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Semantic Web Search

living place of the winner of australian open 2018 L Q

All News Images Videos Maps More Settings Tools

About 1,220,000,000 results (1.10 seconds)

2018 Australian Open - Wikipedia
https://en.wikipedia.org/wiki/2018_Australian_Open ¥

Roger Federer was the defending champion in the men's singles event and successfully retained his
title (his sixth), defeating Marin Cilié in the final, while Caroline Wozniacki won the women's title,
defeating Simona Halep in the final.

Venue: Melbourne Park Prize money: A$55,000,000

Location: Melbourne, Victoria, Australia  Draw: 1285/ 64D/

Missing: Hvirg | Must include: living
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Semantic Web Search

winner of Australian Open 2018

locatedin

. Switzerland

bornln
Basel <20ornin_ [RogerFederer|

winnerOf

AustralianOpen2018 | _;;.
i

More im

Roger Federer <

Ternis player

€ rogereserercom

Roger Federer is a Swiss professional tennis player who is currently ranked
world No. 10 by the Asseciation of Tennis Professionals. Many players and
analysts have called him the greatest tennis player of all time. Wikipedia
Born: August 8, 1961 (age 35 years), Basel, Switzerland

Height: 185 m

Welght: £5 kg

Spouse: Mirka Federer (m. 2009)

Children: Lenny Federer, Myla Rose Federer, Charlene Riva Federer, Leo
Federer
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Semantic Web Search

living place of Roger Federer Q,
All Images [News Videos Shopping More Settings Tools
About 2 690.000 results (0,55 seconds)

Roger Federer's glass mansion: Tennis star's £6.5m Swiss waterfront ...

www telegraph.co.uk » Sport » Tennis » Roger Federer *
Tennis star Roger Federer 15 to move his family into a £6 Smillion glass mansion on the shores of Lake

Zurich after work was completed on the state-of-the-art .

Roger Federer's Luxurious Houses | Basel Shows
www baselshows com/basel-world/the-houses-of-roger-federer =
Roger Federer also owns a lavish apartment in Dubai apart from properties in Switzerland. He has

chosen this location as a base of training to get use to heat ...

4/94



Motivation

Preliminaries  Rule Learning ~ Exception-awareness  Incompleteness  Rules from Hybrid Sources  Further Topics

Semantic Web Search

wife of Roger Federer § Q

All Images News Videos Maps More Settings Tools

About 42,200,000 results (0.50 seconds)

Roger Federer / Wife

Mirka Federer

m. 2009

Miroslava "Mirka" Federer is a Slovak-born Swiss former professional tennis player. She reached her
career-high WTA singles ranking of world No. 76 on 10 September 2001 and a doubles ranking of No.
215 on 24 August 1998. She is the wife of tennis player Roger Federer, having first met him at the 2000
Summer Olympics. Wikipedia
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Semantic Web Search

living place of Mirka Federer Q,
All Images MNews Shopping Videos More Seftings Tools
About 1.910.000 results (0 92 seconds)

Mirka Federer / Residence

Binningen -
s
0% A r‘l.\lﬁ' JERMOLZ 2
Neuwiller Bodamin J
o o ey Minchenstein
Oberwil [
o

Biel-Benken

Map data ©2017 GeoBasis-DE/BKG (©2009), Google

Bottmingen, Switzerland
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Human Reasoning
livesin(Y, Z) « marriedTo(X,Y), Married people live together
livesin(X, Z)

marriedTo(mirka, roger) Mirka is married to Roger

livesIn( mirka, bottmingen) Mirka lives in Bottmingen
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Human Reasoning
livesin(Y, Z) < marriedTo(X,Y),  Married people live together
livesin(X, Z)

marriedTo(mirka, roger) Mirka is married to Roger

livesin(mirka, bottmingen) Mirka lives in Bottmingen
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Human Reasoning
livesin(Y, Z) < marriedTo(X,Y),  Married people live together
livesin(X, Z)

marriedTo(mirka, roger) Mirka is married to Roger

livesIn(mirka, bottmingen) Mirka lives in Bottmingen

But where can a machine get such rules from?
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Inducing Rules from KGs

isMarriedTo hasBrother i . .
brad ann john isMarriedTo | o4

\ / N /

livesin livesin livesin livesin
berlin researcher chicago

liv f | A/ \ \
/ \ |ves<

bob isMarriedTo alice dave isMarriedTo clara
livesin
amsterdam

livesin(Y, Z) < isMarriedTo(X, Y), livesin(X, Z)
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Inducing Rules from KGs

isMarriedTo hasBrother . i i
brad , ann jOhn isMarriedTo kate

\ / AN /

livesin livesin livesin livesin
berlin researcher chicago
/ AN N\
livesin IsA IsA
/ / \ livesin
bob isMarriedTo alice dave isMarriedTo clara
_— D
livesin
amsterdam

livesin(Y, Z) «+ isMarriedTo(X, Y), livesin(X, Z), not researcher(Y)

8/94



Motivation

Preliminaries

Rule Learning  Exception-awareness  Incompleteness  Rules from Hybrid Sources

Applications of Rule Learning

Fact prediction

Data cleaning

Domain description

Finding trends in KGs . . .

Further Topics
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Horn Rules

Rule: a <« by, ..., bp.
head body

Informal semantics: If by,..., b, are true, then a must be true.

Logic program: Set of rules

Example: ground rule

% If Mirka is married to Roger and lives in B., then Roger lives there too
livesin(roger, bottmingen) <+ isMarried(mirka, roger), livesIn(mirka, bottmingen)
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Horn Rules

Rule: a <« by, ..., bp.
head body

Informal semantics: If by,..., b, are true, then a must be true.

Logic program: Set of rules

Example: non-ground rule

% Married people live together
livesin(Y, Z) «+ isMarried(X, Y), livesin(X, Z)

Further Topics

11/94
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Nonmonotonic Rules

Rule: a <« by, ..., by, notbmyiv, ..., notby,.
15 'm 'm+1 n

head body

Informal semantics: If by,..., by, are true and none of by, ..., b, is known,
then a must be true.

Closed World Assumption (CWA): facts not known to be true are false

Example: nonmonotonic rule

% Two married live together unless one is a researcher
livesin(Y, Z) «+ isMarried(X, Y), livesin(X, Z), not researcher(Y)
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Nonmonotonic Rules

Rule: a <« by, ..., by, notbmyyiq, ..., notby.
head body
Informal semantics: If by,..., by, are true and none of by, ..., b, is known,

then a must be true.

Closed World Assumption (CWA): facts not known to be true are false

not is different from —!

% At a rail road crossing cross the road if no train is known to approach”
walk + at(L), crossing(L), not train_approaches(L)

% At a rail road crossing cross the road if no train approaches
walk < at(L), crossing(L), —train_approaches(L)
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Herbrand Semantics

Herbrand universe of a logic program P, HU(P) is the set of all constants
appearing in P.

Herbrand base of P, HB(P) is the set of all ground atoms which can be formed
from predicates and constants of P.

(Herbrand) interpretation of P, / is a subset of the Herbrand base.

Example: Herbrand universe, base, interpretation

p_ (1) isMarriedTo(mirka, roger) (2) livesin(mirka, bottmingen)
(8) livesin(Y, Z) < isMarriedTo(X, Y), livesin(X, Z), not researcher(Y)
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Herbrand universe of a logic program P, HU(P) is the set of all constants
appearing in P.

Herbrand base of P, HB(P) is the set of all ground atoms which can be formed
from predicates and constants of P.

(Herbrand) interpretation of P, / is a subset of the Herbrand base.

Example: Herbrand universe, base, interpretation

p_ (1) isMarriedTo(mirka, roger) (2) livesin(mirka, bottmingen)
| (3) livesIn(Y, Z) < isMarriedTo(X, Y), livesIn(X, Z), not researcher(Y)
HU(P) = {mirka, roger, bottmingen}

HB(P) = {isMarriedTo(mirka, mirka), isMarriedTo(mirka, roger), . . .
livesin(mirka, bottmingen), livesin(roger, bottmingen), . . . }
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Preliminaries

Herbrand Semantics

Herbrand universe of a logic program P, HU(P) is the set of all constants
appearing in P.

