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1 Introduction

Recent developments in information extraction have enabled the construction of huge
Knowledge Graphs (KGs), e.g., DBpedia [1] or YAGO [8]. To complete and curate
modern KGs, inductive logic programming and data mining methods have been intro-
duced to identify frequent data patterns, e.g., “Married people live in the same place”,
and cast them as rules like r1 : livesIn(Y ,Z )←isMarriedTo(X ,Y ),livesIn(X ,Z ).
These rules can be used for various purposes: First, since KGs operate under Open
World Assumption (OWA – i.e. absent facts are treated as unknown), they can be ap-
plied to derive new potentially true facts. Second, rules can be used to eliminate erro-
neous information from the KG.

Existing learning methods restrict to Horn rules [4] (i.e. rules with only positive
body atoms), which are insufficient to capture more complex patterns, for instance like
r2 :livesIn(Y ,Z )←isMarriedTo(X ,Y ),livesIn(X ,Z ),not researcher(Y ), i.e., non-
monotonic rules. While r1 generally holds, the additional knowledge that Y is a re-
searcher could explain why few instances of isMarriedTo do not live together; this can
prevent inferring the missing living place by only relying on the isMarriedTo relations.

Thus, for KG completion and curation, understanding exceptions is crucial. While
learning non-monotonic rules under Closed World Assumption (CWA – i.e. absent facts
are treated as false) is a well-studied problem that lies at the intersection of inductive
and abductive logic programming (e.g., [11]), it has not been yet investigated in the con-
text of KGs treated under OWA, despite evident importance of this research direction.
To overcome the limitations of prior work on KG rule mining, our goal is to develop
methods for learning non-monotonic rules from KGs.

We formulate this ambitious task as a version of a theory revision problem [10],
where, given a KG and a set of (previously learned) Horn rules, the aim is to update
them to nonmonotonic rules, so that their quality is better than the Horn rules’. In [9],
we made a first step towards tackling this problem by providing an approach of step-
wise rule revision, where novel ranking functions are used to quantify the strength of
nonmonotonic rules w.r.t the KG. We did not merely estimate the quality of individual
rules in isolation, but considered their cross-talk through a new technique that we call
partial materialization. We implemented a prototype of our approach and reported on
the improvements we obtained both in terms of rules’ quality as well as predicted fact
quality when performing KG completion. In the remaining of this paper, we summarize
the main results from [9] and discuss possible extensions to more general settings.



2 Nonmonotonic Rule Learning from Knowledge Graphs

Problem Statement. On the Web, knowledge graphs (KG) G are often encoded using
the RDF data model, which represents the content of the graph with a set of triples of the
form 〈subject predicate object〉. These triples can be seen as positive unary and binary
facts, i.e., the above triple corresponds to object(subject) if predicate = isA and to
predicate(object , subject) otherwise1. KGs are naturally treated under the OWA.

In this work, we focus on non-monotonic rules. A nonmonotonic logic program is
a set of rules of the form a1 ← b1, . . . , bk not bk+1, . . . , bn where each ai and bj is a
first-order atom and not is called negation as failure (NAF) or default negation. The
answer set semantics [5] for nonmonotonic logic programs is based on the CWA. Given
a ruleset R and a set of facts G, the models (aka. answers sets) of the program R ∪ G
can be determined following [5]. They reflect the information that can be deduced from
R∪ G under the answer set semantics.

Let Ga be a given (possibly incomplete) KG, and let Gi be the ideal KG that contains
nodes from Ga and all relations between these nodes that hold in the current state of the
world. Our ultimate goal is to automatically extract a set of rules R from Ga, applying
which (i.e. computing some answer set ofR∪ Ga) we can obtain the graph GaR, which
minimally differs from Gi. Our approach is to first learn a set of Horn rules, and then
aim at simultaneously revising them by adding negated atoms to the rule bodies. Since
normally, the ideal graph Gi is not available, in order to estimate the quality of a revised
ruleset, we devise two generic quality functions qrm and qconflict , that take as input
a ruleset R and a KG and output a real value, reflecting the suitability of R for data
prediction. More specifically,

qrm(R,G) =
∑

r∈R rm(r,G)
|R|

, (1)

where rm is some standard association rule measure [2]. To measure qconflict for R,
we create an extended set of rulesRaux, which contains each revised rule inR together
with its auxiliary version. For each rule r inR, its auxiliary version raux is constructed
by: i) transforming r into a Horn rule by removing not from negated body atoms, and
ii) replacing the head predicate a of r with a newly introduced predicate not a which
intuitively contains instances which are not in a . Formally, we define qconflict as follows

qconflict(RNM ,G) =
∑

p∈pred(Raux )

|c | p(c),not p(c) ∈ GRaux |
|c |not p(c) ∈ GRaux |

(2)

We are now ready to state our problem: Given a KG G, a set of nonground Horn rules
RH mined from G, and a quality function rm , our goal is to find a set of rules RNM

obtained by adding negated atoms to Body(r) for some r∈RH s.t. (i) qrm(RNM ,G) is
maximal, and (ii) qconflict(RNM ,G) is minimal.
Unary rules. In [9], we focused on rules with unary atoms. To this end, we transformed
binary facts in our initial KG to unary ones via propositionalization. Our approach pro-
ceeds in four steps.

