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ABSTRACT
Fact-checking is a crucial task for accurately populating, updat-

ing and curating knowledge graphs. Manually validating candidate

facts is time-consuming. Prior work on automating this task focuses

on estimating truthfulness using numerical scores which are not

human-interpretable. Others extract explicit mentions of the can-

didate fact in the text as an evidence for the candidate fact, which

can be hard to directly spot. In our work, we introduce ExFaKT, a

framework focused on generating human-comprehensible expla-

nations for candidate facts. ExFaKT uses background knowledge

encoded in the form of Horn clauses to rewrite the fact in question

into a set of other easier-to-spot facts. The final output of our frame-

work is a set of semantic traces for the candidate fact from both

text and knowledge graphs. The experiments demonstrate that our

rewritings significantly increase the recall of fact-spotting while

preserving high precision. Moreover, we show that the explanations

effectively help humans to perform fact-checking and can also be

exploited for automating this task.
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1 INTRODUCTION

Motivation and Problem. Knowledge Graphs (KGs) are large col-

lections of factual triples of the form ⟨subject predicate object⟩ (SPO)
about people, companies, places, etc. Projects like BabelNet [28],

DBpedia [5], Wikidata [38] and YAGO [36] have constructed KGs

with millions of entities and billions of facts. However, KGs also

contain doubtful if not incorrect SPO triples, as they are partly built

by automatic information extraction, crowd-sourcing, or methods

for KG completion using rules [16] or embeddings [29, 31, 40]. This

incurs the problem of validating if an SPO triple is correct or not, a

task that is often referred to as fact-checking or truth discovery [24].

Traditionally, fact-checking has been performed manually by

human reviewers but this is time-consuming. Therefore, with the

increase of false facts on the Web, the automation of fact-checking

is gaining more attention. Methods for automatic fact-checking

(e.g., [18, 24, 26, 30, 32]) proceed in two steps. First, they perform

fact-spotting by searching for occurrences of a fact candidate, such

as ⟨Sadiq_Khan citizenOf UK⟩, and possible alternatives, such as

⟨Sadiq_Khan citizenOf Pakistan⟩, in the Web sources. This is done

by expanding the predicate into paraphrases (e.g., "has nationality",
“has passport”) and searching for it jointly with the alias names of

the S and O arguments. Then, the extracted evidence (or counter-

evidence) is used to infer the truth value of the candidate fact.

Numerical scores produced by fully automated methods are not

adequate whenever the final decision is made by KG curators. For

humans, such scores are hard to understand or justify without

explanations. Some approaches (e.g., [12, 18]) attempt to show the

sources used in computing the scores as an explanation. Yet, the

collected syntactic clues using fact-spotting are often not sufficient

since textual sources are incomplete and biased in what is stated

explicitly. For instance, the citizenship of London’s mayor Sadiq
Khan would rarely be mentioned. In addition, some predicates (e.g.,
influencedBy) are ambiguous, and their interpretation is domain-

specific.

Proposed Approach. To better support KG curators in deciding

the correctness of the candidate facts, we propose a novel frame-

work for finding semantically related evidence in Web sources and

the underlying KG, and for computing human-comprehensible expla-
nations for facts. We refer to our framework, as ExFaKT (Explaining
Facts over KGs and Text resources).
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The key for detecting semantic evidence is intensional back-

ground knowledge in the form of rules, specifically, Horn rules of

the form H ← B1,B2, . . . ,Bn . For example,

citizenOf (X , Y ) ← mayorOf (X ,Z), locatedIn(Z , Y )
intuitively states that mayors of cities are normally citizens of coun-

tries where these cities are located. Such rules can be specified by

humans or automatically extracted from KGs using rule mining

methods (e.g., [17, 39]). As the latter may fall short of covering all

interesting situations, hand-crafted rules are a valuable asset. We

performed a user study with university students who were novices

to KGs, and obtained a good number of rules with low error rate in

less than an hour (Section 4.6).

We utilize rules to decompose a fact-spotting query into more

frequently stated and thus easier-to-spot related facts. This way,

we counter the reporting sparseness and bias. Moreover, rules can

encode domain-specific knowledge to better cope with ambiguous

predicates. Finally, rules combine knowledge from both textual Web

sources and the KG. For example, a rule could find the mayors of

cities in news articles and look up the countries of cities in the KG.

Given a set of rules and a query for a fact candidate, ExFaKT

rewrites the query into a set of subqueries. Whenever we find

evidence in the KG or text that the body of the rule holds, the

credibility of the head increases. This process creates semantic

traces that explain, in a human-readable format, why a fact is likely

to be true (or false).

A key difference between our setting and existing applications

of query rewriting (e.g., [34]) is that the latter assume that the data

is contained exclusively in an indexed KG. This is in contrast to our

scenario of interest, where some information partially exists in the

KG, while the remaining pieces of knowledge are to be extracted

from large and noisy text sources on-the-fly. Accounting for this,

our framework is particularly tailored towards reducing the cost

and uncertainty of the retrieval procedures.

Contributions. Our contributions are summarized as follows:

• We introduce ExFaKT, a framework for computing semantic

traces for facts in question from both KG and an implicit external

source in the form of a text corpora by utilizing Horn rules.

• We develop optimization strategies, whose target is an automatic

search for an effective rewriting plan based on our cost model.

• We evaluate ExFaKT over real-world KGs and rules from vari-

ous sources to illustrate the effectiveness of our rewriting strat-

egy. We also show the benefits of the computed explanations in

supporting human fact-checkers, and the viability of exploiting

explanations in automated fact-checking.