Herbrand base of P, HB(P) is the set of all ground atoms which can be formed
from predicates and constants of P.

(Herbrand) interpretation of P, / is a subset of the Herbrand base.

Example: Herbrand universe, base, interpretation

p_ (1) isMarriedTo(mirka, roger) (2) livesin(mirka, bottmingen)
| (3) livesIn(Y, Z) < isMarriedTo(X, Y), livesIn(X, Z), not researcher(Y)
HU(P) = {mirka, roger, bottmingen}

HB(P) = {isMarriedTo(mirka, mirka), isMarriedTo(mirka, roger), . . .
livesin(mirka, bottmingen), livesin(roger, bottmingen), . . . }

I = 0, b = {isMarriedTo(mirka, roger), livesIn(bottmingen, bottmingen)}, . ..
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Answer Set Semantics

Def.: Herbrand models, answer sets

e An interpretation / is a (Herbrand) model of (or satisfies)

e groundruler:a< by,...,by, not bpiq,..., N0t by, if
{bt,...,bm} C land {bmi1, by} N1 =0imply a € [ (written / |= r).
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Answer Set Semantics

Def.: Herbrand models, answer sets

e Aninterpretation / is a (Herbrand) model of (or satisfies)

e groundruler:a< by,...,by, not bpiq,..., N0t by, if
{bt,...,bm} C land {bmi1, by} N1 =0imply a € [ (written / |= r).

e anonground rule r, symbolically / |= r, if I |= r for every r € grnd(C);

e aprogram P, symbolically / |= P, if | |= C for every clause C in P.

e Minimal model (answer set): none of its subsets is a model.

14/94
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Example

Consider program P:

livesIn(m, b). isMarriedTo(m,r).  bornin(m, b).
livesin(Y, Z) < livesin(X, Y), isMarriedTo(Y, Z), not researcher(Y).
livesIn(X, Y) < bornin(X, Y).

Which of the following interpretations are models of P?
[ ] I1 = @
e b =HB(P)

o I3 = {livesin(m, b), isMarriedTo(m, r), livesIn(r, b) }

15/94
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Example

Consider program P:
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Answer Set Programs
Evaluation of ASP programs is model-based

Answer set program (ASP) is a set of nonmonotonic rules

(1) isMarriedTo(mary, john) (2) livesin(mary, ulm)
(3) livesIn(Y, Z) < isMarriedTo(X, Y), livesin(X, Z),
not researcher(Y)

16/94
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Answer Set Programs

Evaluation of ASP programs is model-based
1. Grounding: substitute all variables with constants in all possible ways
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Answer Set Programs

Evaluation of ASP programs is model-based
1. Grounding: substitute all variables with constants in all possible ways
2. Solving: compute a minimal model (answer set) / satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules
(1) isMarriedTo(mary, john) (2) livesin(mary, ulm)

() livesin(john, ulm) < isMarriedTo(mary, john), livesin(mary, ulm),
not researcher(john)

I={isMarriedTo(mary, john), livesin(mary, ulm), livesin(john, ulm)}

CWA: researcher(john) can not be derived, thus it is false

16/94
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Evaluation of ASP programs is model-based
1. Grounding: substitute all variables with constants in all possible ways
2. Solving: compute a minimal model (answer set) / satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

(1) isMarriedTo(mary, john) (2) livesin(mary, ulm)

() livesin(john, ulm) < isMarriedTo(mary, john), livesin(mary, ulm),
not researcher(john)

(4) researcher(john)

researcher(john)
I={isMarriedTo(mary, john), livesIn(mary, ulm), livesIn{jetr, uim)}
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Answer Set Programs

Evaluation of ASP programs is model-based
1. Grounding: substitute all variables with constants in all possible ways
2. Solving: compute a minimal model (answer set) / satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

(1) isMarriedTo(mary, john) (2) livesin(mary, ulm)

() livesin(john, ulm) < isMarriedTo(mary, john), livesin(mary, ulm),
not researcher(john)

(4) researcher(john)

researcher(john)
I={isMarriedTo(mary, john), livesIn(mary, ulm), livesin(jetirr; tlm) }

)

Particularly suited for reasoning under incompleteness!
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Reasoning with Incomplete Information

Default Reasoning

Assume normal state of
affairs, unless there is
evidence to the contrary

By default married
people live together.
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Default Reasoning

Assume normal state of
affairs, unless there is
evidence to the contrary

By default married
people live together.

Exception-awareness

Abduction

Choose between
several explanations
that explain an
observation

John and Mary live
together. They must be
married.

Incompleteness  Rules from Hybrid Sources

Further Topics
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Reasoning with Incomplete Information

Default Reasoning

Assume normal state of
affairs, unless there is
evidence to the contrary

By default married
people live together.

Abduction

Choose between
several explanations
that explain an
observation

John and Mary live
together. They must be
married.

Induction

Generalize a number of
similar observations
into a hypothesis

Given many examples
of spouses living
together generalize this
knowledge.

18/94
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History of Inductive Learning

Al & Machine Learning 1960s-70s:
Baneriji, Plotkin, Vere, Michalski, ...

Al & Machine Learning 1980s:
Shapiro, Sammut, Muggleton, ...

Inductive Logic Programming 1990s:
Muggleton, Quinlan, De Raedt, ...

Statistical Relational Learning 2000s:
Getoor, Koller, Domingos, Sato, ...

Further Topics
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Learning from Examples

Inductive Learning from Examples [Muggleton, 1991]

Given:

ET : positive examples (ground facts) over a relation p
E~ : negative examples (ground facts) over p

T : background theory (a set of facts and possibly rules)
Language bias: syntactic restrictions on the definition of p

20/94
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Learning from Examples

Inductive Learning from Examples [Muggleton, 1991]

Given:
e ET : positive examples (ground facts) over a relation p

E~ : negative examples (ground facts) over p
T : background theory (a set of facts and possibly rules)
Language bias: syntactic restrictions on the definition of p

Find:
e Hyp : hypothesis defining p such that
e Hyp "covers” all positive examples given T, i.e.,
Vee ET: TUHypkEe

e Hyp does not “cover” any negative examples given T, i.e.,
VYVee E-: TUHyp e

Further Topics

20/94



Rule Learning

Example

Given:
e ET = {fatherOf(john, mary), fatherOf(david, steve) }
e E— = {fatherOf(kathy, ellen), fatherOf(john, steve)}

e T = {parentOf(john, mary), male(john),
parentOf(david, steeve), male(david),
parentOf(kathy, ellen), female(kathy)}

e Language bias: Horn rules with 2 body atoms

21
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Rule Learning

Example

Given:
e ET = {fatherOf(john, mary), fatherOf(david, steve) }
e E— = {fatherOf(kathy, ellen), fatherOf(john, steve)}

e T = {parentOf(john, mary), male(john),
parentOf(david, steeve), male(david),
parentOf(kathy, ellen), female(kathy)}

e Language bias: Horn rules with 2 body atoms

Possible hypothesis:
e Hyp: fatherOf(X,Y) < parentOf(X, Y), male(X)

21
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Learning from Interpretations

Inductive Learning from Interpretations [Raedt and Dzeroski, 1994]

Given:
e /| :interpretation, i.e., a set of facts over various relations
e T : background theory, i.e., a set of facts and possibly rules
e Language bias: syntactic restrictions on the target hypothesis

22/94
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Learning from Interpretations

Inductive Learning from Interpretations [Raedt and Dzeroski, 1994]
Given:

e /| :interpretation, i.e., a set of facts over various relations

e T : background theory, i.e., a set of facts and possibly rules

e Language bias: syntactic restrictions on the target hypothesis

Find:
e Hyp : hypothesis, such that / is a minimal model of Hyp U T

22/94



Rule Learning

Example

Inductive Learning from Interpretations [Raedt and Dzeroski, 1994]

Given:

o | = {isMarriedTo(mirka, roger), livesin(mirka, b),
livesIn(roger, b), bornin(mirka, b) }

o T = {isMarriedTo(mirka, roger); bornin(mirka, b);
livesIn(X,Y) < bornin(X, Y)}
e Language bias: Horn rules
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Rule Learning

