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Abstract. Advances in information extraction have enabled the auto-
matic construction of large knowledge graphs (KGs) like DBpedia, Free-
base, YAGO and Wikidata. Learning rules from KGs is a crucial task for
KG completion, cleaning and curation. This tutorial presents state-of-
the-art rule induction methods, recent advances, research opportunities
as well as open challenges along this avenue. We put a particular em-
phasis on the problems of learning exception-enriched rules from highly
biased and incomplete data. Finally, we discuss possible extensions of
classical rule induction techniques to account for unstructured resources
(e.g., text) along with the structured ones.

1 Introduction

Motivation. Recent advances in information extraction have led to huge graph-
structured knowledge bases (KBs) also known as knowledge graphs (KGs) such
as NELL [47], DBpedia [42], YAGO [72] and Wikidata [77]. These KGs contain
millions or billions of relational facts in the form of subject-predicate-object
(SPO) triples, e.g., 〈albert einstein marriedTo mileva maric〉 or 〈albert einstein
type phycisist〉. Such triples can be straightforwardly represented by means of
positive unary and binary first-order logic facts, e.g. marriedTo(albert einstein,
mileva maric) and phycisist(albert einstein).

An important task over KGs is rule learning, which is relevant for a variety
of applications ranging from knowledge graph curation (completion, error detec-
tion) [55] to data mining and semantic culturomics [73]. Rules over KGs are of
the form head ← body , where head is a binary atom and body is a conjunction
of (possibly negated) binary and unary atoms.

Traditionally, rule induction has been studied in the context of relational
data mining in databases (see e.g., [58] for overview), and has recently been
adapted to KGs (e.g., [30,6,79]). The methods from this area can be used to
identify prominent patterns from KGs, such as “Married people live in the same
place”, and cast them in the form of Horn rules (i.e., rules with only positive
atoms), such as: r1 : livesIn(Y ,Z )← marriedTo(X ,Y ), livesIn(X ,Z ).

For the KG curation, this has two-fold benefits. First, since KGs operate
under the open world assumption (i.e., absent facts are treated as unknown
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Fig. 1: Example KG: marriage relations and living places [76].

rather than false), the rules can be used to derive additional facts such as missing
living places. Second, rules can be used to eliminate erroneous facts in KGs. For
example, assuming that livesIn is a functional relation, a living place of a person
could be questioned if it differs from the spouse’s.

When rules are automatically learned, statistical measures like support, con-
fidence and their variations are used to assess the quality of the rules. Most
notably, the confidence of a rule is the fraction of facts predicted by the rule
that are indeed in the KG. However, this is a meaningful measure for rule qual-
ity only when the KG is reasonably complete. For rules learned from incomplete
KGs, confidence and other measures may be misleading, as they do not reflect the
patterns in the missing facts. This might lead to the extraction of erroneous rules
from incomplete and biased KGs. For example, a KG that stores a lot of informa-
tion about families of popular scientists but lacks data in other domains, would
yield a heavily biased rule r ′1 : hasChild(X ,Y )← worksAt(X ,Z ), educated(Y ,Z ),
stating that workers of certain institutions often have children among the people
educated there, as this is frequently the case for scientific families.

To address this issue, several rule measures that are specifically tailored to-
wards incomplete KGs have been proposed [30,82] (see [18,3] for an overview
of other measures). Along with KGs themselves, additional background knowl-
edge could be used for better rule assessment. As proposed in [75] this includes
metadata about the concrete numbers of facts of certain types that hold in the
real world (e.g., “Einstein has 3 children”) automatically extracted from Web
resources using techniques like [45]. Other types of background knowledge com-
prise description logic ontologies, e.g., [11] or more general hybrid theories, e.g.,
[43,36].

Horn rules such as r1 , might not always be sufficiently expressive to capture
KG patterns accurately. Indeed, these rules cannot handle exceptions, which
often appear in practice. For instance, application of r1 mined from the KG
in Figure 1 results in the facts livesIn(alice, berlin), livesIn(dave, chicago) and
livesIn(lucy , amsterdam). Observe that the first two facts might be suspected to
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be wrong. Indeed, both alice and dave are researchers, and the rule r1 could have
researcher as a potential exception resulting in its more accurate version given
as r2 : livesIn(Y ,Z )← marriedTo(X ,Y ), livesIn(X ,Z ),not researcher(Y ). Ex-
ception handling has been faced in inductive logic programming (ILP) by learn-
ing nonmonotonic logic programs, i.e., programs with negations from databases
(e.g., [35,66,64]), and recently also studied in the context of KGs [29,76].

The aim of this article is to survey the current research on rule learning
from knowledge graphs. We present and discuss different techniques with the
roots in inductive logic programming and relational data mining as well as their
interrelation and applications for KGs.

Tutorial Overview. In Section 2, we briefly introduce knowledge graphs and
their key properties. We then provide necessary preliminaries on rule-based de-
ductive reasoning over KGs and discuss the tasks within the area of inductive
logic programming in Section 3. Section 4 describes recent research progress in
the context of Horn rule induction for KG completion. We present techniques
for nonmonotonic rule extraction in Section 5. Finally, in Section 6 we conclude
the article with an outlook discussion, where we identify a number of promising
directions for future work.

2 Knowledge Graphs

Knowledge graphs have been introduced in the Semantic Web community to
create the “Web of data” that is readable by machines. They represent inter-
linked collections of factual information, and are often encoded using the RDF
data model [38]. This data model represents the content of a graph with a set
of triples of the form 〈subject predicate object〉 corresponding to positive unary
and binary first-order logic (FOL) facts.

Formally, we assume countable sets R of unary and binary predicate names
(aka relations) and C of constants (aka entities). A knowledge graph G is a finite
set of ground atoms of the form p(s, o) and c(s) over R∪ C. With ΣG = 〈R, C〉,
the signature of G, we denote elements of R∪ C that occur in G.

Example 1. Figure 1 shows a snippet of a graph about people, family and friend-
ship relations among them as well as their living places and professions. For
instance, the upper left part encodes the information that “Ann has a brother
John, and lives with her husband Brad in Berlin, which is a metropolitan city”
represented by the FOL facts {hasBrother(ann, john), livesIn(ann, berlin),
livesIn(brad , berlin), metropolitan(berlin), marriedTo(brad , ann)}. The set R of
relations appearing in the given KG contains the predicates livesIn,marriedTo,
hasBrother , hasFriend , researcher ,metropolitan, artist , while the set C of con-
stants comprises of the names of people and locations depicted on Figure 1. ut

All approaches for KG construction can be roughly classified into two major
groups: manual and (semi-)automatic. The examples of KGs constructed man-
ually include, e.g., WordNet [44] which has been created by a group of experts
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Knowledge Graphs # Entities # Relations # Facts

DBpedia (en) 4.8 M 2800 176 M
Freebase 40 M 35000 637 M
YAGO3 3.6 M 76 61 M
Wikidata 46 M 4700 411 M
Google Knowledge Graph 570 M 35000 18000 M

Table 1: Examples of real-world KGs and their statistics [53,55].

or Freebase [1] and Wikidata [77] which are constructed collaboratively by vol-
unteers. Automatic population of KGs from semi-structured resources such as
Wikipedia info-boxes using regular expressions and other techniques gave rise to,
e.g., YAGO [72] and DBpedia [42]. There are also projects devoted to the extrac-
tion of facts from unstructured resources using natural language processing and
machine learning methods. For example, NELL [47] and KnowledgeVault [16]
belong to this category. Table 1 shows examples of some KGs and their statis-
tics.

2.1 Incompleteness, Bias and Noise of Knowledge Graphs

While the existing KGs contain millions of facts, they are still far from being
complete; Therefore they are treated under the open world assumption (OWA),
i.e., facts not present in KGs are assumed to be unknown rather than false. For
example, given only Germany as the living place of Albert Einstein, we cannot
say whether livedIn(einstein, us) is true or false. This is opposed to the closed
world assumption (CWA) made in databases, under which ¬livedIn(einstein, us)
would be inferred.