ExFaKT is available at https://www.mpi-inf.mpg.de/impact/exfakt.

2 PROBLEM STATEMENT
We start with providing background on KGs, rules, and fact-spotting.

Then, we describe the problem of using them along with text in

computing human-comprehensible explanations for query facts.

Knowledge Graphs. Let E and R be fixed sets of entities and

relations respectively. A knowledge graph (KG) G is a repository of

unary and binary facts (i.e.,p(s) andp(s,o)) encoding domain knowl-

edge (e.g., director (nolan), influencedBy(nolan, lucas)), where p ∈
R is a relation (predicate) and s,o ∈ E are entities (constants).

Rules. To enable constructing explanations from KGs and other

resources, we utilize sets of Horn rules, which we define below by

borrowing the concepts from the Datalog language [1].

A Horn rule is an expression of the form

H ← B1, . . . ,Bn (1)

where H ,B1, . . . ,Bn are the atoms of the rule, i.e., expressions of
the form p(X ) or p(X ,Y ), where p ∈ R and X ,Y are either enti-

ties or variables. We refer to head(r)=H and body(r)={B1, ...,Bn}
respectively as the head and body of r .

Example 2.1. For r from Section 1, head(r) = {citizenOf (X , Y )},
and body(r) = {mayorOf (X ,Z), locatedIn(Z , Y )}. □

Rules encode commonsense knowledge, e.g., capitals are located in

countries or constraints, e.g., a person cannot be born in two places.

Given a rule r of the aforementioned form (1) and a set I of facts,
we define the set of facts inferred by r from I as

r (I ) = {Hθ | B1θ , . . . ,Bnθ ∈ I }, (2)

where θ is a postfix operator which substitutes variables with

constants. We denote by ϵ empty substitutions, i.e., qϵ = q for

any q. Moreover, Π(I ) = ⋃
r ∈Π r (I ) is the extension to inferences

produced by all rules in Π. The output of multiple rule execu-

tions is recursively defined by setting Π0(I ) = I and Πi+1(I ) =
Π(⋃j ∈{0, ...,i } Π

j (I )). The set Π∞(I ) (called closure) contains all
possible inferences derived using Π on I .

Fact Spotting. Let textspot be a textual fact-spotting procedure,
which gets as input an atom q and a set T of textual documents

such as Wikipedia (textspot(q,T)), and outputs a set of tuples of

the form ⟨θ , s⟩, where qθ is a fact spotted in the text and s is a
textual string containing this fact.

Example 2.2. For the query q = directed(lucas, star_wars) and
the text T = {"G. Lucas, the director of Star Wars, signs..", "Nolan
got inspired by Star Wars", "Star Wars 1977 directed by Lucas.."},
textspot(q,T) returns {⟨θ , s = "G. Lucas, the director of Star Wars.."⟩,
⟨θ , s ="Star Wars 1977 directed by Lucas.."⟩}, where θ = ϵ . □

We define the set of all facts involving entities from E and re-

lations from R which can be extracted from the text T using the

syntactic fact-spotting procedure textspot by IT = {p(s,o) | s,o ∈
E,p ∈ R ∧ textspot(p(s,o),T) , ∅}.
Fact Explanations. Given a fact in question, a KG, text, and rules,

our goal is to compute a set of semantic traces or explanations as
we call them for a given fact, which are formally defined as follows:

Definition 2.3 (Explanation). Given a fact q, a KG G, text corpus
T and a ruleset Π, a set E ⊆ G ∪ IT of facts is an explanation for q
w.r.t. Π,G,T if q ∈ Π∞(E).

The presence of unstructured textual resources in the input

makes the problem of computing explanations particularly chal-

lenging. Naturally, a given fact q might have multiple explanations

or a single trivial one, i.e., q itself. Obviously, explanations as de-

fined above may be subsumed by others. Among all explanations,

ideally, we aim at computing non-trivial ones that are

(D1) concise, i.e., contain a small number of atoms;

(D2) close to the query, i.e., obtained by using few rules;

(D3) reliable, i.e., contain as many facts from the KG as possible,

since KGs are usually more reliable than text.
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3 EXFAKT FRAMEWORK
ExFaKT utilizes rules to compute explanations over the content of

KGs and textual resources. We first start with an overview of how

these explanations are computed. Then, we illustrate the technical

details underlying our framework.

3.1 Computing Explanations
Computing the entire KG closure is not feasible as it requires the

extraction of all possible facts from T . Thus, we proceed backwards,
i.e., we start from the input fact, and check whether any of the rules

can potentially produce such derivation. If so, then we move to

the body of the rule, and search for possible instantiations for each

body atom. This triggers a recursive process, where the new input

is constituted by the body atoms. The recursion stops in case no

rules can be found or all atoms are instantiated either by facts in the

KG or by text. In this last case, the rules produce new derivations

which are returned to earlier recursive calls.

We illustrate the overview of computing explanations using the

following example:

Example 3.1. Consider the following input

• a query q = influencedBy(nolan, lucas)
• a text corpus T composed of Wikipedia articles

• a KG G = {directed(lucas, star_wars), isDirector(nolan),
directed(lucas, amer_graffiti)}

• a ruleset Π = {r1, r2}, where
r1 : influencedBy(X , Y )←isDirector(X ), directed(Y ,Z),

inspiredBy(X ,Z);
r2 : inspiredBy(X , Y )←liked(X , Y ), isArtist(X ).