Example

Inductive Learning from Interpretations [Raedt and Dzeroski, 1994]

Given:

o | = {isMarriedTo(mirka, roger), livesin(mirka, b),
livesIn(roger, b), bornin(mirka, b) }

o T = {isMarriedTo(mirka, roger); bornin(mirka, b);
livesIn(X,Y) < bornin(X, Y)}
e Language bias: Horn rules

Possible Hypothesis:
e Hyp: livesin(Y,Z) < isMarriedTo(X, Y), bornin(X, Z)
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Common Techniques in ILP
e Generality (>=): essential component of symbolic learning systems

e Genaralization as 6-subsumption
e Atoms: a > b iff a substitution § exists such that ad = b
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Common Techniques in ILP

e Clause refinement [Shapiro, 1991]: e.g., MIS, FOIL, etc.

e Explore clause search space from general to specific or vice versa to
find a hypothesis that covers all examples.

livesin(X, Y) «

livesin(X, Y) « livesIn(U, V) livesIn(roger, Y) <

livesin(X, X) <
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Common Techniques in ILP

e Clause refinement [Shapiro, 1991]: e.g., MIS, FOIL, etc.
e Explore clause search space from general to specific or vice versa to

find a hypothesis that covers all examples.
livesin(X, Y) <

livesin(X, Y) « livesIn(U, V) livesIn(roger, Y) <

livesin(X, X) <

e Inverse entailment [Muggleton, 1995]: e.g., Progol, etc.
o Properties of deduction to make hypothesis search space finite
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Zoo of Other ILP Tasks

ILP tasks can be classified along several dimensions:

e type of the data source, e.g., positive/negative examples, interpretations,
answer sets [Law et al., 2015]
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ILP tasks can be classified along several dimensions:

e type of the data source, e.g., positive/negative examples, interpretations,
answer sets [Law et al., 2015]

e type of the output knowledge, e.g., rules, DL ontologies [Lehmann, 2009]

e the way the data is given as input, e.g., all at once, incrementally
[Katzouris et al., 2015]

e availability of an oracle, e.g., human in the loop
e quality of the data source, e.g., noisy [Evans and Grefenstette, 2018]
e data (in)completeness, e.g., OWA vs CWA...

e background knowledge, e.g., DL ontology [d’Amato et al., 2016], hybrid
theories [Lisi, 2010]
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Rule Induction from Knowledge Graphs

What is the most suitable ILP task for the KG setting?

isMarriedTo hasBrother . i ;
brad ann john _isMarriedTo | o40

\ / N /

livesin livesin livesin livesin
berlin researcher chicago
/ AN N\
livesin IsA
/ IsA livesin
bob isMarriedTo alice dave isMarriedTo clara
livesin
amsterdam

Further Topics
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Rule Induction from Knowledge Graphs

What is the most suitable ILP task for the KG setting?

isMarriedTo hasBrother . i ;
brad ann john _isMarriedTo | o40

\ / N /

livesin livesin livesin livesin
berlin researcher chicago
/ AN N\
livesin IsA
/ IsA livesin
bob isMarriedTo alice dave isMarriedTo clara
livesin
amsterdam

Probably learning from interpretations..

Further Topics
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Declarative Programming

PROBLEM

Modeling

RULES

Solving

ASP solvers,
e.g. clingo, dlv,
divhex...

Y

SOLUTION

Interpreting

MINIMAL
MODEL
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Example

Graph 3-colorability

node(1...6); edge(1,2);

L+ col(V, C), col(V,C"),C #C';
L+ col(V, C), col(V', C), edge(V, V')

col(V, red) < not col(V, blue), not col(V, green), node(V);
Mode"ng col(V, green) < not col(V, blue), not col(V, red), node(V);
col(V, blue) < not col(V, green), not col(V, red), node(V);

Interpreting

\ 4 /

e

NONMONOTONIC

Solving

RULES

\ 4

node(1...6); edge(1,2);...
col(1, red), col(2, blue),

col(3, red), col(4, green),

col(6, green), col(5, blue)
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Ideal Setting

KNOWLEDGE
GRAPH

Interpreting

Learning

RULES n MINIMAL MODEL
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Classical ILP for KGs

ILP Goal

"The goal of ILP is to develop a correct (and complete) algorithm which
efficiently computes hypotheses.” [Sakama, 2005]

Knowledge Graphs

But the world knowledge is complex, and this might not always be possible
in the context of KGs due to several issues...

29/94



Motivation ~ Preliminaries  Rule Learning  Exception-awareness  Incompleteness  Rules from Hybrid Sources  Further Topics

Specialities of KGs

Open World Assumption: negative facts cannot be easily derived

Maybe Roger Federer is a researcher and Albert Einstein was a
ballet dancer?
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Specialities of KGs

Open World Assumption: negative facts cannot be easily derived

Maybe Roger Federer is a researcher and Albert Einstein was a
ballet dancer?

33333337

dance for laughter,

dance for tears,
dance for madness,
dance for fears,
dance for hopes,
dance for screams,
are the dancers,
create the dreanms,

-Albert Einstein
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Challenges of Rule Induction from KGs

Data bias: KGs are extracted from text, which typically mentions
only popular entities and interesting facts about them.

1]

“Man bites dog phenomenon

"https://en.wikipedia.org/wiki/Man_bites_dog_(journalism)
30/94
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Challenges of Rule Induction from KGs

Huge size: Modern KGs contain billions of facts
E.g., Google KG stores 70 billion facts
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Challenges of Rule Induction from KGs

World knowledge is complex, none of its “models” is perfect

No model js perfect

\

!

-
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Exploratory Data Analysis
Question:

How can we still learn rules from KGs, which do not perfecitly fit the data,
but still reflect interesting correlations that can predict sufficiently many
correct facts?

v

Answer:
Relational association rule mining! Roots in classical datamining.
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Association Rules

e Classical data mining task: Given a transaction database, find out
products (called itemsets) that are frequently bought together and
form recommendation rules.

Transactionl | @ ¥ U %
Transaction2 | @ W

Transaction3 | @ ¥

Transaction4 | @ ©

Transaction 5 WU N
Transaction 6 o

Transaction 7 ' ®

Transaction 8 a

Out of 4 people who bought apples, 3 also bought beer.
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Some Rule Measures

Support, confidence, lift

Support [0] =4 Transactionl | @ ¥ U &
Transaction2 | @ ¥
Transaction3 | @ v
Transaction4 | @ ©
Transaction5 | W U e
Transaction6 |~ 19
Transaction 7 W
Transaction 8 "

)
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Exception-awareness

Some Rule Measures

Support, confidence, lift

Support (@] = 4

Support {@, 7}

Rules from Hybrid Sources

Further Topics

Confidence {@ = ¥} =

Support {@}

Transaction 1
Transaction 2
Transaction 3
Transaction 4
Transaction 5
Transaction 6
Transaction 7

Transaction 8
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Some Rule Measures

Support, confidence, lift
Support (@] = 4

Support {@, ¥}
Support {@}

Confidence {@ = ¥} =

Support {@, ¥}
Support {@} x Support {7}

Lift {@ > W} =

Rules from Hybrid Sources

Further Topics

Transaction 1
Transaction 2
Transaction 3
Transaction 4
Transaction 5
Transaction 6
Transaction 7

Transaction 8

.| Q€ e e
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Frequent ltemset Mining

e A=apple, B=beer... Frequent patterns are in green.

o Monotonicity: any superset of an infrequent pattern is infrequent
At the heart of Apriori algorithm

(O {8} {a (0}

\,,

wel e [woy @y (500 ico)

{AB.C} / {ABD} {ACD}  {BC.D}

{A.B.C.D}
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How to Apply this to Relational Data?

o DOWNGRADING DATA: Can we change the representation from
richer representations to simpler ones? (So we can use systems
working with simpler representations)

e UPGRADING SYSTEMS: Can we develop systems that work with
richer representations (starting from systems for simpler
representations)?
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Downgrading the Data