1 For simplicity in this work we identify a given graph with its factual representation.



Step 1. After mining Horn rules using an off-the-shelf algorithm (e.g., FPGrowth [6],
[3] or [4]), we compute for each rule the normal and abnormal instance sets, defined as

Definition 1 (r-(ab)normal instance set). Let G be a KG and, moreover, let
r : a(X)←b1(X), . . . , bk(X) be a Horn rule mined from it. Then

– NS (r,G)={c | b1(c), . . . , bk(c), a(c)∈G} is an r-normal instance set;
– ABS (r,G)={c | b1(c), . . . , bk(c)∈A, a(c) 6∈ G} is an r-abnormal instance set.

Step 2. Intuitively, if the given data was complete, then the r-normal and r-abnormal
instance sets would exactly correspond to instances for which the rule r holds (resp.
does not hold) in the real world. Since the KG is potentially incomplete, this is no
longer the case and some r-abnormal instances might in fact be classified as such due
to data incompleteness. In order to distinguish the “wrongly” and “correctly” classified
instances in the r-abnormal set, we construct exception witness sets (EWS ), which are
defined as follows:

Definition 2. Let G be a KG and let r be a Horn rule mined from G. An r-exception
witness set EWS (r ,G) = {e1 , . . . , el} is a maximal set of predicates, such that

(i) ei(c
′) ∈ G for some c′ ∈ ABS (r,G), 1 ≤ i ≤ l and

(ii) e1 (c), . . . , el(c) 6∈ A for all c ∈ NS (r ,G).

Steps 3 and 4. After EWS s are computed for all rules in RH , we use them to create
potential revisions (Step 3), i.e., from every ej ∈ EWS (ri ,G) a revision rji of ri is
constructed by adding a negated atom over ej to the body of ri. Finally, we determine
a concrete revision for every rule, that will constitute a solution to our problem (Step
4). To find such globally best ruleset revisionRNM many candidate combinations have
to be checked, which due to the large size of our G and EWS s might be too expensive.
Therefore, instead we incrementally build RNM by considering every ri ∈ RH and
choosing the locally best revision rji for it.

In order to select rji , we introduce four special ranking functions: a naive one and
three more advanced functions, which exploit the novel concept of partial materializa-
tion (PM). Intuitively, the idea behind it is to rank candidate revisions not based on G,
but rather on its extension with predictions produced by other (selectively chosen) rules
(grouped into a set R′), thus ensuring a cross-talk between the rules. We now describe
the ranking functions in more details.

– Naive ranker is the most straightforward ranking function. It prefers the revision r j
i

with the highest value of rm(r j
i ,G) among all revisions of ri.

– PM ranking function prefers r j
i with the highest value of

rm(r j
i ,GR′) + rm(r j

i

aux
,GR′)

2
(3)

where R′ is the set of rules r′k, which are rules from RH\ri with all exceptions
from EWS (rk ,G) incorporated at once. Informally, GR′ contains only facts that
can be safely predicted by the rules from RH \ri , i.e., there is no evident reason
(candidate exceptions) to neglect their prediction.



– OPM is similar to PM, but the selected ruleset R′ contains only those rules whose
Horn version appears above the considered rule ri in the ruleset RH , ordered (O)
based on some chosen measure (e.g., the same as rm).

– OWPM is the most advanced ranking function. It differs from OPM in that the
predicted facts in GR′\G inherit weights (W) from the rules that produced them,
and facts in G get the highest weight. These weights are taken into account when
computing the value of 3. If the same fact is derived by multiple rules, we store the
highest weight. To avoid propagating uncertainty through rule chaining when com-
puting weighted partial materialization of G we keep predicted facts (i.e., derived
by applying rules from R′) separately from the explicit facts (i.e., those in G), and
infer new facts using only G.

Extension to binary rules. A natural direction for extending the work from [9] is to
consider rules involving binary atoms. In this case, there can be a potentially larger
number of possible EWS sets to construct and consider. More specifically, if a rule
has n distinct variables, then there could be n+

(
n
2

)
candidate EWS sets. Given the

large size of KGs, computing all exceptions in every EWS set might be inpractical
for scalability reasons. To overcome this issue, the language bias of possible exception
candidates should be carefully fixed. Practically, several possibilities for such restriction
exist. For instance, one could search only for binary (resp. unary) exceptions, or only
consider EWS s w.r.t. to the variables in (a certain position of) the head atom. An in-
depth analysis of these possibilities is planned for our future work.