As q < G, and assuming that textspot(q,T) = ∅, ExFaKT utilizes

those rules in Π, such that Head(r) = influencedBy to explore the

potential explanations resulting in the set:

P={{isDirector(nolan), directed(lucas,Z), inspiredBy(nolan,Z)}}.
For this candidate, it holds that isDirector(nolan) ∈ G, hence, we
move to the second atom directed(lucas,Z). Grounding this atom
from the KG results in the updated set of candidate explanations

P = {{isDirector(nolan), directed(lucas, star_wars),
inspiredBy(nolan, star_wars)},
{isDirector(nolan), directed(lucas, amer_graffiti),
inspiredBy(nolan, amer_graffiti)}}.

We start processing the first explanation, and since the first two

atoms are in G, they are marked as found, and we move to the third

atom inspiredBy(nolan, star_wars). As this third atom is spotted in

the text, we get E1={isDirector(nolan), directed(lucas, star_wars),
inspiredBy(nolan, star_wars)}. Since all atoms in E1 were found, it
is added to the output set.

However, since the last atom in E1 was found in text which

is a noisy resource, we would still rewrite it, seeking for more

reliable evidences. In this case, r2 is used for rewriting leading to

E2 = {isDirector(nolan), directed(lucas, star_wars), isArtist(nolan),
liked(nolan, star_wars)}. Assuming that the last two atoms of E2
are spotted in T , we get E2 to be in the output set.

Analogously, we process the second explanation candidate in P ,
i.e., {isDirector(nolan), directed(lucas, amer_graffiti), . . . }. □

ExFaKT explanations are human-interpretable; allowing KG cu-

rators to judge the validity of the fact. They can also be used as input

features to automatically assess the candidate fact truthfulness.

3.2 Prerequisites
Besides the KG, ExFaKT requires two key resources, rules and fact-

spotting engine over textual sources, which are obtained as follows:

Ruleset Acquisition. In general, rules can be either automatically

extracted using tools such as [17, 37, 39], or manually specified by

domain experts as in the context of ontology engineering [4]. We

performed experiments to evaluate the effectiveness of using rule-

sets from both sources. We have also conducted a pilot experiment

to ensure the feasibility of manual rule construction where we

asked non-experienced participants to create useful rules. From

these experiments, we observed that adequate rules can be pro-

duced not only by KG curators (which are our target group), but

also by non-experts (more details in Section 4).

Fact-spotting Realization. ExFaKT utilizes the syntactic fact-

spotting subroutine textspot, defined above. In practice, similar

to [26, 32], it is implemented relying on a textual-search-based

method, in which the SPO query q is converted to textual repre-

sentation (i.e., verbalization) using paraphrasing dictionaries for

relations such as PATTY [27] and entity-mentions dictionaries for

entity name aliases. Then, q with its paraphrasing is issued to get

the documents containing it. Finally, a named entity recognizer,

e.g., [14], is utilized to collect entities from the documents and com-

pute the substitution θ . This versatile approach is easily scalable

without extensive training, but any other fact-spotting method can

easily be plugged in ExFaKT.

3.3 ExFaKT Algorithm
We identify two main operations in ExFaKT’s recursive process,

namely, bind and rewrite. The first retrieves answers for a given
query from the underlying data sources, while the second rewrites

a query into subqueries. We formally specify them below.

Bind. Prior to defining bind, we introduce some formal notations.

Let д be an atom, G a KG, and T a text corpus. We define ΣG(д) =
{σ | дσ ∈ G} and ΣT (д) = {σ | textspot(дσ ,T) , ∅} as the
sets of substitutions that result in answers to the query д from

the KG and text respectively. Every substitution σ ∈ ΣG(д) is
annotated with the metadata source[σ ] =KG, while every σ ′ ∈
ΣT (д) is annotated with source[σ ′] =TEXT; moreover, each σ ′ is
annotated with another metadata text[σT ] which contains the

string that mentions д in T (as returned by textspot ).
Metadata of substitutions is passed to atoms they substitute, e.g.,

if text[σ ] =X then text[дσ ] =X. In our procedures, we use another

two types of metadata, status[.], to mark atoms which are already

processed, and depth[.], to record the number of rewritings that

led to the atom at hand. Finally, metadata is not considered for the

equality of substitutions and atoms, i.e. two atoms can be equivalent

even if they are annotated with different metadata.

Definition 3.2. The function bind(д,G,T ) receives as input an
atom д, a KG G, and a text corpus T . It returns in output the set

Σ = {ΣG(д) ∪ {ΣT (д) \ ΣG(д)}}.
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Algorithm 1: Algorithm for computing explanations.

Input: fact q , KG G, text corpus T , ruleset Π, nonegative parameter

max_depth for ensuring termination

Output: set of explanationsO
1 function explain(q, G, T, Π)
2 depth[q] ← 0; status[q] ← TODO; P ← {{q }}; O ← {}
3 while P , ∅ do
4 Pick explanation E from P (i.e., E ∈ P )
5 P ← P \ {E }
6 if status[д] =FOUND for all д ∈ E then
7 O ← O ∪ {E } ▷We found a valid explanation.