 Propositionalization [Krogel et al., 2003]: transform a KG into a
transaction database

borninUS | livesinUS | isMarriedToSinger | researcher | sportsman
o1 v’ v’ v’
p2 v’ v’ v’
p3 v’ v’
p4 v’ v’
p5 v’ v’
p6 v’ v’ v’
p7 v’ v’
p8 v’ v’
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Upgrading the Systems

o Start from existing system for simpler representation

e Extend it for use with richer representation (while trying to keep the
original system as a special case)
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Relational Association Rule Mining

e WARMER [Goethals and den Bussche, 2002]
e Upgrade frequent itemsets to frequent conjunctive queries

CQ: return all people with their spouses and living places
q1(X,Y,Z) : —isMarriedTo(X, Y) A livesin(X, Z)
Output: 6 tuples, i.e., supp(qs) = 6
CQ: return all people with their spouses and living places
Q@(X,Y,Z) : —isMarriedTo(X, Y) A livesin(X, Z) A livesin(Y, Z)

Output: 3 tuples, i.e., supp(qz) = 3
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Relational Association Rule Mining

o WARMER [Goethals and den Bussche, 2002]
e Upgrade frequent itemsets to frequent conjunctive queries

traverse the lattice

get frequent CQs based on user-specified value
split into body and head

rank based on a rule measure, e.g., confidence
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Horn Rule Mining from KGs

WARMER: confidence
CWA: Whatever is not known is false.

isMarriedTo hasBrother i i
Brad Ann John _isMarriedTo K ate

livesin livesin livesin livesin
/ N/
Berlin Researcher Chicago
A AN
livesin IsA/ IsA '}lesln
/ AN
Bob __'sMariedTo  Ajice Dave 'SMarmedTo oiarg
livesin
Amsterdam

Further Topics
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Horn Rule Mining from KGs

WARMER: confidence
CWA: Whatever is not known is false.

isMarriedTo hasBrother i i
Brad Ann John isMarriedTo 0

livesin livesin livesin livesin
\ . / \ S /
* s * o
Berlirt, Researcher Qﬁicago
':/4 “ 0’ "
- s / \ * \ *
Jivesin . IsA \sA o R
K] . S RS livesin .
*
e “ A\ N
isMarriedTo X i j
+'Bob 0, Alics _'Dave sMarriedTo v %
4AEEEEEEEEEEEEEER ..ll. AU EEEEEEEEEEENEEEEEEES
livesin | | 2
conf(r) = T+ el | =1
Amsterdam e

r: livesin(X,Z) < isMarriedTo(Y, X), livesin(Y, Z)
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Horn Rule Mining from KGs

WARMER: confidence
CWA: Whatever is not known is false.

isMarriedTo hasBrother i i
Brad Ann John isMarriedTo 0

livesin livesin livesin livesin
\ . / \ S /
* s * o
Berlirt, Researcher Qﬁicago
':/4 “ 0’ "
ﬁo s k “ﬁ / \ T. ’ \ “‘
vesin i i
..q livesl . IsA IsA :o ivesin livesin®y
* *
”./ \“’/ \’0/ \ “’
isMarriedTo X i j
+'Bob 2, Alics DHave sMarriedTo o1arg %
4AEEEEEEEEEEEEEER IIII. -IIIIIIIIIIIIIIIIIII.
livesin | | 2
Conf(r) = W :Z
Amsterdam e

r: livesin(X,Z) < isMarriedTo(Y, X), livesin(Y, Z)
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Horn Rule Mining from KGs

AMIE [Galarraga et al., 2015]: PCA confidence
PCA: If at least 1 living place of Alice is known, then all are known.

isMarriedTo hasBrother i i
Brad Ann __ ™ John _isMarriedTo i ate

4 N/

livesin livesin

livesin livesin
<
* e =
.Berlin.‘ Researcher Chicago
4 *
&/ , Ve \ '\
:ﬁvesln s IsA IsA livesin
>/ “ \
:0 isMarriedTo % i i
" Bob 2T, Alicd, Dave SM2™edT Gjarg
A EEEEEEEEEEEEER EEEB
livesin
2
confpca(r) = |7|, =2
Amsterdam | | + |“‘ 3

r: livesin(X,Z) < isMarriedTo(Y, X), livesin(Y, Z)
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AMIE

Language bias: safe and closed rules
safe: every head variable must appear in the body
closed: every variable must appear in at least two atoms
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AMIE

Language bias: safe and closed rules
safe: every head variable must appear in the body
closed: every variable must appear in at least two atoms

Algorithm steps:

e maintain a rule queue, starting from an empty rule

e for each rule:

1. process the rule
- compute statistics: supp, confpca
- filter rules based on statistics and output rule

2. extend the queue by applying refinement operators
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Rule Learning

AMIE

Language bias: safe and closed rules
safe: every head variable must appear in the body
closed: every variable must appear in at least two atoms

Algorithm steps:

e maintain a rule queue, starting from an empty rule

o for each rule:
1. process the rule
- compute statistics: supp, confpca
- filter rules based on statistics and output rule

2. extend the queue by applying refinement operators
- add dangling atom
- add closing atom
- add instantiated atom (with constant)

42/94
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Refinement Operators

livesIn(X,Y) «

add dangli,:y \‘\>. .

livesin(X, Y) < actedIn(X, Z) livesIn(X, Y) < marriedTo(X, Z)
add closing atom livesin(Z,Y)

livesIn(X, Y) < actedIn(X, Z),

N
producedIn(Z,Y) SN

N
X /X

Further Topics
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Other Related Works

RDF2Rules [Wang and Li, 2015]
e Optimized for cycles (even more restricted language bias)

Ontology path finding [Chen et al., 2016]
o Parallelizations of the rule evaluation stage

Comparison of rule measures for KGs [Duc Tran et al., 2018]

Neural-based rule mining methods [Yang et al., 2017]

e reduce the rule learning problem to algebraic operations on
neural-embedding-based representations of a given KG

Further Topics
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Nonmonotonic Rule Mining
Nonmonotonic rule mining from KGs: OWA is a challenge!

isMarriedTo hasBrother i i
Brad Ann John isMarriedTo ¢ o

\

livesin livesin livesin livesin
Berlin Researcher Chicago
livesin IsA/ \|5A \

/ livesin

isMarriedTo i i \

Bob isMarr| @ @ isMarriedTo Clara
livesin

Amsterdam

r: livesin(X, Z) < isMarriedTo(Y, X), livesin(Y,Z), not researcher(X)
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Horn Theory Revision

Quality-based Horn Theory Revision

Given: IR LR R LN
. ., .
e Available KG . Ideal KG .
) (unknown) .
! \
! I
' 1
N i ‘
\ (Available KG ,
4
’

Further Topics
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Horn Theory Revision

Quality-based Horn Theory Revision

Given: IR LR R LN
i ~
e Available KG ,,’ Idial KG .
, (unknown) .
e Horn rule set \ )

Horn rule
predictions
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Horn Theory Revision

Quality-based Horn Theory Revision

Given: IR LR R LN
i ~
e Available KG ,,’ Idial KG .
, (unknown) .
e Horn rule set \ )

Horn rule
predictions

Revised rule
predictiéns
’

Find:
e Nonmonotonic revision of Horn rule set
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Horn Theory Revision

Quality-based Horn Theory Revision

Given: LeeTTTT L
. 7 ~ . .
e Available KG R (l'l‘r“iar‘:o"(ﬁ ) . Maximize

e Horn rule set '

Horn rule
predictions

Revised rule
predictiéns

Find: Minimize
e Nonmonotonic revision of Horn rule set
with better predictive quality
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Avoid Data Overfitting

How to distinguish exceptions from noise?

r1: livesin(X, Z) < isMarriedTo(Y, X), livesIn(Y, Z), not researcher(X)
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Avoid Data Overfitting

How to distinguish exceptions from noise?

r1: livesin(X, Z) < isMarriedTo(Y, X), livesIn(Y, Z), not researcher(X)
not_livesin(X, Z) + isMarriedTo(Y, X), livesin(Y, Z), researcher(X)

48/94



Motivation ~ Preliminaries  Rule Learning  Exception-awareness  Incompleteness  Rules from Hybrid Sources  Further Topics

Avoid Data Overfitting

How to distinguish exceptions from noise?