3 Evaluation

We briefly discuss some of experimental results that are reported in more detail in [9].
Step 1. Initially, we considered the Horn rules produced by AMIE [4]. However, they
involve unsupported binary predicates and the only unary rules regard the isA predicate,
which was too limiting for us. Therefore, we used the standard mining algorithm FP-
Growth [6] offered by SPMF Library2 and extracted Horn rules from two well-known
KGs: YAGO (general purpose) and IMDB (domain-specific). Before learning Horn
rules, we preprocessed a given KG by converting binary facts predict(subject , object)
into unary ones predict object(subject), and automatically abstracting the new unary
predicates using the type hierarchy of the KG to make them more dense and allow min-
ing expressive data patterns. In order to avoid over-fitting, we applied some restrictions
to the rules (e.g. we limited to rules with at most four body atoms, a single head atom,
a minimum support of 0.0001× # entities, etc.).
Steps 2 and 3. We implemented a simple inductive learning procedure to calculate
the EWS s. We could find EWS s for about 6K rules mined from YAGO, and 22K
rules mined from IMDB. On average, the EWS s for the YAGO’s rules contained 3
exceptions, and 28 exceptions for IMDB.
Step 4. We evaluated the quality of our rule selection procedure in terms of the in-
crease of rules’ confidence and the decrease of the number of conflicts introduced by

2 http://www.philippe-fournier-viger.com/spmf/

http://www.philippe-fournier-viger.com/spmf/
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Fig. 1: Average rules’ confidence and number of conflicts on IMDB KG.

negated atoms. The confidence shows how well the revised rules adhere to the input.
The number of conflicts indicates how consistently the revised rules predict the unseen
data. Fig. 1 reports the obtained average rules’ confidence of original Horn rules and
rules revised with our ranking functions on the IMDB dataset (YAGO’s follows a simi-
lar behaviour [9]). Fig. 1a reports the average confidence of the original Horn rules. For
each ranking method, we show the results for the top 10,. . .,100% rules ranked by lift.

From Fig. 1a, we make two observations. First, we notice that enriching Horn rules
with exceptions increases the average confidence (appr. 3.5%). Second, as expected, the
highest confidence is achieved by the (Naive) procedure, as the latter blindly chooses
exceptions that maximize confidence, while ignoring the conflict ratio. However, confi-
dence alone is not sufficient to determine the overall rule’s quality, and also consistency
of the predictions (i.e., qconflict function) should be taken into account.

In order to evaluate qconflict , we computed the number of conflicts by executing
the revised rules and their corresponding auxiliary versions (raux) on IMDB KG using
the DLV tool [7]. The conflict appears whenever both p(c) and not p(c) are derived.
Fig. 1b reports the ratio between the number of conflicts and negated derived facts. One
can observe that OWPM and OPM produce less conflicts than the Naive function in
most of the cases. Moreover, the OWPM ranking function works generally better than
OPM and PM functions, i.e., taking into account weights of the predicted facts leads to
improved revisions. For instance, for IMDB, moving from OPM to OWPM reduced the
number of conflicts from 775 to 685 on a base of about 2000 negated facts.

In another experiment, we counted the number of derivations that our exceptions
prevented using the top-1000 YAGO rules. With the original Horn rules, the reasoner
inferred about 924K new facts, while the revised rules deduced around 890K facts. In
order to assess whether the 34K predictions neglected due to our revision method are
actually erroneous, we sampled 259 random facts from the removed set (we selected
three facts for each binary predicate to avoid skewness), and manually consulted online
resources (mainly Wikipedia) to determine whether they were indeed incorrect. We
found that 74.3% of them were actually faulty predictions. This number provides a first
empirical evidence that our method is capable of detecting good exceptions, and hence
can improve the general predictive quality of the Horn rules. Unfortunately, since KGs
follow OWA, automatic evaluation of predictions is problematic, and human judgment



is often required to estimate the validity of exceptions. Cross validation methods could
be adapted for our needs and exploited for evaluation purposes to some extent. This is
planned for future work. However, since fully complete versions of the real-world KGs
(i.e., Gi) are not available, to measure how correct and probable our exceptions actually
are, manual assessment might be still required.

4 Discussion and Outlook

We have presented a method for mining nonmonotonic rules from KGs: First learning a
set of Horn rules and then revising them by adding negated atoms into their bodies. We
evaluated it with various configurations on both general-purpose and domain-specific
KGs and observed significant improvements over a baseline Horn rule mining.

Apart from extensions to rules with predicates of higher arity, there are other future
directions to explore. First, one can look into extracting evidence for or against excep-
tions from text and web corpora. Second, our framework can be enhanced by partial
completeness assumptions for certain predicates (e.g., all countries are available in the
KG) or constants (e.g., knowledge about Barack Obama is complete). We believe these
are important research topics that should be studied in the future.
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