8 else
9 Pick an atom д from E s.t. status[д] =TODO

10 NT ← process_дoal (д, E \ {д }, G, T, Π)
11 P ← P ∪ NT
12 return O
13 function process_goal(д, E, G, T, Π)
14 O ← ∅
15 Σ← bind (д, G, T)
16 TR ← {д }
17 for σ ∈ Σ do
18 a ← дσ
19 depth[a] ← depth[д]; status[a] ← FOUND

20 if source[σ ] =KG then TR ← TR \ {a }
21 O ← O ∪ {Eσ ∪ {a }}
22 for дr ∈ TR s.t. depth[дr ] < max_depth do
23 O ← O ∪ r ewr ite(дr, E, Π)
24 return O

Example 3.3. Let us assume that д = directed(lucas,Z), G =
{directed(lucas, star_wars)} and T =“Along with Star Wars, Lucas
has directed short documentaries Herbie, ...”. Then, ΣG = {σ1},
ΣT = {σ2}, where σ1 = {Z → star_wars}, σ2 = {Z → herbie},
Also, source[σ1] =KG, source[σ2] = TEXT, and text[σ2], store string
coordinates of films in T . □

Rewrite. The function rewrite moves the search space of the an-

swers for a given query from the rule’s head to its body by rewriting

an input query into a respective set of subqueries.

Definition 3.4. The function rewrite(g,E,Π) receives as input an
atom д, a set of atoms E and a program Π. It computes the set

Bд = {body(r )σдσE |r ∈ Π ∧ head(r )σд = д} where σд is a sub-

stitution that unifies the rule head with g and propagates the

substituted terms to the rule body, while σE renames among the

rest of the body variables those that appear in E into fresh ones.

Moreover, for each atom a in Bд the function sets status[a] =TODO,
depth[a] = depth[g] + 1 and returns the set {E ∪ a | a ∈ Bд}.

Example 3.5. For the input predicate д = inspiredBy(nolan,Z),
the intermediate explanationE = {isDirector(nolan), directed(Y ,Z)}
and the rulesetΠ={r2 : inspiredBy(X , Y )← liked(X , Y ), isArtist(X )},
the function rewrite(g, E,Π) first computes Bд = body(r2)σgσE ,

where σд = {X → nolan,Y → Z } and σE = ϵ , since σд already

handled all variables appearing in body(r2). Finally, in the output

we obtain E = {isDirector(nolan), directed(Y ,Z), liked(nolan,Z),
isArtist(nolan)}, where for every atom a ∈ Bд , the status is assigned
as status[a]=TODO, and the depth as depth[a] = depth[g] + 1. □

Main Procedure. Algorithm 1 shows the main procedure underly-

ing ExFaKT. Our procedure takes as input a query q, a KG G, a text
corpus T , a ruleset Π and a global parameter max_depth specifying

a maximum number of allowed rewritings to ensure termination,

and as output provides a set O of explanations for q. Initially, the

status of the input query is set to TODO, and the set P of potential

explanations is initialized with {q}. In (3) the algorithm iterates

over the set P of potential explanations. Explanations E ∈ P , all of
whose atoms have status FOUND, are moved to the output set O in

(7). For other candidate explanations, atoms with the status TODO
are processed by the procedure process_goal.

Procedure process_goal takes as input an atom д and first re-

trieves all substitutions of variables to constants that result in an-

swers to д in the KG and text using bind function and copies д
into the setTR (to be rewritten). Then, it iterates over the retrieved

substitutions and sets the depth of every obtained answer (a) to the
one of д and the status to FOUND in line (19). After that, the answer

is added to the existing atom in the current explanation (E), which
is included in O (line 21).

Lastly, process_goal rewrites the input query using the rules in

the program by invoking the function rewrite. Notice thatTR might

be empty: This occurs if д is a fact, which was verified in the KG.

In this case, we do not need to rewrite it, since the fact is already

explicitly stated; thus we remove it from TR in line (20).

Note that since no restriction is put on the form of allowed

rules, Algorithm 1 might not terminate. To avoid this, we bound

the number of rewritings using themax_depth parameter, so that

the algorithm always terminates. As output, Algorithm 1 returns

explanations for the input candidate, which is a property formally

stated in the following theorem:

Theorem 3.6. Let G be a KG, T a text corpus, Π a program, q
an input fact, and O = explain(q,G,T ,Π). If E ∈ O then E is an
explanation of q w.r.t. Π,G,T .

Optimizations. Often, we do not need to calculate all explanations;
few relevant ones are sufficient for establishing the truth value of a

fact in question. To improve the performance, we introduce anytime

behavior and incrementally collect new explanations as they are

added to the output set (line 7 of Algorithm 1). In this new setting,

we can stop the algorithm whenever it has returned satisfactory

explanations, but it is crucial that the most relevant explanations

based on the criteria (D1)-(D3) from Section 2 are computed first.

Example 3.7. If influencedBy(nolan, lucas) fromEx. 3.1 was found

in text, then E0 = {influencedBy(nolan, lucas)} would be the most

concise explanation, since it contains only a single atom. Moreover,

for E1 and E2 from the same example we have that E1 is closer to
the query than E2, since less rules were used to produce E1. If there
is another explanation E3 which equals to E2 but with star_wars
substituted by Herbie and directed(lucas, herbie) is found in text,

it holds that E2 is more reliable than E3, since E2 contains fewer
atoms from text sources. □

Our optimizations along these lines affect two operations: the

explanation selection and the atom selection criteria.

Explanation Selection Criterion. In line 4, Algorithm 1 selects

one explanation to be processed from those in P . To prioritize the

processing of promising explanations we change the order in which

they are picked based on the following criteria: (i) we favor shorter
explanations, i.e., explanations with the lowest number of atoms

(D1); (ii) we favor explanations produced with fewer rewritings by
picking the query with the smallest depth value (D2).
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Atom Selection Criterion. In line 9 of Algorithm 1, a naive strat-

egy would always pick the first atom in E; resulting in a huge search
space. To counter this, we first process atoms without variables.