r1: livesin(X, Z) < isMarriedTo(Y, X), livesin(Y, Z), not researcher(X)
not_livesin(X, Z) + isMarriedTo(Y, X), livesin(Y, Z), researcher(X)

r2 : livesin(X, Z) < bornin(X, Z), not moved(X)
not_livesin(X, Z) + bornin(X, Z), moved(X)
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Avoid Data Overfitting

How to distinguish exceptions from noise?

r1: livesin(X, Z) <+ isMarriedTo(Y, X), livesin(Y, Z), not researcher(X)
not_livesin(X, Z) + isMarriedTo(Y, X), livesin(Y, Z), researcher(X)

r2 : livesin(X, Z) < bornin(X, Z), not moved(X)
not_livesin(X, Z) + bornin(X, Z), moved(X)

{livesIn(c, d), not_livesin(c, d)} are conflicting predictions

Intuition: Rules with good exceptions should make few conflicting predictions

4
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Horn Theory Revision

Quality-based Horn Theory Revision

-———

Given: e RN
_ L7 Ideal KG . Maximize
¢ Available KG ’ (unknown) N
1
e Horn rule set !
\
\ Revised rule Horn rule

predictiéns ) predictions

Find: Minimize
e Nonmonotonic revision of Horn rules, such that

e number of conflicting predictions is minimal

e average conviction is maximal

M. Gad-Elrab, D. Stepanova, J. Urbani, G. Weikum. Exception-enriched Rule Learning from Knowledge Graphs. ISWC2016

D. Tran, D. Stepanova, M. Gad-Elrab, F. Lisi, G. Weikum. Towards Nonmonotonic Relational Learning from KGs. ILP2016
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Nonmonotonic Rule Mining from KGs
Goal: learn nonmonotonic rules from KG
Approach: revise association rules learned using data mining methods

Learning rules

/ from data \

Inductive logic Data
programming mining

[Muggleton, 1990 ] *AA
First-order Association .
o theory rule learning ~ Clustering
Learning from Abductionin —refinement  (agrawal et al, 1993]
examples Learning from !08iC programs -y, pe) 1996)
interpretations [Eiter et al., 1992, A
[Law et al,, 2014] Kakas et :al., 2002]

Relational Learning from

[Goethals et al,, 2002, transactions
N ..~ Galarraga et al., 2015]
N
Learning nhonmonotonic
rules from KGs

7
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Approach Description

( Step 1 \ ( Step 2 1

Mine predictive Determine normal and
association rules in the abnormal substitutions
form of Horn clauses for every rule

( Step 3 \ ( Step 4 \

Compute exception Rank exception

candidates for every rule candidates and select
the best one per rule
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Exception Candidates

isMarriedTo hasBroth i i
Brad*,Ann asBrother ; hn isMarriedTo Kate

Ii>esln |ive4n Metropolitan IiVesin livedin
\J

&S e “isa N,/ r-normal

& . ~ * *

JBerlin®; CQhicade

R4 * .O *

&~
*
,ﬂ'ivéun o 7 Ne NS r-abnormal
*

. i .
e iSA iSA e livesin®y

Q / . Q .

- . ) . Q .
Bob _ isMarriedTo Al_‘; X' isMarriedTo \ ‘. /
. > e Rave " " " Clara%

Researcher hasFriend

. \ AEEEEEEEEEEEEEEEB
isA livesin

) o isMarriedTo .
Artist .’\i‘ *, Sue ", i
Hmsterdgm {
* *
* * \ R
: » S livesin livesin
ish ,'liveé;n *,
&
.
Lucy's, Beijin

.:M at isMarriedTo

not researcher(X)
r:livesin(X, Z) < isMarriedTo( Y, X) , livesIn( Y, Z) not artist(Y)
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Exception Ranking
rulet {eq1,ez,e3,...}

rule2 {es, e, e3,...}
rule3 {e1,ez,e3,...}

Finding globally best revision is expensive, exponentially many candidates! )

e Naive ranking: for every rule inject exception that results in the
highest conviction

e Partial materialization (PM): apply all rules apart from a given one,
inject exception that results in the highest average conviction of the
rule and its rewriting

e Ordered PM (OPM): same as PM plus ordered rules application
e Weighted OPM: same as OPM plus weights on predictions
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Experiments
Approximated ideal KG: original KG

Available KG: for every relation randomly remove 20% of facts from
approximated ideal KG

Horn rules: h(X, Y) < p(X,Z),q(Z,Y)
Exceptions: e1(X), e2(Y), e3(X, Y)

Predictions are computed using answer set solver DLV

ammmmml L Correctly removed
-7 ldealKG ~ false predictions:
P (unknown) AN P ’

IMDB: 57.75 %
YAGO: 85 %

Horn rule
predictions
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Experiments
Approximated ideal KG: original KG

Available KG: for every relation randomly remove 20% of facts from
approximated ideal KG

Horn rules: h(X, Y) < p(X,Z),q(Z,Y)
Exceptions: e1(X), e2(Y), e3(X, Y)

Predictions are computed using answer set solver DLV

Examples of revised rules:

Plots of films in a sequel are written by the same writer, unless a film is American
ry @ writtenBy (X, Z) < hasPredecessor(X, Y), writtenBy(Y, Z), not american_film(X)

Spouses of film directors appear on the cast, unless they are silent film actors
rp : actedIn(X, Z) < isMarriedTo(X, Y), directed(Y, Z), not silent_film_actor(X)
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Reasonable Rules

hasSibling
Pete —  — , Mary Anna

hasParent hasChild hasParent  haschild

John

Ben
hasParent hasSibling hasParent
hasChild Alice hasChild Bob

Mathew

Further Topics
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Reasonable Rules

hasSibling
Pete ., Mary Anna

hasParent  hasChild hasparent  naschild

/

John

Ben
hasParent hasSibling hasParent
hasChild Alice hasChild Bob

Mathew
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Reasonable Rules

v~ People with the same parents are likely siblings

hasSibling
Pete -, Mary Anna

hasParent hasChild hasParent  hasChild

/

John

Ben
hasParent hasSibling hasParent
hasChild Alice hasChild Bob

Mathew

ry . hasSibling(X, Z) < hasParent(X, Y), hasChild(Y, Z)
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Reasonable Rules

v~ People with the same parents are likely siblings

JEEENEEEEEENEEEEEEEEEEEEENg
*

- hasSibling o
hasSibling % .
Pete «Mary P Anna ,*
P K
. K]
i * *
hasParent hasChild fwgParent  hasChig
. K3
o N\g%./ o
S A0
John K .BeM
o Se ey *
*
o ’ hé
hasParent hasSibling .hﬁsParen! hasSiinng
> .
o *e
o M 1 *
Mathew hasChild .Mlce hasChild Bob °,

- %

- *
MssussssEsEsEEsEEEEEEnEnne

ri : hasSibling(X, Z) < hasParent(X,Y), hasChild(Y, Z)
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Reasonable Rules

v~ People with the same parents are likely siblings

JEEENEEEEEENEEEEEEEEEEEEENg
* *

hasSibling o K
Pete —”‘Mary Anna .*
2 4
® &
“ ..
; . R
hasParent hasChild StgParent  haschidt
k 3 2
e .’/’ Conf(r7) = — ——
John ., A ‘ ‘ TS 4
~Bend,
3
* *
o % “‘
hasParent hasSibling .hﬁsParem “‘
0 -
- Q‘
il . " *
Mathew hasChild .Mlce hasChild Bob "‘

o -
- *
AR NN NN NN EEEEEEEEEEEEEEEEE

ry . hasSibling(X, Z) < hasParent(X, Y), hasChild(Y, Z)
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Reasonable Rules

v~ People with the same parents are likely siblings

JEEENEEEEEENEEEEEEEEEEEEENg
* *

hasSibling % O
Pete .~ SMary Anna ¢
. 4
9 &
. o
a * *
hasParent  hasChild MtsParent  hasChild | ‘
e 0
N\ vy /0 conf(ry) = ———— =
% K o ‘ ‘+ £
; £
John .'.BeM
3
St ", confea(rr) o
N\ bhsParent s, CONipcall1) = -
hasParent hasSibling A \’ p \{A|hasSibling(X,,)€Q}\
0’ "
N ¥ o *
Mathew hasChild .Mlce hasChild Bob ¢"

o -

- *
MssussssEsEsEEsEEEEEEnEnne

ry . hasSibling(X, Z) < hasParent(X, Y), hasChild(Y, Z)