Apart from incompleteness, both manually and semi-automatically created
KGs also suffer from the problem of bias in the data. Indeed, manually cre-
ated KGs such as Wikidata contain crowd-sourced information. While leveraging
crowd-sourcing for KG construction, human curators from different countries add
factual statements that they find interesting. Due to the difference in the pop-
ulation of contributors obviously facts about some countries are covered better
than about others. For example, KGs typically store more facts about Austrians
than Ghanians even though there are three times more inhabitants in Ghana
than in Austria. Moreover, different contributors find different facts interesting,
e.g., Austrians would add detailed information about music composers, while
Ghanians about national athletes. This naturally leads to cultural bias in KGs.
Likewise KGs that are semi-automatically extracted from Wikipedia infoboxes
such as DBPedia and YAGO highly depend on the pre-defined properties that
the infoboxes contain [40].

Along with completeness and absence of data bias, there are also other im-
portant aspects reflecting KGs’ quality including their correctness. Regardless of
the KG construction method, the resulting facts are rarely error-free. Indeed, in
the case of manually constructed KGs human contributors might bring their own
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opinion on the added factual statements (e.g., Catalonia being a part of Spain
or an independent country). On the other hand, automatically constructed KGs
often contain noisy facts, since information extraction methods are imperfect.
We refer the reader to [53,55] for further discussions on the available KGs and
their quality.

The problems of KG completion and cleaning are among the central ones. Ap-
proaches for addressing them can be roughly divided into two groups: statistics-
based, and logic-based. The firsts apply such techniques as tensor factorization,
or neural-embedding-based models (see [54] for overview). The second group
concentrates on logical rule learning [28]. In this tutorial, we primarily focus on
rule-based techniques, and their application for the KG completion task. In the
following, we assume that the given KG G stores only a subset of all true facts.

Suppose we had an ideal KG Gi1 that contains all correct and true facts in
the world reflecting the relations from R that hold among the entities in C. The
gap between G and its ideal version Gi is defined as follows:

Definition 1 (Incomplete Knowledge Graph [12]). An incomplete knowl-
edge graph is a pair G = (G,Gi) of two KGs, where G ⊆ Gi and ΣG = ΣGi . We
call G the available graph and Gi the ideal graph.

Note that Gi is an abstract construct, which is normally unavailable. Intu-
itively, rule-based KG completion task concerns the reconstruction of the ideal
KG (or its approximation) by means of rules induced from the available KG and
possibly other external information sources.

3 Rules and Reasoning

In this section, we briefly review the concepts of rules, logic programming (see
[21] for more details) as well as deductive and inductive reasoning.

3.1 Logic Programs

Logic programs consist of a set of rules. Intuitively, a rule is an if-then expres-
sion, whose if-part may contain several conditions, some possibly with negation.
The then-part has a single atom that has to hold, whenever the if-part holds.
In general, the then-part can also contain disjunctions, but in this tutorial we
consider only non-disjunctive rules. More formally,

Definition 2 (Rule). A rule r is an expression of the form

h(X)← b1(Y1), . . . , bk(Yk),not bk+1(Yk+1), . . . ,not bn(Yn) (1)

where h(X), b1(Y1), . . . , bn(Yn) are first-order atoms and the right-hand side of
the rule is a conjunction of atoms. Moreover, X,Y1, . . . ,Yn are tuples of either
variables or constants whose length corresponds to the arity of the predicates
h, b1, . . . , bn respectively.

1 The superscript i stands for ideal.
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The left-hand side of a rule r is referred to as its head, denoted by head(r),
while the right-hand side is its body body(r). The positive and negative parts of
the body are respectively denoted as body+(r) and body−(r). A rule r is called
positive or Horn if body−(r) = ∅.

For simplicity, in this work we use the shortcut

H ← B,not E (2)

to denote rules with a single negated atom, i.e., here H = h(X), B = b1(Y1), . . . ,
bk(Yk), E = bk+1(Yk+1).

Example 2. Consider r2 from Section 1. We have that head(r2 ) = {livesIn(Y, Z)},
while body+(r2 ) = {isMarriedTo(X ,Y ), livesIn(X ,Z )}, and moreover it holds
that, body−(r2 ) = {not researcher(Y )}. ut

A logic program P is ground if it consists of only ground rules, i.e. rules
without variables.

Example 3. For instance, a possible grounding of the rule r2 is given as follows
livesIn(dave, chicago)← livesIn(clara, chicago), isMarriedTo(clara, dave),

not researcher(dave). ut

Ground instantiation Gr(P ) of a nonground program P is obtained by sub-
stituting variables with constants in all possible ways.

Definition 3 (Herbrand Universe, Base, Interpretation). A Herbrand
universe HU (P) is a set of all constants occurring in the given program P. A
Herbrand base HB(P) is a set of all possible ground atoms that can be formed
with predicates and constants appearing in P. A Herbrand interpretation is any
subset of HB(P).

We now formally define the satisfaction relation.

Definition 4 (Satisfaction, Model). An interpretation I satisfies

– a ground atom a, denoted I |= a, if a ∈ I,
– a negated ground atom not a, denoted I |= not a, if I 6|= a,
– a conjunction b1, . . . , bn of ground literals, denoted I |= b1, . . . , bn, if for each
i ∈ {1, . . . , n} it holds that I |= bi,

– a ground rule r, denoted I |= r if I |= body(r) implies I |= head(r), i.e., if
all literals in the body hold then the literal in the head also holds.

An interpretation I is a model of a ground program P , if I |= r for each rule
r ∈ P . A model I is minimal if there is no other model I ′ ⊂ I. By MM (P) we
denote the set-inclusion minimal model of a ground positive program P .

The classical definition of answer sets based on the Gelfond-Lifschitz reduct
[31] is given as follows.
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Definition 5 (Gelfond-Lifschitz Reduct, Answer Set [31]). An interpre-
tation I of P is an answer set (or stable model) of P iff I ∈ MM (P I), where
P I is the Gelfond-Lifschitz (GL) reduct of P , obtained from Gr(P ) by removing
(i) each rule r such that Body−(r) ∩ I 6= ∅, and (ii) all the negative atoms from
the remaining rules. The set of answer sets of a program P is denoted by AS(P ).

An alternative definition of answer sets relies on the FLP-reduct [25] which
might be more intuitive. For the class of programs considered in this work, the
GL-reduct and FLP-reduct are equivalent.

Definition 6 (Faber-Leone-Pfeifer Reduct, Answer Set [25]). An inter-
pretation I of P is an answer set (or stable model) of P iff I ∈ MM (fP I ),
where fP I is the Faber-Leone-Pfeifer (FLP) reduct of P , obtained from Gr(P )
by keeping only rules r, whose bodies are satisfied by I, i.e.,

fP I = {r ∈ P | head(r)← body(r), I |= body(r)}.

Example 4. Consider the program

P =

{
(1) livesIn(brad , berlin); (2) isMarriedTo(brad , ann);

(3) livesIn(Y ,Z )← isMarriedTo(X ,Y ), livesIn(X ,Z ),not researcher(Y )

}
The relevant part of ground instantiation Gr(P ) of P is obtained by substituting
X,Y, Z with brad , ann and berlin respectively. For I = {isMarriedTo(brad ,ann),

livesIn(ann,berlin), livesIn(brad , berlin)}, both the GL- and FLP-reduct contain
livesIn(ann, berlin)← livesIn(brad , berlin), isMarriedTo(brad , ann) and the facts (1),
(2). As I is a minimal model of these reducts, I is an answer set of P . ut

Apart from the model computation, another important task concerns decid-
ing whether a given atom a is entailed from the program P denoted by P |= a.
Typically, one distinguishes between brave and cautious entailment. We say that
an atom a is cautiously entailed from a program P (P |=c a) if a is present in
all answer sets of P . Conversely, an atom a is bravely entailed from a program
P (P |=b a) if it is present in at least one answer set of P . If a program has
only a single answer set, e.g., it is positive, then obviously cautious and brave
entailments coincide, in which case we omit the subscript.