Then, we pick atoms with some constants and keep those with only

variables till the end. Moreover, to favor explanations that can be

proven from the KG (D3), we prefer atoms with KG substitutions.

4 EVALUATION
We start in Section 4.2 with evaluating the effectiveness of ExFaKT

with respect to the increase in the coverage of the collected pieces

of evidence while preserving their precision (as shown later in

Section 4.3). Additionally, we present a user-study which targets

assessing the quality of the explanations and their readability and

usefulness for human-reviewers in Section 4.3. Later in Section 4.4,

we demonstrate the effectiveness of ExFaKT using automatically

mined rules as input. Moreover, a showcase for integrating ExFaKT

into the pipeline of a fully automated fact-checking system is given

in Section 4.5. Finally, Section 4.6 reports the results of our study

on the feasibility of manual rule construction.

4.1 Experimental Setup
Datasets. We conducted our experiments on two datasets:

• YAGO-based benchmark, which consists of 300 true candidate

facts, uniformly distributed over six relations (listed in Table 1).

The instances of the first three relations were randomly selected

from YAGO [36]. The other three relations do not appear in

the KG; hence, their instances were semi-automatically curated

using simple logical rules. Then, 50% of the facts used during their

creationwere removed at random; thus, intentionally introducing

incompleteness in the KG and hence the need for textual sources.

• DBpedia-based benchmark is a subset of the dataset proposed

by [35] containing facts over the predicates, for which AMIE,

a state-of-the-art rule mining system [16], managed to learn at

least 5 rules having them in the head. This benchmark contains

four predicates with a total of 1763 correct facts.

Rules. We constructed a ruleset for each benchmark as follows: For

the YAGO-based benchmark, we selected rules from the top-ranked

ones mined by AMIE from YAGO, and added further rules with

new predicates that do not exist in the KG. We refer to these new

predicates as text-based, as they need to be verified from the text.

This way we obtained 20 rules on average for each head predicate.

For the DBpedia-based benchmark, we used the rules mined by

AMIE from DBpedia without altering them. Each head predicate

in the dataset obtained a set of 100 related rules on average. This

setup is designed to study the case of fully relying on automatically

learned rules.

Knowledge Graph. We used YAGO3 [36] asKG in all experiments.

YAGO3 contains around 5.5M facts and 35 relations. This KG is

geared towards precision rather than recall, allowing us to treat it

as a trusted resource.

Text Corpora. As for text, we experimented with two different

sources: (i)Wiki which contains 5.5M Wikipedia articles, whose

textual parts were split into sentences and indexed as separate

documents using Elasticsearch [19] and (ii)Web constructed relying
on the Bing API for searching in Web pages.

Table 1: Recall of baselines vs. ExFaKT configurations
B-Wiki B-Web KG Wiki Web KG+Wiki KG+Web

influences 0.30 0.24 0.00 0.38 0.88 0.42 0.92

isPolitOf 0.02 0.16 0.26 0.18 0.88 0.42 0.92

wroteMusic 0.08 0.28 0.00 0.10 0.72 0.24 0.78

mayorOf 0.66 0.9 0.00 0.66 0.90 0.66 0.90

actedWith 0.26 0.52 0.18 0.26 0.60 0.54 0.94

countryWon 0.18 0.38 0.00 0.18 0.38 0.70 0.92

Total 0.25 0.41 0.07 0.29 0.73 0.50 0.90

Baselines. We compared against three baselines:

• B-Wiki: a method that syntactically spots candidate facts and

their paraphrases in the Wiki corpus.

• B-Web: a method that retrieves fact occurrences in the Web

using the Bing search API and post-filters the results to obtain

the relevant text snippets (this baseline was extracted from [32]).

• B-Search: a simulation for a user issuing verbalized versions of

candidate facts to commercial search engine and retrieving the

top-5 results.

Configurations. To analyze the influence of the various sources,

we ran ExFaKT with the following

• KG: Rules are used over the KG facts only.

• Wiki: Rules are used only with syntactic fact-spotting over the

Wiki corpus, i.e., no KG facts are exploited.

• Web: Rules are used only with fact-spotting over the Web, i.e.,
no KG facts are used.

• KG+Wiki: Rules used together with both Wiki corpus and KG.

• KG+Web: Both Web corpus and KG are used with the rules.

In all of the experiments, we set the parameter max_depth to 5

unless otherwise stated.

4.2 Explanations Coverage
Experimental Details. In this experiment, we show the effective-

ness of ExFaKT in retrieving more explanations for candidate facts.

We used the YAGO-based dataset and compared all five configura-

tions of our method against the baselines. We computed the recall
of each configuration as the ratio of the queries for which at least

one explanation was retrieved.

Results. Table 1 reports the recall for each predicate in the dataset

and the recall of the whole dataset as the total. These results show

that ExFaKT configured with KG+Wiki or KG+Web almost doubled

the recall of the baselines B-Wiki and B-Web respectively, whereas
rules on the KG alone (KG) have the worst recall. Similarly, config-

urations over text corpora alone, namely Wiki or Web could not

compensate the absence of the KG.

Observe that since mayorOf is prominent enough to be easily

spotted in the text, there is no increase in the recall for this predicate.