2
4
2

2
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Erroneous Rules due to Data Bias

hasChild
Pete M

ary
\works At educatedAt \

worksAt  educatedAt

/

Anna

worksAt

/worksAt educatedAt / educatedAt

Mathew___aschild__ Alice Bob

Further Topics
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Erroneous Rules due to Data Bias

hasChild
Mary Anna

educatedAl/ \

worksAt  educatedAt

Pete

worksAt

worksAt
worksAt
ducatecat / educatedAt

Mathew hasChild Alice Bob

Further Topics
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Erroneous Rules due to Data Bias

Rules from Hybrid Sources

Further Topics

X If one is studying in a university where you teach, he/she is your child

hasChild
Mary Anna

educatedAl/ \

worksAt  educatedAt

Pete

worksAt

worksAt
worksAt
ducatecat / educatedAt

Mathew hasChild Alice Bob

ro : hasChild(X, Z) < worksAt(X, Y), educatedAt(Z, Y)
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Erroneous Rules due to Data Bias

X If one is studying in a university where you teach, he/she is your child

SEEEEEEEENEEEEEENEEEEEEEEG

. *
hasChild s hasCpitd o
Pete ‘Mal’y y' )Anna B
% 7 o
. *
educatedA/ ’.\ / o
worksAt #worksAt  educateddt
. o
* \o' o
. . *
TUWien RV
* /‘0 "
* * *
,W' ksAt %
or
orksAt Y.
wi educatedAt g educated A,
0’ °,
*

i : hasChj *
Mathew__2schild :Nlce /B‘“ 3 Bob <,

-
Q .
AusEEEEEEEEEEEEEEEEEEEEEEER

ro : hasChild(X, Z) < worksAt(X, Y), educatedAt(Z, Y)
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Erroneous Rules due to Data Bias

X If one is studying in a university where you teach, he/she is your child

SEEEEEEEENEEEEEENEEEEEEEEG
*

hasChild . o

Pete Lkt Anna *
educatedA! °, *
worksAt / *worksAt educategA: || 2
“ S J— f—
| W\ conf(rz) = 181 T 4
TUWien *MPl2,
o Aok e,
RVARN (1) || 2
Gont orksAt s con ro) = .
worksAt educatedAt .7 educated\lﬂ’ pca |{£|hasChild(X,))€G}| 2
* *
) > *
Mathewﬂ,:m'ce Bob %,

-
Q .
AusEEEEEEEEEEEEEEEEEEEEEEER

ro : hasChild(X, Z) < worksAt(X, Y), educatedAt(Z, Y)
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Exploiting Meta-data in Rule Learning

Goal: make use of cardinality constraints on edges of the KG to improve
rule learning. J

build here! 0 missing

T. Pellissier-Tanon, D. Stepanova, S. Razniewski, P. Mirza, G. Weikum. Completeness-aware rule learning from KGs. ISWC2017.
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Cardinality Statements

e num(p, s): Number of outgoing p-edges from s in the ideal KG
e miss(p, s): Number of missing p-edges from s in the available KG
e If miss(p, s) = 0, then complete(p, s), otherwise incomplete(p, s)

_____
- =~ -~

Ann

John hasch,-,d \ o
\Mat available KG ! num(hasChild, john) = 3
1 miss(hasChild, john) = 1

! incomplete( hasChild, john)

’
’
N Mary ’

————————
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Cardinality Constraints on Edges

e Mining cardinality assertions from the Web [Mirza et al., 2016]
e “.. John has 2 children ...”

e Estimating recall of KGs by crowd sourcing [Razniewski et al., 2016]
e 20 % of Nobel laureates in physics are missing

e Predicting completeness in KGs [Galarraga et al., 2017]

e Add complete(john, hasChild) to KG and mine rules
complete(X, hasChild) < child(X)
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Incompleteness

Related Work

Learning rules

/ from data \

Inductive logic Data mining
programming
[Muggleton et al, 1990]

) Association  Frequent pattern
Learning from rule learning discovery
examples . [Agrawal et al, 1993] [Manilla et al, 1990]

Terminology
Learning from induction — /
interpretations || ehman et al, 2011 Relational

[Law et al, 2014] Sazonou et al, 2017]  [Goethals et al, 2002, Mining from databases

d'’Amato, 2012 with missing values

Galarraga et al, 2013] [Protaziuk ef al, 2007

" Minervini et al, 2014]
“a g g o
Completeness aware
rule learning

7
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Prediction Post-processing
Remove predictions in complete KG parts [Galarraga et al., 2017],
i.e., constraints are set on the output not the input

rule predictions
completeness

statements

incompleteness
statements
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Prediction Post-processing
Remove predictions in complete KG parts [Galarraga et al., 2017],
i.e., constraints are set on the output not the input

rule predictions
completeness

statements

incompleteness
statements

\ ideal ¢

L
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Prediction Post-processing
Remove predictions in complete KG parts [Galarraga et al., 2017],
i.e., constraints are set on the output not the input

rule predictions
completeness

statements

incompleteness
statements
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Prediction Post-processing
Remove predictions in complete KG parts [Galarraga et al., 2017],
i.e., constraints are set on the output not the input

rule predictions
completeness

statements

incompleteness
statements

\ . ideal ’
S KG ’ ‘

N--__f

Rules might be still erroneous.. What about other incorrect predictions? J
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Problem Statement

Given: completeness
statements
e KG

incompleteness

e numerical statements statements

\
\  target rule
\predictions

Find: rules which predict
. . ’
o “few” facts in complete areas  ~~_ idealKG .

~ =

e “many” facts in incomplete areas

Intuition: rank rules by taking into account numerical constraints on
edge counts in the ideal KG J
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Rule Predictions
npi(r): number of facts added to incomplete areas by r
npc(r): number of facts added to complete areas by r
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Rule Predictions
npi(r): number of facts added to incomplete areas by r
npc(r): number of facts added to complete areas by r

?
A ?
hasSibling T

miss(Mary, hasSibling) = 2

tasSibling

SusmmsppisssEEEEEnnnnnnnny
P A

* o
hasSibling & nad B
Pete — —  JeMary Anna ,*
“ ...
*
hasParent | . child Q

*
h‘a§Parenl hasChi{d
. D
L4
/ "x’,‘ / B

* . *
John .”Benl‘
0 QAN
* . e .
* [4 *
* *
N hAsParent .
hasParent hasSibling ’0. “‘
A .

*
*

- *
AusssssssssssssEsEEsEEEEEEE

§ % . -
Mathew hasChild :mme hasChild Bob *,
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Rule Predictions
npi(r): number of facts added to incomplete areas by r
npc(r): number of facts added to complete areas by r

?
A ?
hasSibling T

miss(Mary, hasSibling) = 2 suing

;-----;{;1-‘---------------;
i g

* o
hasSibling & nad B
Pete — —  JeMary Anna ,*
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*
h‘a§Parenl hasChi{d
* 4 .
4 N npi(ry) =

John IR -
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* » .
o *
N hasParent .
hasParent hasSibling ’o “‘
* *

Mathew

hasChild Mice _ hasChild  gop s,
*
4

*
*

- *
AusssssssssssssEsEEsEEEEEEE

ri: hasSibling(Z,Y) < hasChild(X, Y), hasParent(Z, X)

64/94



Motivation ~ Preliminaries  Rule Learning  Exception-awareness  Incompleteness  Rules from Hybrid Sources ~ Further Topics

Completeness Confidence

confeomp: do not penalize rules that predict new facts in incomplete areas
0 p p

||+ [a] = npi(r)

confeomp(r) =

¢ Generalizes standard confidence (miss(r) = 0)
o Generalizes PCA confidence (miss(r) € {0, +oc})
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Completeness Confidence Example 1

?
A ?
hasSiBIing T

miss(Mary, hasSibling) = 2

asSibling
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, *

. ;
hasSibling %\, 3
s «Mary Anna ,*
“‘ O..
hasParent i y
hasChild h’a§Parent hasChi
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N hasParent A
hasParent hasSibling K .,
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“
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Mathew___hasChild .Mme Bob ‘.‘