Example 5. For P from Example 4 and a = livesIn(ann, berlin), we have that
a is entailed both bravely and cautiously from P , i.e., P |= a, while for a′ =
marriedTo(brad , brad), it holds that P 6|= a′. ut

The answer set semantics for nonmonotonic logic programs is based on the
CWA, under which whatever can not be derived from a program is assumed to be
false. Nonmonotonic logic programs are widely applied for formalizing common
sense deductive reasoning over incomplete information.

3.2 Inductive Reasoning Tasks

So far we have focused on logic programs and their semantics for deductive
reasoning. We now discuss the problem of automatic rule induction, which is a
research area commonly referred to as rule learning (see, e.g., [58,27]).
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Broadly speaking, rule learning is an important sub-field of machine learning,
which focuses on symbolic methods for intelligent data analysis, i.e., methods
that employ a certain description language in which the learned knowledge is
represented.

First-order learning approaches are also referred to as inductive logic pro-
gramming (ILP), since the patterns they discover are expressed in relational for-
malisms of first-order logic (see [58] for overview). The goal of ILP is to generalize
individual instances/observations in the presence of background knowledge by
building hypotheses about yet unseen instances. The most commonly addressed
task in ILP is the task of learning logical definitions of relations. From training
examples ILP induces a logic program (predicate definition) corresponding to a
view that defines the target relation in terms of other relations that are given as
background knowledge.

More formally, the classical inductive logic programming task of learning
from positive and negative examples (also known as learning from entailment)
is defined as follows:

Definition 7 (Inductive Learning from Examples [49]).

Given:
• Positive examples E+ and negative examples E− over the target n-ary

relation p, i.e. sets of facts;
• Background knowledge T , i.e. a set of facts over various relations and

possibly rules that can be used to induce the definition of p;
• Syntactic restrictions on the definition of p.

Find:
• A hypothesis Hyp that defines the target relation p, which is (i) complete,

i.e., ∀e ∈ E+, it holds that T ∪ Hyp |= e, and (ii) consistent, i.e.,
∀e′ ∈ E−: T ∪Hyp 6|= e′.

Example 6. Suppose that you possess information about some of the relation-
ships between people in your family and their genders. However, you do not
know what the relationship fatherOf actually means. You might have the fol-
lowing beliefs, i.e., background knowledge.

T =

{
(1) parentOf (john,mary); (2) male(john); (3) parentOf (david , steve);

(4) male(david); (5) parentOf (kathy , ellen); (6) female(kathy);

}
Moreover, you are given the following positive and negative examples.

E+ = {fatherOf (john,mary), fatherOf (david , steve)}
E− = {fatherOf (kathy , ellen), fatherOf (john, steve)}

One of the possible hypothesis that can be induced from the above knowledge
reflecting the meaning of the fatherOf relation is given as follows:
Hyp : fatherOf (X ,Y )← parentOf (X ,Y ),male(X ). This hypothesis is consis-
tent with the background theory T , and together with T it entails all of the
positive examples, and none of the negative ones. The classical ILP task con-
cerns automatic extraction of such hypothesis. ut
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System
Input
data

Output
rules

Multiple
predicates Increment Interact

Noise
handling

FOIL [57] examples Horn no no no yes
GOLEM [51] examples Horn no no no yes
LINUS [19] examples Horn no no no yes
ALEPH [71] examples Horn no no yes yes
MPL [61] examples Horn yes no no no
MIS [69] examples Horn yes yes yes no
MOBAL [48] examples Horn yes yes no no
CIGOL [50] examples Horn yes yes yes no
CLINT [13] examples Horn yes yes yes no
σILP [24] examples Horn no no no yes
DROPS [8] examples NM no no no no
ASPAL [9] examples NM no no no no
XHAIL [64] examples NM no no no no
ILASP [41] interpretations NM yes no no no
ILED [37] examples NM no yes no no

Table 2: Overview of classical ILP systems.

In an alternative setting, known as learning from interpretations, instead of
positive and negative examples over a certain relation, one is given a Herbrand
interpretation I, i.e., a set of facts, and conditions (i) and (ii) in Definition 7 are
replaced with the requirement that I is a minimal model of Hyp ∪ T . Formally,

Definition 8 (Inductive Learning from Interpretations [60]).

Given:
• An interpretation I, i.e., a set of facts over various relations
• Background knowledge T , i.e., a set facts and possibly rules
• Syntactic restrictions on the form of rules to be induced

Find:
• A hypothesis Hyp, such that I is a minimal Herbrand model of Hyp ∪ T .

Several variations of learning from interpretations task have been studied
including learning from answer sets [66,41], where given possibly multiple partial
interpretations, the goal is to find a logic program, which has extensions of (all
of) the provided interpretations as answer sets.

To date, the main tasks considered in the ILP area can be classified based
on the following parameters [67,4].

– type of the data source, e.g., positive/negative examples, interpretations, text
– type of the output knowledge, e.g., Horn/nonmonotonic rules over single or

multiple predicates, description logic (DL) class descriptions, class inclusions
– the way the data is given as input, e.g., all data at once or incrementally
– availability of an oracle, e.g., involvement of a human expert in the loop
– quality of the data source, e.g., noisy or clean
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– data (in)completeness assumption, e.g., OWA, CWA
– availability and type of background knowledge, e.g., DL ontology, set of dat-

alog rules, hybrid theories, etc.

An overview of some of the systems for Horn and nonmonotonic (NM) rule
induction with their selected properties is presented in Table 2.

4 Rule Learning for Knowledge Graph Completion

The majority of the classical existing rule induction methods mentioned in Sec-
tion 3 assume that the given data from which the rules are induced is com-
plete, accurate and representative. Therefore, they rely on CWA and aim at
extracting rule hypotheses that perfectly satisfy the criteria from Definition 7 or
Definition 8. On the other hand, as discussed in Section 2.1, knowledge graphs
are highly incomplete, noisy and biased. Moreover, the real world is very com-
plicated, and its exact representation often cannot be acquired from the data,
meaning that the task of inducing a perfect rule set from a KG is typically unfea-
sible. Therefore, in the context of KGs, one normally aims at extracting certain
regularities from the data, which are not universally correct, but when seen as
rules predict a sufficient portion of true facts.

In other words, the goal of automatic rule-based KG completion is to learn
a set R of logic rules from the available graph G, such that their application on
G results in a good approximation of the ideal graph Gi. More formally,

Definition 9 (Rule-based KG Completion). Let G be a KG over the sig-
nature ΣG = 〈R, C〉. Let, moreover, R be a set of rules with predicates from
R induced from G. Then rule-based completion of G w.r.t. R is a graph GR
constructed from any answer set GR ∈ AS(R ∪ G).

Example 7. Given the KG in Figure 1 as G and the rule set R = {r2}, where r2
is from Section 1 we have GR = G ∪ {livesIn(lucy , amsterdam)}. ut

If the ideal graph Gi was known, then the problem of rule-based KG comple-
tion would be essentially the same as the task of learning from interpretations
given in Definition 8, with G playing a role of the background knowledge T and
Gi the interpretation I. However, unfortunately Gi is unknown, and it cannot be
easily reconstructed, since KGs follow OWA.

Moreover, reusing the methods that induce logical theories from a set of
positive and negative examples from Definition 7 is likewise not possible due to
the following important obstacles [76].

