a deep attentional embedding approach. In: IJCAI, pp. 3670–3676 (2019)

32. Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: ICML, pp. 478–487 (2016)

33. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of KGs with
entity descriptions. In: AAAI, pp. 2659–2665 (2016)

https://doi.org/10.1007/11787181_25
https://doi.org/10.1007/11787181_25
https://doi.org/10.1007/978-3-030-00671-6_1
https://doi.org/10.1007/s10462-018-9627-1
https://doi.org/10.1007/s10462-018-9627-1
https://doi.org/10.1007/978-3-319-07443-6_23
https://doi.org/10.1007/978-3-319-23461-8_28


ExCut 237

34. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowl-
edge base reasoning. In: NeurIPS, pp. 2319–2328 (2017)

35. Zhang, W., et al.: Iteratively learning embeddings and rules for knowledge graph
reasoning. In: WWW, pp. 2366–2377 (2019)


	ExCut: Explainable Embedding-Based Clustering over Knowledge Graphs
	1 Introduction
	2 Preliminaries
	3 Model for Computing Explainable Clusters
	3.1 Explanation Language
	3.2 Evaluation Function

	4 Method
	4.1 Embedding Learning and Clustering
	4.2 Explanation Mining
	4.3 Embedding Adaptation

	5 Experiments
	5.1 Experiment Setup
	5.2 Experiment Results

	6 Related Work
	7 Conclusion
	References