*
*
NN NN NN NN NN NN EEEEEE

Further Topics
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Completeness Confidence Example 1
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miss(Mary, hasSibling) = 2 s
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Further Topics
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ry - hasSibling(X, Z) < hasParent(X, Y), hasChild(Z, X)
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Completeness Confidence Example 1
hasSil;Iing "

miss(Mary, hasSibling) = 2

HasSibling
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Completeness Confidence Example 2

miss(hasChild, Alice) = 0
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Completeness Confidence Example 2

miss(hasChild, Alice) = 0
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Completeness Confidence Example 2
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Other Completeness-aware Measures

precisioncomp : penalize r that predict facts in complete areas

npc\r

recallcomp : ratio of missing facts filled by r

npi(r)

recalloomp(r) = W
s )

Further Topics

dir_metric : proportion of predictions in complete and incomplete parts

npi(r) — npc(r)

2 - (npi(r) + npc(r)) 0-5

dir_metric(r) =

wdm : weighted combination of confidence and directional metric

wdm(r) = (3 - conf(r) + (1 — ) - dir_metric(r)
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Incompleteness

Experimental Setup

2 Datasets:
o WikidataPeople: 2.4M facts over 9 predicates from Wikidata
e LUBM: Synthetic 1.2M facts

Creation of ideal KG:
o WikidataPeople: using hand made rules
e LUBM: using the OWL ontology
Steps:
e Generate num(p, x) using the ideal KG
e Remove triples randomly to create the available KG
e Mine r(X,Z) < p(X,Y),q(Y,Z) rules
¢ Gold standard: ratio of facts generated in the ideal KG
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Experimental Evaluation

WikidataPeople LUBM
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Knowledge Graph Completion

e Given: a KG, i.e., set of (s p o) facts and possibly text
e Find: missing (s p o) facts
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Knowledge Graph Completion

e Given: a KG, i.e., set of (s p o) facts and possibly text

e Find: missing (s p o) facts

Rules from Hybrid Sources

Further Topics

Rule-based approaches

Brad _'SVariedTo | pn,  hasBrother jopn Kate
livesin livesin livesin livesin
g .
* % s
Berlirt, Researcher Ghicado
. 0 S,
o 0 Q 0
S, / SN
Jtivesin . IsA \sA o ves®.
5 0 o livesin®,
Q . " .
‘sMarriedT ) e
+*Bob_“TTETT , pjics, Dave [sMarriedTo cyay *,
livesin
conf(r) = 2
= 2=
Amsterdam | ‘ + “-“

r: livesin(X, Z) + isMarriedTo(Y, X), livesin(Y, Z)

AMIE [Galarraga et al., 2015],
RUMIS [Tran et al., 2016], CARL [Tanon et al., 2017], etc.
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Knowledge Graph Completion
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Rules from Hybrid Sources

Further Topics

Rule-based approaches
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Knowledge Graph Completion

e Given: a KG, i.e., set of (s p o) facts and possibly text

e Find: missing (s p o) facts

Rule-based approaches
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RUMIS [Tran et al., 2016], CARL [Tanon et al., 2017], etc.

Statistics-based approaches

KG=>

TransE [Bordes et al., 2013], TEKE [Wang and Li, 2016,
RESCAL [Nickel et al., 2011], etc.
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Knowledge Graph Completion

e Given: a KG, i.e., set of (s p o) facts and possibly text

e Find: missing (s p o) facts

Rule-based approaches
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AMIE [Galarraga et al., 2015],
RUMIS [Tran et al., 2016], CARL [Tanon et al., 2017], etc.

Statistics-based approaches

KG=>

3 :><Dave livesin Chicago>
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TransE [Bordes et al., 2013], TEKE [Wang and Li, 2016,
RESCAL [Nickel et al., 2011], etc.
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Knowledge Graph Completion

e Given: a KG, i.e., set of (s p o) facts and possibly text

e Find: missing (s p o) facts

Further Topics

Rule-based approaches
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Motivation

Goal: Combine available techniques into a hybrid method

Rule-based approaches Statistics-based approaches
+ Interpretable - Hard to interpret

+ Limited training data - Alot of training data

- Local patterns + Global patterns

- Not extendable | + Extandable (e.g., text)

Proposed solution

Precompute KG embedding and treat the result as an oracle, which can
be queried any time during rule construction.

T. Vinh Ho, D. Stepanova, M. Gad-Elrab, E. Kharlamov, G. Weikum. Rule Learning from KGs guided by Embedding Models.
ISWC2018.
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Problem Statement

Feedback-driven rule mining

e Given:

e KG
e Embedding model
o Type of rules to be learned (e.g., with(out) negation, disjunctive, etc.)

e Find:
e a set of rules of the desired type, which agree with embedding model
on predictions that they make
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Related Work

e Constraints in embedding models

e Injecting logical formulas as constraints into embedding models
(output is still a set of predictions; unclear where they came from)
[Guo et al., 2017]

¢ Rule mining with external support

e Interactive pattern mining [Goethals et al., 2011],
[Dzyuba and van Leeuwen, 2017]

e Interactive association rule mining [Skrabal et al., 2012]
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Mine-Interact-Learn-Repeat

Mimic “mine-interact-learn-repeat” schema [Dzyuba and van Leeuwen, 2017]

@

/V
Mine Patterns Interact
Database «_ )

Repeat Learn User

User preferences
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Mine-Interact-Learn-Repeat

Mimic “mine-interact-learn-repeat” schema [Dzyuba and van Leeuwen, 2017]

Establish “user-in-the-loop” inspired interaction between the rule mining
algorithm and the embedding model

partial rule1

partial rule2

Interact
\ OO (6]
(o) O
(e} OO
@)
OOZOOO
Learn™ L

(Text-enhanced)
KG Embedding
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Mine-Interact-Learn-Repeat
Mimic “mine-interact-learn-repeat” schema [Dzyuba and van Leeuwen, 2017]

Establish “user-in-the-loop” inspired interaction between the rule mining
algorithm and the embedding model

partial rule1
partial rule2

brag_iaredlo g _hasscter o1 ariedto g Mlne |ntel’aCt
P
: o g\
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Research Questions

Q1 (Interact) What kind of feedback is required/possible
to obtain from the “black box” to organize convenient and effective
interaction process?
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Embedding-based Methods

e Intuition: For (s, p, 0) in KG, find s, p, 0 such that s + p ~ o
e The “error of translation” of a true KG fact should be smaller by a
certain margin than the “error of translation” of an out-of-KG one

Miami

livesin livesin

pd
Patti Jane Jack
N\ | /

childof childOf childOf

N

Kate
1

livesin

Chicago

78/94



Motivation  Preliminaries  Rule Learning  Exception-awareness  Incompleteness

Rules from Hybrid Sources

Embedding-based Methods

e Intuition: For (s, p, 0) in KG, find s, p, 0 such that s + p ~ o

e The “error of translation” of a true KG fact should be smaller by a

certain margin than the “error of translation” of an out-of-KG one

Miami

livesin livesin

pd
Patti Jane Jack
N\ | /

childof childOf childOf

N

Kate
1

livesin

Chicago

livesin

D E——

Chicago
Miami

Kate
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Further Topics
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Embedding-based Methods

e Intuition: For (s, p, 0) in KG, find s, p, 0 such that s + p ~ o
e The “error of translation” of a true KG fact should be smaller by a
certain margin than the “error of translation” of an out-of-KG one

1
Miami is a : livesl
major port city . (&
on the Atlantic 1
coast... ! Kate
: A
Miami | Jack Smith, a| |
famous US | Chicago
. . actor... ! S
livesin livesin , Miami =
e - 3
Patti Jane Jack ' . -
Embeddings have been AN | / ' Jack —
extended with . ; : ' Jane
-textual descriptions childof - childOf childof :
N\ l/ I
Chicago is the | Kate :
third most | '
populous city in| livesin :
the US... !
1
Chicago :
1
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Embedding-based Methods

e Intuition: For (s, p, 0) in KG, find s, p, 0 such that s + p ~ o
e The “error of translation” of a true KG fact should be smaller by a
certain margin than the “error of translation” of an out-of-KG one