First, the target predicates (e.g. fatherOf from Example 6) can not be easily
identified, since we do not know which parts of the considered KG need to be
completed. A standard way of addressing this issue would be just to learn rules
for all the different predicate names occurring in the KG. Unfortunately, this is
unfeasible given the huge size of KGs. Second, the negative examples are not
available, and they cannot be easily obtained from, e.g., domain experts due to
- once again - the huge size of KGs.
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To overcome the above obstacles, it is more appropriate to treat the KG com-
pletion problem as an unsupervised relational learning task [30]. In this section,
we describe approaches that rely on relational association rule learning tech-
niques for extraction of Horn rules from incomplete KGs. These concern the
discovery of frequent patterns from a data set and their subsequent transforma-
tion into rules (see, e.g., [15] as the seminal work in this direction).

First, we describe the relational association rules, and how they are tradi-
tionally evaluated under CWA. Then, we present the standard relational rule
learning techniques, which usually proceed in two steps: rule construction and
rule assessment.

4.1 Relational Association Rules

An association rule is a rule where certain properties of the data in the body
of the rule are related to other properties in its head. For an example of an
association rule, consider a database containing transactional data from a store
selling computer equipment. From this data one can extract the association rule
stating that 70% of the customers buying a laptop also buy a docking station.
The knowledge that such rule reflects can assist in planning store layout or
deciding which customers are likely to respond to an offer.

Traditionally, the discovery of association rules has been performed on data
stored in a single table. Recently, however, many methods for mining relational,
i.e., graph-based data have been proposed [58].

The notion of multi-relational association rules is heavily based on frequent
conjunctive queries and query subsumption [32].

Definition 10 (Conjunctive Query). A conjunctive query Q over G is of
the form p1(X1), . . . , pm(Xm), where Xi are symbolic variables or constants
and pi ∈ R are unary or binary predicates. The answer of Q on G is the set
Q(G) = {(ν(X1), . . . , ν(Xm) | ∀i : pi(ν(Xi), ν(Yi)) ∈ G} where ν is a function
that maps variables and constants to elements of C.

The (absolute) support of a conjunctive query Q in a KG G, is the number
of distinct tuples in the answer of Q on G [15].

Example 8. The support of the query

Q(X ,Y ,Z ) :- marriedTo(X ,Y ), livesIn(X ,Z )

over G in Figure 1 asking for people, their spouses and living places is 6. ut

Definition 11 (Association Rule). An association rule is of the form Q1 ⇒
Q2, such that Q1 and Q2 are both conjunctive queries, and the body of Q1 con-
sidered as a set of atoms is included in the body of Q2, i.e., Q1(G′) ⊆ Q2(G′) for
any possible KG G′.

Example 9. For instance, from the above Q(X,Y, Z) and

Q′(X,Y, Z) :- marriedTo(X ,Y ), livesIn(X ,Z ), livesIn(Y ,Z )
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we can construct the association rule Q⇒ Q′. ut

Association rules are sometimes exploited for reasoning purposes, and thus
(with some abuse of notation) can be treated as logical rules, i.e., for Q1 ⇒ Q2

we write Q2\Q1 ← Q1, where Q2\Q1 refers to the set difference between Q2 and
Q1 considered as sets of atoms. For example, Q ⇒ Q′ from above corresponds
to r1 from Section 1.

A large number of measures for evaluating the quality of association rules
and their subsequent ranking have been proposed, e.g., support, confidence.

For r : H ← B ,not E (see Equation 2), with H = h(X ,Y ), B,E involving
variables from Z ⊇ {X,Y } and a KG G, the (standard) confidence is given as:

conf(r,G) =
r-supp(r,G)

b-supp(r,G)

where r-supp(r,G) and b-supp(r,G) are the rule support and body support, re-
spectively, which are defined as follows:

r-supp(r,G) = #(x, y) : h(x, y) ∈ G,∃z B ∈ G, E 6∈ G
b-supp(r,G) = #(x, y) : ∃z B ∈ G, E 6∈ G

Example 10. Consider the rules r1 , r2 , and the KG G in Figure 1, we have
r-supp(r1,G) = r-supp(r2,G) = 3, b-supp(r1,G) = 6 and b-supp(r2,G) = 4.
Hence, conf (r1 ,G) = 3

6 and conf (r2 ,G) = 3
4 . ut

Another popular metrics, which is shown to guarantee the high predictive
power [3] by measuring the intensity of rule’s implication [18] is conviction,
defined as:

conv(r,G) =
1− rel-supp(H,G)

1− conf(r,G)

where rel-supp(H,G) is the relative support of the head, measured by:

rel-supp(H,G) =
#(x, y) : h(x, y) ∈ G

(#x : ∃y : h(x, y) ∈ G)× (#y : ∃x : h(x, y) ∈ G)

Example 11. For the KG in Figure 1, we have rel-supp(livesIn,G) = 10
10×4 = 1

4 ,

thus conv(r1,G) =
1− 1

4

1− 3
6

= 3
2 and conv(r2,G) =

1− 1
4

1− 3
4

= 3. ut

4.2 Rule Construction

We now briefly summarize some of the state-of-the-art methods for rule con-
struction, most of which extract so-called closed rules, i.e., rules, in which every
variable appears at least twice. Restriction to closed rules ensures the actual
prediction of a fact by a rule, but not just its existence [30].
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Example 12. The rules r1 and r2 from Section 1 are closed. An example of a
non-closed rule is:

∃Z livesIn(Y ,Z )← isMarriedTo(X ,Y )

which states that married people live somewhere. This rule cannot infer the exact
living place of a person, but merely its existence, and thus it is less interesting
in this context. ut

The most prominent examples of systems that are specifically tailored to-
wards inducing Horn rules from KGs are AMIE [30] and RDF2Rules [79].

AMIE. AMIE [30] is a state-of-the-art Horn rule mining system. Apart from a
KG, it expects the maximum length of the rule and the threshold value for its
support. In AMIE, rules are treated as sequences of atoms, where the first atom
is the head, and subsequent atoms form the body of the rule. The algorithm
maintains a queue of intermediate rules, which initially stores a single rule with
an empty body for every KG relation. Rules are removed from the queue and
refined by adding literals to the body according to a language bias that specifies
allowed rule forms (e.g., based on the user-provided rule length). The system
then estimates the support of the rule, and if it exceeds the given threshold,
the rule is output to the user and also added to the queue for possible further
processing. Refinement of a rule relies on the following set of mining operators
used to extend the sequences of atoms in the rule body:

– add dangling atom: add a new positive atom with one fresh variable, i.e.,
variable not appearing elsewhere in the rule;

– add instantiated atom: add a positive atom with one argument being a con-
stant and the other one being a shared variable, i.e., variable already present
in another rule atom;

– add closing atom: add a positive atom with both of its arguments being
shared variables.

The implementation of AMIE employs a variety of techniques from the
database area, which allow it to achieve high scalability.

RDF2Rules. While AMIE mines a single rule at a time, RDF2Rules [79] par-
allelizes this process by extracting frequent predicate cycles (FPCs) of a certain
length k, which have the following form:

(X1, p
d1
1 , X2, p

d2
2 , . . . , Xk, p

dk

k , X1)

where, Xis are variables to appear in the extracted rules, pis are predicates
connecting these variables, and dis ∈ {0, 1} reflect the direction of the edges in
the KG labeled by the respective predicates. To extract FPCs, the RDF2Rules
algorithm first mines the frequent predicate paths (FPPs) of the form:

(X1, p
d1
1 , X2, p

d2
2 , ..., Xk, p

dk

k , Xk+1)
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john mary

alice bob carol

dave tuwien mpi

worksAt worksAt

educatedAt

hasChild hasChild
hasChild

hasFather

hasChild

hasFather

educatedAt

educatedAt
worksAt

hasFather

hasSibling

hasSibling

worksAt

educatedAt

hasSibling

Fig. 2: Example KG: family relations, working and education places [75].

of the length k, which are obtained recursively based on FPPs of the length k−1.
FPCs are then created from FPPs by merging the last variable Xk+1 with the
first one X1. After FPCs are mined, rules are extracted from them by choosing
a single predicate to be in the rule head, and collecting the rest into it’s body.