In contrast, our method is particularly successful for countryWon,
since the baselines fail to spot facts over this newly created pred-

icate. Overall, the results demonstrate that while neither the KG

nor textual sources alone are sufficient to collect strong evidence,

their combination doubles the recall, and is doubtlessly the best

configuration. Moreover, comparing KG+Wiki with KG+Web shows
that increasing the size of the textual corpus enhances the results.
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Table 2: Examples of explanations produced by ExFaKT

Fact candidates Explanations

countryWon(guatemala, nobel) isCitizenOf (miguel_asturias, guatemala), source = TEXT, text=“Asturias is a Nobel Prize-winning Guatemalan poet. . . ”

hasWonPrize(miguel_asturias, nobel), source = KG

influences(s_fitzgerald, r_yates) wrote(s_fitzgerald, the_great_gatsby), source = KG
read(r_yates, the_great_gatsby), source = TEXT, text=“Yates, called "The Great Gatsby" the most nourishing novel he read.”

Table 3: Mechanical Turk task statistics

Config Candid. Explan. Question 1 Question 2

Yes No Cannot Yes No

B-Wiki 75 75 0.87 0.04 0.10 0.90 0.10

B-Web 122 122 0.85 0.0 0.15 0.80 0.20

B-Search 228 228 0.58 0.01 0.42 0.55 0.45

KG+Wiki 159 311 0.64 0.35 0.02 0.63 0.37

KG+Web 267 1021 0.82 0.01 0.17 0.74 0.26

Examples. As anecdotal evidence, Table 2 shows two examples

of candidate facts for which our approach managed to compute

supporting explanations even though fact-spotting failed to find

direct mentions for them. The first fact to be spotted is about the

country Guatemala and the predicate country has won prize. Our
method was able to find positive evidence for Guatemala winning

the Nobel prize by spotting the Nobel laureate Miguel Asturias,

and combining this information with the fact that he is a citizen of

Guatemala.

In the second example, we were able to extract an evidence about

the influence of a writer on another one by spotting the fact that the

latter read books written by the former. Note that here the relation

read is not present in the KG but mentioned in the Wikipedia text.

4.3 Explanations Quality and Usefulness
In this experiment, we evaluate the quality of the retrieved explana-

tions by estimating the precision of the results and their readability

based on human judgment.

Experimental Details. We designed a Mechanical Turk [6] task

to collect human judgments on the quality of the computed explana-

tions. To facilitate readability, we translated our task into a natural

language question. The participants were shown a candidate fact

and some extracted explanation (i.e., in a human readable format),

and their task was to judge the correctness of the fact relying only

on the provided information.

Since it may be hard for non-experts to give a solid judgment,

the participants were asked to choose one out of five answers:

(i) "For sure, yes", (ii) "Probably, yes", (iii) "Probably, no", (iv) "For
sure, no", or (v) "Can not judge". As a confirmation, they were also

asked for their explicit feedback on the usefulness of the provided

information. Participants were provided with a set of instructions

and clarification examples covering all possible cases. Each record

was assigned to 5 different participants.

We evaluated the top-5 explanations produced by ExFaKT’s con-

figurations KG+Wiki and KG+Web on the YAGO-based dataset as

reported in Section 4.2. We compared them to the results of the

baselines B-Wiki and B-Web respectively. Additionally, we included
the results of the third baseline B-Search for annotations.

Evaluation Metrics. The target of this experiment is to assess

the relevance of the extracted traces for the query by relying on
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Figure 1: Precision@k computed using human annotations

whether participants were able to make a correct judgment. To this

end, we used the annotations given by the participants to perform

majority voting on three categories: correct judgment (i.e., yes case)
incorrect judgment (i.e., no case), and unable to judge. Tie cases

are randomly broken. Explanations with a majority of the correct
judgment are counted as relevant.

We calculated Precision@K, which is defined as the ratio of

candidate facts for which our method returned one or more relevant
explanations to those that have at least one (relevant or irrelevant)

explanation. Finally, we computed the f1 score and the mean
average precision at top-5 (MAP@5).

Results. Table 3 reports the sizes of each dataset and the distri-

bution of the majority voting over the classes. The second column

shows the number of candidate facts involved in the evaluation,

while the third column indicates the total number of explanations

produced for all of the candidates. The annotations demonstrate a

fair Fleiss Kappa [20] agreement of 0.35 for the Wiki-based configu-

rations and a slight agreement of 0.03 for Web-based configurations,

reflecting the difficulty and subjectivity of the task in the presence

of noisy results. Deeper analysis showed that the lower the ratio
of atoms binded from text, the easier it is to judge the explanation

correctly. While reducing the number of rules has a similar effect,

increasing the the number of atoms in the explanation increases

human-comprehensibility of explanations.

Observe that the average time required for the annotator to judge

the truthfulness of a fact candidate based on explanations retrieved

by our method (27 seconds) was almost half the time required to

judge it based on standard Web search results (51 seconds), yet the

quality of the judgments in the former case is higher. This illustrates

the benefits of using our method for increasing the productivity

and accuracy of human fact-checkers.

Figure 1 shows the results for Prec@k for k = 1, 2, 3. First, we

observe that the Prec@1 of ExFaKT’s configurations KG+Wiki and
KG+Web are 6% and 2% lower than for the respective baselines

B-Wiki and B-Web which both have precision of 0.85, yet all config-

urations have significantly higher precision compared to the case

when a traditional commercial search engine was exploited as for
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Table 4: Recall with automatically mined rules
B-Wiki KG Wiki KG+Wiki

vicePresident 0.96 1.00 0.96 1.00

diedIn 0.46 0.11 0.51 0.56

nationality 0.64 0.08 0.68 0.68

graduatedFrom 0.14 0.11 0.14 0.30

Total 0.20 0.14 0.21 0.35

B-Search. From the figure we can observe that KG+Web exceeds the
baselines starting from top-2 with Prec@2 = 0.95 and KG+Wiki
overcomes the baselines for the top-3 explanations. The results also

indicate that the precision for the both configurations KG+Wiki
and KG+Web consistently increase till they achieve Prec@5 of 0.87

and 0.97 respectively. Furthermore, MAP@5 for KG+Web is 0.84,

which exceedsMAP@5 = 0.77 of KG+Wiki.
Since our method doubles the recall (Table 1), it also significantly

enhances the F1 score achieving 0.64 and 0.93 with KG+Wiki and
KG+Web compared to 0.4 and 0.55 for the corresponding baselines.