Miami is a
major port city
on the Atlantic

livesin

D E——

While Patti and Jane are coast... Kate
living in Miami, Jaek prefers A
the largest district of the Miami Jack Smith, a
third most populous US city A famous US Chicago
li . actor... S
ivesin livesin =
-~ Miami 3
Patti Jane Jack -
Embeddings have been N ] / Patti
extended with . childOf childof Jack
-textual descriptions childOf chl Jane
-entity co-occurrences in text \ l /

..... Chicago is the | Kate
thirdmost | | rank(<JaeK livesin Chicago>) = 0.8
pop;]lgt:jsscny n| livesin rank(<Jack livesIn Miami>) = 0.6
Chicago rank(<Jack Ilvesln NewYork>) = 0.2
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Q1 (Interact)

Measure quality of r : p(X, Y) < B, based on the embedding model

e rely on average quality of predicted facts
1

le_ ~ |predictions(r)|
rule-mir(r) = 1 dictions(r)|

> rank(<sp o>)
<5 p o>Epredictions(r)
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Q1 (Interact)

Measure quality of r : p(X, Y) < B, based on the embedding model

e rely on average quality of predicted facts
1

le_ ~ |predictions(r)|
rule-mir(r) = 1 dictions(r)|

> rank(<sp o>)
<5 p o>Epredictions(r)

Example
livesin(X, Y) < actedin(X, Z), producedIn(Z, Y)
e rule predictions: <Jack livesin NY >, <Mat livesin Berlin>

rank(</Jack livesin NY >)+rank(<| Mat|livesin Berlin >)
2

rule_mrr(r)=
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(Q1) Interact
Measure quality of r : h(X, Y) < B, based on the embedding model

¢ rely on average quality of predicted facts estimated by embeddings
1
rule-mrr(r) = s >
INJ's,

hoen rank(s, h, o)

e combination of mrr with standard rule measures over KG
embed_conf(r) = X x conf(r) + (1 — \) = rule_mrr(r),
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(Q1) Interact
Measure quality of r : h(X, Y) + B, based on the embedding model

¢ rely on average quality of predicted facts estimated by embeddings

1 1
rule_mrr(r) = — _
! ") IN| s,h,Zo:eN rank(s, h, o)

e combination of mrr with standard rule measures over KG
embed_conf(r) = X\ * conf(r) + (1 — \) * rule_mrr(r),

e \: a weighting factor
e conf: descriptive quality based on the original KG
any other standard rule measure can be plugged in
o rule_mrr: predictive quality based on KG embedding
any embedding model including text-enhanced ones can be used

e more complex interaction, e.g., information theoretic measures?
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Research Questions

Q1 (Interact) What kind of feedback is required/possible
to obtain from the “black box” to organize convenient and effective
interaction process?

Q2 (Mine) How to adapt existing rule mining algorithms to account for
feedback?

Further Topics

Q3 (Learn) Can anything be learnt from the feedback provided by
embeddings?
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(Q2) Mine

Algorithm steps:

e maintain a rule queue, starting from an empty rule

e for each rule:
1. process the rule

2. extend the queue by applying refinement operators
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(Q2) Mine

Algorithm steps:

e maintain a rule queue, starting from an empty rule

e for each rule:

1. process the rule
- compute statistics: rule_mrr, embed_conf ...
- filter rules based on statistics and output rule

2. extend the queue by applying refinement operators
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(Q2) Mine

Algorithm steps:

e maintain a rule queue, starting from an empty rule

e for each rule:

1. process the rule
- compute statistics: rule_mrr, embed_conf ...
- filter rules based on statistics and output rule

2. extend the queue by applying refinement operators
- add dangling atom
- add closing atom
- add positive unary atom
- add exception unary atom
- add exception binary atom

82/94
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Refinement Operators

livesin(X,Y) «
add dangling atom \‘\’_ ..

livesin(X, Y) < actedIn(X, Z) livesIn(X, Y) < marriedTo(X, Z)

Further Topics

add closing atom livesIn(Z, Y)
livesIn(X, Y) « actedIn(X, Z), s w‘d exception atom
producedIn(Z, Y) \
/ livesIn(X, Y) « marriedTo(X, Z), livesIn(Z, Y)

X
S

e Exploit embedding to prune rule search space
o Generate rule language bias dynamically

J x not researcher(X)
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Open Questions

Q1 (Interact) What kind of feedback is required/possible
to obtain from the “black box” to organize convenient and effective
interaction process?

Q2 (Mine) How to adapt existing rule mining algorithms to account for
feedback?

Q3 (Learn) Can anything be learnt from the feedback provided by
embeddings?

o |deally, we want to learn the structure of most promising rules, i.e.,
the best rules have at most 5 atoms, 4 variables, etc..
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Experimental Setup

Datasets:

e FB15K: 592M facts, 15M entities and 1345 relations relations
o Wiki44K: 250M facts, 44M entities and 100 relations

Ideal graph: remove 80% of facts for every relation
Embedding models: TransE, HolE, SSP
For every dataset selected a model that works best

o Evaluate predictive capabilities of rules obtained by our system vs
others
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Incompleteness
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Further Topics

86/94



Motivation ~ Preliminaries  Rule Learning  Exception-awareness  Incompleteness  Rules from Hybrid Sources  Further Topics

Example Rules

Examples of rules learned from Wikidata

By default uni graduates are nationals of the country where the uni is located,
but not in the case of research institutions
ri = nationality(X, Y) < graduatedFrom(X, Z), inCountry(Z, Y), not researchUni(Z)

Script writers stay the same across sequels, but not for TV series
r> : scriptwriterOf(X, Y) < preceededBy (X, Z), scriptWriterOf(Y, Z), not tvSeries(Z)

Nobles are typically married to nobles but not in the case of Chinese dynasties
rs : nobleFamily(X, Y) < spouse(X, Z), nobleFamily(Z, Y), not chineseDynasty(Y')

4
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Commonsense Knowledge

“Al has seen great advances of many kinds recently, but there is one crit-
ical area where progress has been extremely slow: ordinary common-
sense.” [Davis and Marcus, 2015]

e Questions that are easy for people but hard for machines

e “Who is taller, Prince William or his baby son Prince George?”
e “Can you make a salad out of a polyester shirt?”

e “Can an elephant sit on a tree?”
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Commonsense Rule Induction from Hybrid Sources
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Commonsense Rule Induction from Hybrid Sources

dog car car garage

car

ddg garage
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Commonsense Rule Induction from Hybrid Sources

dog car car garage garage house
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Commonsense Rule Induction from Hybrid Sources

dog car car garage garage house house garden

car house

JOVA
ddg garage  garden
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Commonsense Rule Induction from Hybrid Sources

dog car car garage garage house house garden

Dog enjoying the garage
sun in the garden
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Reasoning over images: [Eiter and Kaminski, 2016], [Donadello et al., 2017], etc.
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Commonsense Rules from Text

e SHERLOCK [Schoenmackers et al., 2010]: Early attempt to learn
rules from open domain text extractions.

e [Gordon and Schubert, 2011]: Utilizes presuppositional discourse
patterns (such as statements with but, yet ... etc) to collect
conditional knowledge in the form of if-then rules.

e [Petrova and Rudolph, 2016]: Rules from consessional statements
“Although he is a researcher, he never moved.” leads to a rule
“Researchers normally move frequently.”

e [Dragoni et al., 2016]: Rules from legal documents

e KG + text?
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Other Rule Types to Consider

Disjunctive:
male(Y) V female(Y) < hasParent(X,Y)

Existential:
3Y hasParent(X, Y) « person(X)

Constraints:
1 < hasParent(X, Y), hasParent(Y, X)

Temporal constraints:
L < bornin(X,Y), after(Y, Z), studied(X, Z)
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Outlook Issues

Rules from hybrid sources

Complex rule types, e.g., numerical, constraints, datalog+-
Background knowledge

Causality and novel rule measures

Exploit external functions possibly as a blackbox

Rule learning from commonsense KGs

Optimizations

Further Topics
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