RDF2Rules is capable of accounting for unary predicates (i.e., types of enti-
ties), which are neglected in AMIE for scalability reasons. The unary predicates
are added to the constructed rule at the final stage after analyzing the frequent
types for FPCs corresponding to a given rule. While RDF2Rules performs the
rule extraction faster than AMIE due to an effective pruning strategy used in
the process of mining FPCs, the supported rule patterns are more restrictive.

4.3 Rule Evaluation

Most of state-of-the-art KG-based positive rule mining systems differ from each
other with respect to the employed rule ranking function. The ranking metrics
from data mining such as support and confidence (see e.g., [18] for overview of
others) presented in Section 4.1 have been designed for datasets treated under
the CWA, and they can be counterintuitive for the KGs, in which facts are
largely missing.

Example 13. For instance, consider the KG G′ in Figure 2 [75], which presents
information about scientific families. The heavily biased rule from Section 1:
r ′1 : hasChild(X ,Y )← worksAt(X ,Z ), educated(Y ,Z ) can be mined from it
along with r ′2 : hasSibling(X ,Z )← hasFather(X ,Y ), hasChild(Y ,Z ), which is
an accurate rule stating that people with the same father are likely siblings.
Since the graph is highly incomplete for the hasSibling relation, the standard
rule measures such as confidence reflect a counterintuitive rule preference. In-
deed, we have conf (r ′1 ,G′) = 2

8 , while conf (r ′2 ,G′) = 1
6 . ut

Below we present some of other alternative measures, designed to quantify
the quality of rules extracted specifically from incomplete data.



Rule Induction and Reasoning over Knowledge Graphs 15

PCA Confidence. In [30], a completeness-aware rule scoring based on the
partial completeness assumption (PCA) has been introduced. The idea of PCA
is that whenever at least one object for a given subject and a predicate is in
the KG (e.g., “Eduard is Einstein’s child”), then all objects for that subject-
predicate pair (Einstein’s children) are assumed to be known. PCA relies on a
hypothesis that the data is usually added to KGs in batches, i.e., if at least
one child for a person has been added, then most probably all person’s children
are present in the KG. This assumption has turned out to be indeed valid in
real-world KGs for some topics [30]. The PCA confidence is defined as follows:

confpca(r,G) =
r-supp(r,G)

#(x, y) : ∃z : B ∈ G ∧ ∃y′ : h(x, y′) ∈ G
However, the effectiveness of the PCA confidence decreases when applied on
highly incomplete KGs as experienced in [34].

Example 14. Given the rules r ′1 and r ′2 from Example 13 and the KG from
Figure 2, we have that confpca(r ′1 ,G′) = 4

2 . Indeed, since carol and dave are not
known to have any children, four existing body substitutions are not counted in
the denominator. Meanwhile, we have confpca(r ′2 ,G′) = 1

6 , since all people that
are predicted to have siblings by r ′2 already have siblings in the available graph.

For the KG in Figure 1 and the earlier introduced rule r1, it holds that
confpca(r1 ,G) = 3

4 , since we do not know any living places of lucy and dave. ut

Soft Confidence. Soft confidence measure introduced in [79], is also designed
to work under OWA, and for a rule r : h(X,Y ) ← B it is formally defined as
follows:

confst(r ,G) =
r-supp(r ,G)

b-supp(r ,G)−
∑

x∈U r Pr(x , h,G)

where Ur is the set of entities that have no outgoing h-edges in G, but do have
some in Gr, and Pr(x, h,G) is the probability of the entity x having the relation
h, approximated using entity type information [79]. More specifically,

Pr(x , h,G) = maxt∈Tx

|Insth(t ,G)|
|Inst(t ,G)|

where Tx = {t | t(x) ∈ G}, Inst(t ,G) = {x ′ | t(x ′) ∈ G}, and, moreover,
Insth(t ,G) = {x ′ ∈ Inst(t ,G) |∃ x ′′ : h(x ′, x ′′) ∈ G}. Intuitively, soft confidence is
designed to avoid the under-fitting of standard confidence and over-fitting of
PCA confidence by accounting for the probability of entities having certain re-
lations.

Example 15. Consider the KG G from Figure 1, we have Ur1 = {lucy , dave}.
Moreover, Pr(dave, livesIn,G) = 1

2 , since dave has only 1 type researcher , and
in total the KG stores 2 researchers (dave, alice) but only alice’s living place
(amsterdam) is known to G. In contrast, Pr(lucy , livesIn,G) = 0, as lucy has no
type information. Based on these numbers, we have confst(r1,G) = 3

6− 1
2

= 6
11 .
ut
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RC Confidence. The authors of [82] have recently proposed the RC confidence
as an attempt to rely on assumptions about the tuples not in the KG when
evaluating the quality of a potential rule. The intuition behind RC confidence
is that for computing rule’s confidence one does not necessarily have to know
which among rule predictions are true; just estimating their number is sufficient.
The key assumption for such estimation is that the proportion of positive facts
covered by a rule is the same for both true and unknown facts, which is reflected
in the following relationship coverage defined for r : h(X,Y )← B as follows

r-supp(r,G)

#(x, y) : h(x, y) ∈ G
=

|UP (r,G)|
#(x, y) : h(x, y) ∈ Gi\G

where UP (r,G) = Gr ∩ Gi (assumed to be 0 in the case of standard confidence).
Intuitively, this equation would hold if the instantiations of r that appear in G
were selected completely at random [23] from the set of all true facts for r.

To approximately determine the size of UP (r,G) the authors rely on the
proportion β of all the unlabeled examples that are true in Gi, i.e., UP (r,G) = β∗
#(x, y) : h(x, y) 6∈ G, and propose several ways for calculating β both empirically
via sampling and theoretically based on properties of G.

Finally, provided that there is a way to estimate |UP (r,G)|, the following
formula is used for computing the RC-confidence:

confrc(r,G) =
r-supp(r,G) + |UP (r,G)|

b-supp(r,G)

(In)completeness Metadata. In the solutions for the rule-based KG comple-
tion problem discussed so far, no external meta-information from outside of the
KG about potential existence of certain types of facts was exploited. However,
this knowledge is obviously useful, and furthermore, it can even be extracted from
the Web in the form of cardinality statements, e.g., Brad has three children. If
a given KG mentions just a single Brad’s child, we could aim at extracting rules
that predict the missing one.

Based on this intuition, the recent work on completeness-aware rule learning
(CARL) [75] proposed improvements of rule scoring functions by making use of
this additional (in)completeness metadata.

In particular, such metadata is presented using cardinality statements by
reporting (the numerical restriction on) the absolute number of facts over a
certain relation in the ideal graph Gi. More specifically, the partial function
num is defined that takes as input a predicate p and an entity x and outputs a
natural number corresponding to the number of facts in Gi over p with x as the
first argument:

num(p, x) = #y : p(x, y) ∈ Gi (3)

These cardinality statements can be obtained via Web extraction techniques [46].
It is possible to rewrite cardinalities on the number of subjects for a given pred-
icate and object with such statements provided that inverse relations can be
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expressed in a KG. Naturally, the number of missing facts for a given p and x
can be obtained as

miss(p, x,G) = num(p, x )−#y : p(x, y) ∈ G

In the CARL framework, given a KG and its related cardinality statements of
the above form, two indicators are defined for a given rule r : h(X ,Y )← B ,
reflecting the number of new predictions made by r in incomplete (npi) and,
respectively, complete (npc) KG parts:

npi(r,G) =
∑
x

min(#y : h(x, y) ∈ Gr\G,miss(h, x,G))

npc(r,G) =
∑
x

max(#y : h(x, y) ∈ Gr\G −miss(h, x,G), 0)

Using these indicators, a class of completeness-aware rule measures have
been defined in [75], which we briefly present next.