4.4 Extracting Explanations using Mined Rules
So far we have considered manually refined rules. We now evaluate

ExFaKT using automatically learned, hence noisier rules.

Experimental Details. We used the DBpedia-based dataset with

the ruleset automatically mined by AMIE from DBpedia. These

rules contain many predicates that are not in YAGO; thus, textual

sources are vital. We compare the recall of KG+Wiki against the
configurations B-Wiki, KG, andWiki. For this experiment, we set

the rewriting depthmax_depth to 2 to reduce propagation of noisy

rule rewritings. We computed Prec@5,MAP@5 and f1@5 scores

in the same way as in Section 4.3.

Results. Table 4 reports the recall for the fact candidates over four
different predicates.We observe that ourmethod improves the recall

for all predicates, with the best result obtained for graduatedFrom,

where the recall has even doubled. Based on human annotations, we

obtained Prec@5 = 0.84,MAP@5 = 0.84 for B-Wiki and Prec@5 =

0.64,MAP@5 = 0.56 for KG+Wiki. Despite that, KG+Wiki configu-
ration achieved a better f1 with f1@5 = 0.45 compared to a lower

value f1@5 = 0.32 obtained by B-Wiki. These results demonstrate

the effectiveness of ExFaKT also when automatically mined rules

are used as input.

4.5 Rule-based Automatic Fact-checking
In this experiment, we focus on the viability of exploiting extracted

explanations in automated fact-checking. To this end, we imple-

mented a simple automated fact-checker that uses the explanations

to determine whether a given fact should be supported or rejected.

For the sake of computing numerical scores over explanations,

we define the notion of explanation confidence as

confidence(E) = 1

|E |
∑
a∈E

trust(source[a])
depth[a]

where E is an explanation, trust(·) is 1 if source[a] is KG, or 0.5 oth-
erwise, representing the trust in the source, and depth[a] is number

of rewritings performed to obtain the atom as in Section 3. Then, for

each fact candidate f = p(a,b), we exploit two rules sets Π+ for sup-
porting it and Π− for refuting it. Then, we compute the supporting

explanations set O+ = explain(p(a,b),G,T ,Π+), and another set

Table 5: Rule-based fact checking vs prior methods

Method DBpedia-Based Politicians

Recall Accu. Recall Accu.

ExFaKT (KG+Wiki) 0.68 0.93 0.83 0.81

TruthFinder [41] 0.66 0.97 0.73 0.79

Lang.-Stance-Credibility (LSC) [32] 0.99 0.59 1.00 0.55

of refutation evidence O− = explain(not_p(a,b),G,T ,Π−) where
not_p is newly introduced predicate representing the negation of p.
Then, we compute the truthfulness score for f as:

truth_score(f ) = quality(O+) − quality(O−)
where quality(·) is the average confidence of explanations belong-
ing to this set. The truth score acts as a threshold value which

determines whether the fact should be accepted or rejected.

Dataset. We applied the automated fact-checking on two datasets

containing both correct and erroneous candidate facts.

• Politicians benchmark [26] with 275 candidates, which contains

for each true fact a set of its alternatives. For fairness, we removed

the existing candidates from the KG which would trivially sup-

port the input facts. For this dataset, we used a ruleset of both

manually specified and automatically mined rules by AMIE.

• The previously used DBpedia-based dataset enriched by adding

a set of erroneous alternative instances from [35] for each true

fact. In this case, we used the set of automatically learned rules

from Section 4.4 extended with rules for not_p for each predicate

p in the given dataset.

Experimental Details. The explanations were computed using

the KG+Wiki configuration. We compare the results of our simple

ExFaKT-based fact checker to two state-of-the-art approaches:

• TruthFinder [41] which uses a voting approach over the retrieved

documents weighted based on their sources.

• Language-Stance-Credibility (LSC) [32] which decides the truth-

fulness of a claim based on language, stance, and reliability of

the evidence sources.

We considered the first 5 explanations retrieved by the KG+Wiki
configuration per supporting O+ and refuting O− sets respectively.
Note that LSC collects clues from the whole Web, while TruthFinder
and ExFaKT rely only on the Wikipedia text corpus.

Evaluation Metric. In order to compare the performance of the

various approaches, we grouped the true facts with their alter-

natives and ranked the elements of the group using the scoring

function of each method. For instance, let ft be a true fact and

ff1 , . . . , ffn be alternative false facts. In this setting, each method

assigns a score value to every fact thus producing a ranking. Af-

ter the ranked list is computed, we compute the recall as the

number of groups where the method at hand was capable of re-

turning some truthfulness scores for the true fact. Then, for each

given group Gi = { ft , ff1 , . . . , ffn }, we compute the accuracy as

Accuracy(Gi) = 1

n
∑
ffj ∈G [score(ft ) ⩾ score(ffj )] where [·] is the

Iverson bracket and score(f ) is the truthfulness score computed by

each method. This accuracy estimates the probability that the true

fact ft has the highest rank among its alternative facts as in [26].