Completeness Confidence. First, incompleteness information is used to de-
termine whether to consider an instance in the unknown part of the rule as a
counterexample or not. Formally, the completeness confidence is defined as:

confcomp(r,G) =
r-supp(r,G)

b-supp(r,G)− npi(r,G)

Example 16. Consider G′ in Figure 2 and cardinality statements for it:
num(hC , john)=num(hC ,mary)= 3; num(hC , alice)=1;
num(hC , carol)=num(hC , dave)=0;
num(hS , alice)=num(hS , carol)=num(hS , dave)=2;
num(hS , bob)=3;
where hC, hS stand for hasChild and hasSibling, respectively. We have:
miss(hC ,mary ,G′)=miss(hC , john,G′)=miss(hC , alice,G′)=1;
miss(hC , carol ,G′)=miss(hC , dave,G′)=0;
miss(hS , bob,G′)= miss(hS , carol ,G′)=2;
miss(hS , alice,G′)=miss(hS , dave,G′)=1;
For the rules r′1 and r′2 from Example 13 we have confcomp(r ′1 ,G′) = 2

6 and
confcomp(r ′2 ,G′) = 1

2 , which establishes the desired rule ranking. ut

Completeness Precision and Recall. In the spirit of information retrieval,
the notions of completeness precision and completeness recall are defined to
measure the rule quality based on its predictions in complete and incomplete
KG parts:

precisioncomp(r,G) = 1− npc(r,G)

b-supp(r,G)
, recallcomp(r,G) =

npi(r,G)∑
x miss(h, x,G)
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Intuitively, rules having high precision are rules that predict few facts in com-
plete parts, while rules having high recall are rules that predict many facts in
incomplete ones. Rule scoring could also be based on any weighted combination
of these two metrics.

Example 17. We have npi(r ′1 ,G′) = 2, npc(r ′1 ,G′) = 4, while npi(r ′2 ,G′) = 4,
npc(r ′2 ,G′) = 1, resulting in precisioncomp(r ′1 ,G′) = 0.5, recallcomp(r ′1 ,G′)≈ 0.67,
and precisioncomp(r ′2 ,G′)≈0.83, recallcomp(r ′2 ,G′)≈0.67. ut

Directional Metric. If rule mining does make use of completeness informa-
tion, and both do not exhibit any statistical bias, then intuitively the rule
predictions and the (in)complete areas should be statistically independent. On
the other hand, correlation between the two indicates that the rule-mining is
(in)completeness-aware. Following this intuition, the directional metric has been
proposed, which measures the proportion between predictions in complete and
incomplete parts as follows:

dm(r,G) =
npi(r,G)− npc(r,G)

2 · (npi(r,G) + npc(r,G))
+ 0.5

Since the real-world KGs are often highly incomplete, it might be reasonable to
put more weight on predictions in complete parts. This is done via combining
any existing association rule measure rm, e.g., standard confidence or conviction,
with the directional metric, using a certain dedicated weighting factor γ ∈ [0..1].
Formally,

weighted dm(r,G) = γ · rm(r,G) + (1− γ) · dm(r,G)

Example 18. We have dm(r ′1 ,G′) ≈ 0.33 and dm(r ′2 ,G′) = 0.8. With weighted
directional metric using standard confidence (rm = conf ), for γ = 0.5, we get
weighted dm(r ′1 ,G′) ≈ 0.29 and weighted dm(r ′2 ,G′) ≈ 0.48. ut

Optimized Rule Evaluation. Most of state-of-the-art rule mining systems
parallelize only the rule construction phase, while the quality of the rules are
determined in a single thread. Huge size of KGs such as YAGO or Freebase pro-
hibits their storage on a single machine. Therefore, the rule quality estimation is
usually delegated to some third-party database management system. In practice
this might not always be effective.

Unlike other state-of-the-art rule mining systems, the algorithm of ontological
pathfinding (OP) [6] focuses on the efficient examination of the rule’s quality.
After candidate rules are constructed relying on a variation of [65], their quality is
determined via a sequences of parallelization and optimization methods including
KG partitioning, joining and pruning strategies.
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5 Nonmonotonic Rule Learning

So far we have considered approaches for constructing Horn rules. However, these
are not sufficiently expressive for representing incomplete human knowledge, and
they are inadequate for capturing exceptions. Thus, Horn rules extracted from
the existing KGs can potentially predict erroneous facts as shown in Section 1.

In this section, we provide an overview of approaches for learning nonmono-
tonic rules from large and incomplete KGs. First, we describe a method that
relies on cross-talk among the extracted rules to guess their exceptions [29,76].
Then we present an approach that exploits embedding-based methods for knowl-
edge graph completion during rule construction [34].

5.1 Revision-based Method

Exception handling has been traditionally faced in ILP by learning non-monotonic
logic programs [35,66,64,8,41] (see Section 3). However, most of the existing
methods assume that the data from which the rules are induced is complete.

In [29], a revision-based approach for extracting exception-enriched (i.e., non-
monotonic) rules from incomplete KGs has been proposed. It pre-processes a
KG by projecting all binary facts into unary ones applying a form of propo-
sitionalization technique [39] (e.g., livesIn(brad , berlin) could be translated to
livesInBerlin(brad) or livesInCapital(brad) with obvious loss of information) and
adapts data mining methods designed for transaction data to extract Horn rules,
which are then augmented with negated atoms. In [76], the approach has been
extended to KGs in their original relational form. We now briefly summarize the
ideas of [29,76].

In these works, the KG completion problem from Definition 9 is treated as a
theory revision task, where, given a KG and a set of (previously learned) Horn
rules, the goal is to revise this set by adding exceptions, such that the obtained
rules have higher predictive accuracy than the original ones.

Since normally, the ideal graph Gi is not available, in order to estimate the
quality of a revised ruleset, two generic quality functions qrm and qconflict are
devised, which both take as input a ruleset R and a KG G and output a real
value, reflecting the suitability of R for data prediction. More specifically,

qrm(R,G) =

∑
r∈R rm(r,G)

|R|
, (4)

where rm is some standard association rule measure [3]. Conversely, qconflict es-
timates the number of conflicting predictions that the rules in R generate. To
measure qconflict for R, an extended set of rules Raux is created, which con-
tains every revised rule in R together with its auxiliary version. For a rule
r : h(X,Y ) ← B,not E in R, its auxiliary version raux is constructed by:
i) transforming r into a Horn rule by removing not from negated body atoms,
and ii) replacing the head predicate h of r with a newly introduced predicate
not h which intuitively should contain instances which are not in h.
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Fig. 3: Rule revision method for nonmonotonic rule learning [29,76].

Example 19. The auxiliary rule raux2 for the rule r2 from Section 1 is as follows
raux
2 : not livesIn(Y ,Z )← marriedTo(X ,Y ), livesIn(X ,Z ), researcher(Y ), and

it informally reflects that married people among whom one is a researcher often
do not live together. For r3 : livesIn(X ,Y )← bornIn(X ,Y ),not immigrant(X )
we similarly have raux

3 : not livesIn(X ,Y )← bornIn(X ,Y ), immigrant(X ). If
R = {r1, r2} then Raux = {r1, raux1 , r2, r

aux
2 }.

Intuitively, qconflict(R,G) estimates the portion of conflicting predictions
livesIn(s, o),not livesIn(s, o) made by the rules in Raux. The hypothesis of
[29,76] is that for a set R of good rules with reasonable exceptions, the number
of conflicting predictions produced by Raux is small. ut

Formally, based on statistics of both rules r and raux in a set of exception-
enriched rules R, the measure qconflict is defined as

qconflict(R,G) =
∑

p∈pred(R)

|c | p(c),not p(c) ∈ GRaux |
|c |not p(c) ∈ GRaux |

(5)

where pred(R) stores predicates appearing in R.
Formally, the problem targeted in [29,76] is formulated as follows:

Definition 12 (Quality-based Horn Theory Revision). Given a KG G, a
set of nonground Horn rules RH mined from G, and a quality function rm, find
a set of rules RNM obtained by adding negated atoms to body(r) for some r∈RH

s.t. (i) qrm(RNM ,G) is maximal, and (ii) qconflict(RNM ,G) is minimal.

Given the huge size of KGs, finding the best possible revision is infeasible
in practice. Thus, in [29,76] a heuristics-based method that computes an ap-
proximate solution to the above problem has been proposed (see Figure 3 for
overview). It combines standard relational association rule mining techniques
with a FOIL-like supervised learning algorithm [57] for computing exceptions.
We now briefly discuss the steps of this approach.

Step 1. After mining Horn rules using an off-the-shelf algorithm (e.g., [30]), one
computes for each rule the normal and abnormal substitutions, defined as
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Definition 13 (r-(Ab)Normal Substitutions). Let G be a KG, r a Horn
rule mined from G, and let V be a set of variables occurring in r. Then

– NS (r ,G) = {θ | head(r)θ, body(r)θ ⊆ G} is an r -normal set of substitutions;
– ABS (r ,G)={θ′ | body(r)θ′⊆G , head(r)θ′ 6∈G} is an r -abnormal set of substi-

tutions, where θ, θ′ : V→ C.

Example 20. For G from Figure 1 and r1 , we have NS (r1 ,G) = {θ1 , θ2 , θ3},
where θ1 = {X /brad ,Y /ann,Z/berlin}, θ2 = {X /john,Y /kate,Z/chicago}
and θ3 = {X /sui ,Y /li ,Z/beijing} respectively. Besides, among substitutions
in ABS (r1 ,G), we have θ4 = {X /mat ,Y /lucy ,Z/amsterdam}, yet there are
others. ut

Step 2. Intuitively, if the given data was complete, then the r-normal and r-
abnormal substitutions would exactly correspond to instances for which the rule
r holds (respectively does not hold) in the real world. Since the KG is potentially
incomplete, this is no longer the case and some r-abnormal instances might in
fact be classified as such due to data incompleteness. In order to distinguish
the “wrongly” and “correctly” classified instances in the r-abnormal set, one
constructs exception witness sets (EWS ), which are defined as follows:

Definition 14 (Exception Witness Set (EWS)). Let G be a KG, let r be
a rule mined from it, let V be a set of variables occurring in r and X ⊆ V.
Exception witness set for r w.r.t. G and X is a maximal set of predicates
EWS (r ,G,X) = {e1, . . . , ek}, s.t.

– ei(Xθj) ∈ G for some θj ∈ ABS (r ,G), 1 ≤ i ≤ k and
– e1 (Xθ′), . . . , ek (Xθ′) 6∈ G for all θ′ ∈ NS (r ,G).

Example 21. For G in Figure 1 and rule r1 , we observe that EWS (r ,G,Y ) =
{researcher} and EWS (r ,G,X ) = {artist}. If brad with ann and john with kate
did not live in metropolitan cities, then EWS (r ,G,Z ) = {metropolitan}. ut

In general, there are exponentially many possible EWS s to construct. Combi-
nations of exception candidates could be an explanation for some missing KG
edges, so the search space of solutions to the above problem is large. In [76]
a restriction to a single atom as a final exception has been posed; extending
exceptions to arbitrary combinations of atoms is left for future research.
Steps 3 and 4. After EWS s are computed for all rules in RH , they are used to
create potential revisions (Step 3), i.e., from every ej ∈ EWS (ri ,G) a revision rji
of ri is constructed by adding a negated atom over ej to the body of ri. Finally,
a concrete revision for every rule is determined, which constitutes a solution to
the above problem (Step 4). To find such globally best ruleset revision RNM

many candidate combinations have to be checked, which due to the large size of
G and EWS s might be too expensive. Thus, instead, RNM is incrementally built
by considering every ri ∈ RH and choosing the locally best revision rji for it.

In order to select rji , four special ranking functions are introduced: a naive
one and three more advanced functions, which exploit the concept of partial
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re1 : writtenBy(X ,Z )← hasPredecessor(X ,Y ),writtenBy(Y ,Z ), not american film(X )

re2 : actedIn(X ,Z )← isMarriedTo(X ,Y ), directed(Y ,Z ), not silent film actor(X )

re3 : isPoliticianOf (X ,Z )← hasChild(X ,Y ),isPoliticianOf (Y ,Z ),not vicepresidentOfMexico(X )

Fig. 4: Examples of the revised rules

materialization (PM ). Intuitively, the idea behind it is to rank candidate revi-
sions not based on G, but rather on its extension with predictions produced by
other (selectively chosen) rules (grouped into a set R′), thus ensuring a cross-talk
among the rules. We now describe the ranking functions in more details.

– Naive ranker is the most straightforward ranking function. It prefers the
revision r j

i with the highest value of rm(r j
i ,G) among all revisions of ri.

– PM ranking function prefers r j
i with the highest value of

rm(r j
i ,GR′) + rm(r j

i

aux
,GR′)

2
(6)

where R′ is the set of rules r′k, which are rules from RH\ri with all exceptions
from EWS (rk ,G) incorporated at once. Informally, GR′ contains only facts
that can be safely predicted by the rules from RH \ri , i.e., there is no evident
reason (candidate exceptions) to neglect their predictions.

– OPM is similar to PM, but the selected ruleset R′ contains only those rules
whose Horn version appears above the considered rule ri in the ruleset RH ,
ordered (O) based on some chosen measure (e.g., the same as rm).

– OWPM is the most advanced ranking function. It differs from OPM in
that the predicted facts in GR′\G inherit weights (W ) from the rules that
produced them, and facts in G get the highest weight. These weights are
taken into account when computing the value of (6). If the same fact is de-
rived by multiple rules, the highest weight is stored. To avoid propagating
uncertainty through rule chaining when computing weighted partial mate-
rialization of G predicted facts (i.e., derived by applying rules from R′) are
kept separately from the explicit facts (i.e., those in G), and new facts are
inferred using only G.
For reasoning over weighted facts existing probabilistic deductive tools such
as ProbLog [14,26] can be used, but their exploitation is left for future work.

Example Rules. Figure 4 shows examples of rules obtained in [76] by the
described method. For instance, re1 extracted from IMDB states that movie
plot writers stay the same throughout the sequel unless a movie is American,
while re2 reflects that spouses of movie directors often appear on the cast with
the exception of actors of old silent movies. Finally, the rule re3 learned from
YAGO says that ancestors of politicians are also politicians in the same country
with the exception of Mexican vice-presidents.

5.2 Method Guided by Embedding Models

In the work [34] introducing RuLES framework, an alternative method for non-
monotonic rule induction has been proposed, which first constructs an approx-
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imation of an ideal graph Gi and then learns rules by relying on it. For build-
ing such approximation, representations (i.e. embeddings) of entities and rela-
tions are learned from a given KG possibly enriched with additional information
sources (e.g., text). We refer the reader to [78] for an overview of KG embedding
models.

The RuLES approach [34] establishes a framework to benefit from the ad-
vantages of these models by iteratively inducing rules from a KG and collecting
statistics about them from a precomputed embedding model to prune unpromis-
ing rule candidates.

Let G be a KG over the signature ΣG = (R, C). A probabilistic KG is a pair
P = (G, f), where f : R× C × C → [0, 1] is a probability function over the facts
over ΣG such that for each atom a ∈ G it holds that f(a) ≥ ct, where ct is a
correctness threshold.