Results. Table 5 shows the results of the average accuracy (Accu.)
for all groups of facts and recall of our method compared to the
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Table 6: Statistics for manually specifying rules experiment
Strong Valid Invalid Total

Supporting Rules 37 22 10 69

Refutation Rules 10 12 5 27

Total 47 34 15 96

competitors. According to the first two rows, we can observe that

our method is on par with the accuracy of TruthFinder, despite

the simplicity of our ranking function. Moreover, our method is

advantageous, as it offers clear explanations of the results, and has a

better recall compared to TruthFinder, especially for the politicians

dataset. Moreover, importantly while LSC is utilizing the benefits

of scrapping the whole Web, our system still achieves significantly

higher accuracy. We analyzed the cases where our method failed,

and observed that some of the relations in the test set require more

complex rules to be properly supported or refuted. For instance,

this dataset contains facts over such predicates as isMarriedTo or

holdsPosition, which are better explained using temporal rules, as

they change over time (e.g., one person can be married to multiple

persons, but not at the same time). Extending our approach to

support also rules of this kind is a promising future direction.

4.6 Rule Specification
In addition to automaticallymined rules, our approach benefits from

hand-crafted rules. In this experiment, we examine the feasibility

and cost of this kind of rule specification.

Experimental Details. We asked 10 students from different fields

to create rules. Most of these had no prior exposure to logical rules

or KGs; so we gave them 20 minutes of explanation on KGs and

Horn rules. Each participant picked 5 predicates from a list of KG

predicates, and was asked to write at least one supporting rule and

at least one refuting rule. The participants were given 30 minutes

to create the rules.

Evaluation Metric. We classified the resulting rules into three

categories: (i) strong rules that represent causality and generalize

(e.g., politicianOf (X , Y ) ← electedIn(X ,Z), in(Z , Y ).); (ii) valid rules
that capture typical correlations but may be tied to specific cases

(e.g., citizenOf (X , Y ) ← grewuUpIn(X , Y )); (iii) invalid rules that
are logically flawed or do not properly reflect typical situations

(e.g., not_memberOf (X , Y ) ← leader(X , Y )). We consider strong
and valid rules as suitable.

Results. Within 30 minutes, the 10 participants created 96 rules for

23 different head predicates (i.e., with average of 3 minutes per rule).

Table 6 shows their distribution over the three categories. More

than half of the rules were strong, and more than 80% were strong

or valid. The remaining incorrect rules could be filtered out by

having the same participants judge the validity of each others’ rules,

using a voting scheme. This study clearly demonstrates that manual

construction of rules is not a bottleneck, and can be accomplished

by informed crowdsourcing at fairly low cost.

5 RELATEDWORK
Fact-checking. Starting with TruthFinder [41] and T-Verifier [23],

text-based fact-checking has become an established research field

[24]. The majority of the state-of-the-art methods (e.g. [11, 18, 22,

25, 26, 32]) perform joint estimation of the fact’s truth value based

on the credibility of the fact candidates syntactically spotted in

text and the trustworthiness of the underlying sources. These ap-

proaches, unlike ours are purely syntactic, i.e., they ignore domain

background knowledge often vital for inferring the fact in question.

A query language to assess the validity of claims in multiple

contexts over structured information sources has been proposed in

[21]. Other works (e.g., [2, 9, 33, 35]) estimate the support for factual

statements by mining and ranking connectivity patterns in KGs.

In contrast to ours, all of these approaches ignore textual sources.

The inclusion of textual sources make the execution of bottom-up

procedures (like the well-known chase in [21]) problematic, as they

require the execution of fact-spotting for any possible fact, which

is unfeasible due to the high cost of this procedure. This problem

has been circumvented by our top-down approach. The same holds

for less related works that explain semantic connections among

given KG entities (e.g., [3, 15]).
Checking facts jointly over KGs and textual resources has been

explored in the context of natural language question answering

in, e.g., [10], where given a relation and an entity (i.e., subject or

object), the task of retrieving a set of other entities that form a

true triple is solved using neural networks. Our work differs from

[10] in several aspects. First, instead of retrieving entities we are

given a fact to be checked. Second, we do not merely estimate the

truthfulness of the fact, but also output human-readable semantic

traces that support or refute it, while the output of [10] cannot be

explained to humans.

Inductive and Deductive Reasoning over KGs. Mining rules

for KG completion (e.g., [8, 16, 37]) is orthogonal to our work.

Indeed, instead of inducing rules from KGs, we are rather interested

in exploiting them effectively for fact-checking over both structured

and unstructured (textual) resources.

Logical query rewriting is well-studied in databases, e.g., for the

Datalog language. This line of research (see [7] for an overview)

focused on structured databases, though. In contrast, we consider

also external sources in text form, which introduces additional

challenges and requires optimizations. Deductive reasoning over

multiple external sources has been explored, e.g., in [13]. However,

joint query rewriting over structured and textual sources has not

been studied in this context.

6 CONCLUSION
Prior methods for automatic fact-checking focused on producing

final truthfulness scores, which are hard to interpret for humans.

Moreover, existing approaches spot solely explicit occurrences of

facts in text. In this paper, we moved forward towards deriving

more human understandable evidence based on background knowl-

edge in the form of rules. ExFaKT utilizes these rules to collect

pieces of evidence from both KGs and textual sources. The con-

ducted experiments demonstrate the usefulness of our method for

supporting human curators in making accurate decisions about the

truthfulness of facts as well as the potential of our explanations for

improving automated fact-checking systems.
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