The goal of RuLES is to learn rules that do not only describe the available
graph G well, but also predict highly probable facts based on the function f
which relies on embeddings of the KG. For that, it utilizes a hybrid rule quality
function:

µ(r,P) = (1− λ)× µ1(r,G) + λ× µ2(Gr,P).

where λ is a weight coefficient and µ1 is any classical quality measure of r
over G such that µ1 : (r,G) 7→ α ∈ [0, 1] (e.g., standard confidence or PCA
confidence [30]). µ2 measures the quality of Gr (i.e., the extension of G resulting
from executing the rule r) based on P given that µ2: (Gr,P) 7→ α∈ [0, 1]. To this
end, µ2 is defined as the average probability of the newly predicted facts in Gr:

µ2(Gr,P) =
Σa∈Gr\Gf(a)

|Gr\G|
.

RuLES takes as input a KG, possibly a text corpus, and a set of user-specified
parameters that are used to terminate rule construction. These parameters in-
clude an embedding weight λ, a minimum threshold for µ1, a minimum rule
support r-supp and other rule-related parameters such as a maximum number
of positive and negative atoms allowed in body(r). As illustrated in the overview
of of the RuLES system in Figure 5, the KG and text corpus are used to train
the embedding model that in turn is utilized to construct the probabilistic func-
tion f . The Rule Learning component computes the rules similar to [30] in an
iterative fashion by applying refinement operators, starting from the head, by
adding atoms to its body one after another until at least one of the termination
criteria (that depend on f) is met. The set of refinement operators from [30] is
extended by the following two to support negations in rule bodies:

– add an exception instantiated atom: add a binary negated atom with one of
its arguments being a constant, and the other one being a shared variable.

– add an exception closing atom: add a binary negated atom to the rule with
both of its arguments being shared variables.
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Fig. 5: Embedding-based method for nonmonotonic rule learning.

re4 : nationality(X ,Y )← graduatedFrom(X ,Z ), inCountry(Z ,Y ), not researchUni(Z )

re5 : nobleFamily(X ,Y )← spouse(X ,Z ),nobleFamily(Z ,Y ), not chineseDynasties(Y )

Fig. 6: Examples of the revised rules

During the construction of a rule r, the quality µ(r) is computed by the Rule
Evaluation component, based on which a decision about the next action is made.
Finally as an output, the RuLES system produces a set of nonmonotonic rules
suitable for KG completion.

Note that the exploitation of the embedding feedback helps to distinguish
exceptions from noise. Consider the rule r1 stating that married people live
together. This rule can have several possible exceptions, e.g., either one of the
spouses is a researcher or he/she works at a company, which has headquarter in
the US. Whenever the rule is enriched with an exception, naturally, the support
of its body decreases, i.e., the size of Gr goes down. Ideally, such negated atoms
should be added to the body of the rule that the average quality of Gr increases,
as this witnesses that the addition of negated atoms to the rule body reduces
unlikely predictions.

Example Rules. Figure 6 presents examples of rules learned by the RuLES
system from the Wikidata KG. The first rule re4 says that a person is a citizen of
the country where his alma mater is located, unless it is a research institution,
since most researchers in universities are foreigners. Additionally, re5 encodes
that someone belongs to a noble family if his/her spouse is also from the same
noble family, excluding the Chinese dynasties.

6 Discussion and Outlook

In this tutorial, we have presented a brief overview of the current techniques
for rule induction from knowledge graphs and have demonstrated how reasoning
over KGs using the learned rules can be exploited for KG completion.

While the problem of rule-based KG completion has recently gained a lot of
attention, several promising research directions are still left unexplored.

Learning Other Rule Forms. The majority of available methods focus on ex-
tracting Horn or nonmonotonic rules, yet inducing rules of other, more complex,
forms would be beneficial. These include disjunctive rules (e.g., “Having a sibling
implies having a sister or a brother”, “Korean speakers are normally either from
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Fig. 7: Rule learning with external sources.

South or North Korea”) or rules with existential quantifiers in the head (e.g.,
“Being a musicians in a band, implies playing some musical instrument”). Sev-
eral recent works on mining keys in KGs [74,40], detecting mandatory relations
[40] and learning SHACL constraints [56] are relevant, but they do not directly
address the mentioned rule forms. A combination of techniques from relational
rule learning [58] and propositionalization approaches [39] can be utilized for
learning rules with existentials, yet it is unclear how to detect KG parts that are
worth propositionalizing and combine the outputs of both methods.

Rules that reflect correlations between edge counts in KGs such as “If a per-
son has two siblings then his/her parents are likely to have 3 children” have been
studied in [75]. Inducing more general rules, encoding mathematical functions
on edge counts (e.g., “If a person has k siblings then his/her parents are likely
to have k+1 children”) and other numerical rules is still an open problem, which
is particularly challenging due to large search space of possible hypothesis.

Learning temporal rules or constraints such as “A person cannot graduate
from a university before being born” is another promising future work direction.
Deductive reasoning over temporal KGs has been recently considered in [5];
however, the inductive setting has not yet been studied in full details to the best
of our knowledge. A framework for learning hard boolean constraints has been
described in [62], but its extension to KGs and soft constraints is still missing.

Learning Rules from Probabilistic Data. The majority of existing rule
learning approaches over knowledge graphs model KGs as sets of true facts thus
totally ignoring possible inaccuracies. Since KGs are usually constructed using
(semi-)automatic methods from noisy textual resources, obviously not all of the
extracted facts should have the same weight. Learning rules from such noisy
KGs by treating all facts equally might naturally lead to problematic rules,
which when being applied may propagate faulty facts.

A recent ILP approach that accounts for noise has been proposed in [24]; but
it relies on CWA and neglects weights on the facts. Learning rules from KGs
treated as uncertain data sources has been considered in [63,59,10]; however,
these works neglect negation, disjunction or existential variables in the head.
Extending the techniques to more advanced rule forms is beneficial.

Rule Learning with External Sources. Another interesting research stream
is to consider pieces of evidence from hybrid external sources while inducing rules
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from KGs (see Figure 7). Similar to [22], where external functions are utilized
during deductive reasoning, various heterogeneous information sources can be
used to guide rule induction. These range from a human expert giving feedback
about the correctness of a given rule (similar as done in [20] for pattern mining),
to dedicated fact-checking engines (e.g., Defacto [70], FactChecker [52]) that
given a fact such as bornIn(einstein, ulm) rely on Web documents to estimate
its truthfulness.

Neural-based Rule Learning. Utilizing embedding models for rule learning
is a new research direction that has recently gained attention [81,80]. Most of the
existing methods are purely statistics-based, i.e., they reduce the rule learning
problem to algebraic operations on neural-embedding-based representations of a
given KG. The approach [80] constructs rules by modeling relation composition
as multiplication or addition of two relation embeddings. The authors of [81]
propose a differentiable system for learning models defined by sets of first-order
rules that exploits a connection between inference and sparse matrix multiplica-
tion [7]. These techniques pose strong restrictions on target rule patterns, which
often prohibits learning interesting rules, e.g., non-chain-like or exception-aware
ones. Combining neural methods with symbolic ones in a similar way as in [34]
but also accounting for rich background knowledge in the form of logical theories
is expected to be advantageous for obtaining surprising insights from the data.

Another ambitious direction is to mimic the active learning framework of
Angluin et al. [2] for hypothesis discovery by issuing dedicated queries to possibly
text-enhanced KG embedding models instead of a human expert.

Extracting Rules Jointly from KGs and Text. While modern KGs are rich
in facts and typically rather clean, they contain a limited set of encyclopedic re-
lations (e.g., bornIn, marriedTo). On the other hand, textual resources certainly
cover a richer set of predicates (e.g., gotAquintedWith, celebratedWedding), but
suffer from noise. A natural way to address the above issues is to combine text-
based rule extraction relying on natural language processing (NLP) and textual
entailment techniques [68,33,17] with inductive rule learning from KGs. This
interesting research direction comes with many challenging due to the hetero-
geneity of the input sources.
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