
Tracy: Tracing Facts over Knowledge Graphs and Text
Mohamed H. Gad-Elrab

Max-Planck Institute for Informatics
Saarland Informatics Campus, Germany

gadelrab@mpi-inf.mpg.de

Daria Stepanova
Bosch Center for Artificial Intelligence

Renningen, Germany
daria.stepanova@de.bosch.com

Jacopo Urbani
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

jacopo@cs.vu.nl

Gerhard Weikum
Max-Planck Institute for Informatics

Saarland Informatics Campus, Germany
weikum@mpi-inf.mpg.de

ABSTRACT
In order to accurately populate and curate Knowledge Graphs (KGs),
it is important to distinguish ⟨s p o⟩ facts that can be traced back
to sources from facts that cannot be verified. Manually validating
each fact is time-consuming. Prior work on automating this task
relied on numerical confidence scores which might not be easily
interpreted. To overcome this limitation, we present Tracy, a novel
tool that generates human-comprehensible explanations for candi-
date facts. Our tool relies on background knowledge in the form of
rules to rewrite the fact in question into other easier-to-spot facts.
These rewritings are then used to reason over the candidate fact
creating semantic traces that can aid KG curators. The goal of our
demonstration is to illustrate the main features of our system and
to show how the semantic traces can be computed over both text
and knowledge graphs with a simple and intuitive user interface.

KEYWORDS
Knowledge Graph; Fact-checking; Explainable Evidence; Reasoning

ACM Reference Format:
Mohamed H. Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard
Weikum. 2019. Tracy: Tracing Facts over Knowledge Graphs and Text. In
Proceedings of the 2019 World Wide Web Conference (WWW ’19), May 13–17,
2019, San Francisco, CA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3308558.3314126

1 INTRODUCTION
Motivation and Problem. Knowledge Graphs (KGs) are reposi-
tories of factual knowledge in the form of ⟨s p o⟩ facts where s,o
are entities and p specifies a semantic relation between them, e.g.,
⟨London capitalOf UK⟩. Currently, a large number of KGs are pub-
licly available on the Web (e.g., Wikidata [16], YAGO [15]) but some
of them might contain doubtful if not incorrect facts as they are
partly built by automatic information extraction, crowd-sourcing,
or other noisy methods [12, 18]. Due to the increasing usage of KGs
for tasks like query-answering, dialog systems, etc., it is important
to validate each candidate fact to ensure the correctness of the KG.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3314126

This task, which is often referred to as fact-checking or truth
discovery [8], can be performed manually by KG curators but this is
time-consuming. Therefore, the automation of this process is gain-
ing more attention. Existing methods for automatic fact-checking
(e.g., [5, 8, 9, 11, 13]) usually proceed in two steps as follows: First,
they search for explicit mentions of the fact in the Web sources
like news or other textual corpora. For example, for a fact such
as ⟨Sadiq_Khan citizenOf UK⟩, they search for "khan is a citizen of
UK" or "Khan’s nationality is British". Then, the extracted evidence
is used to infer whether the candidate fact can indeed be verified.

Existing approaches have two main limitations: First, they quan-
tify the confidence using numerical scores, which is not adequate in
case the final decision is made by KG curators. Indeed, such scores
are hard to understand or justify without explanations. Only few
approaches (e.g., [1, 5]) attempt to explain the results. For example,
Defacto [5] shows the sources used in computing the scores as an ex-
planation and [1] reports a comparison between computed scores to
explain its final decision for humans. Second, searching for explicit
mentions is often not sufficient since textual sources are incomplete
and biased in what is stated explicitly. For instance, the citizenship
of London’s mayor Sadiq Khan would rarely be mentioned. More-
over, some predicates (e.g., influencedBy) are ambiguous and their
interpretation is domain-specific.

Proposed Approach. We introduce Tracy, a tool designed to
support KG curators in deciding the correctness of the candidate
facts. The main novelty of our tool consists of finding semantically
related evidence in textual sources and the underlying KG, and
providing human-comprehensible explanations for the facts.

In Tracy, the semantically related evidence is extracted according
to intentional background knowledge given as rules of the form
H ← B1,B2, . . . ,Bn which can be either specified by humans or
automatically extracted using rule mining methods [14] By utilizing
rules, Tracy enables users to combine clues from different resources
(structured and unstructured) thus overcoming the problem that
arises when the fact is never explicitly mentioned. For example,
consider the rule

citizenOf (X , Y) ← mayorOf (X ,Z), locatedIn(Z , Y)

which intuitively states that mayors of cities are normally citizens
of countries where these cities are located. This rule can be used by
our tool to verify the fact ⟨Sadiq_Khan citizenOf UK⟩ by searching
in news articles whether he is a major of some city and then looking
up the city’s corresponding country in the KG. The combination

https://doi.org/10.1145/3308558.3314126
https://doi.org/10.1145/3308558.3314126
https://doi.org/10.1145/3308558.3314126

Explanations
KG:

Query Rewriting Engine

KGs

Explanations

Textual Web
Sources

Query:

Text: “Sadiq A. Khan is a British politician of the
Labour Party serving as Mayor of London ...”
KG:

Fact Spotting

SubqueryDocuments

citizenOf(X,Y)←mayorOf(X,Z), capitalOf(Z,Y);

citizenOf(X,Y)←bornIn(X,Z), isLocatedIn(Z,Y);

Rules

Figure 1: Tracy system overview.

of these two semantically-related facts allows us to construct a
human-readable explanation for the correctness of the fact.

As illustrated by the above example, Tracy uses the rules to
decompose the spotting of an input fact into more frequently stated
and thus easier-to-spot related facts. The search for evidence for
the rule’s body might trigger the execution of other rules, and this
effectively creates semantic traces that explain, in a human-readable
format, why a fact is likely to be true. These traces are presented to
a KG curator in a comprehensible format in order to make a final
decision about the truth value of the fact in question.

Outline. In the remaining, we briefly describe the framework
underlying Tracy and the realization of the main components. Af-
terwards, we illustrate the features offered by the demonstrated
graphical user interface, allowing users to experience different us-
age scenarios. Our demo is made available under the following link
https://www.mpi-inf.mpg.de/impact/exfakt#Tracy.

2 SYSTEM OVERVIEW
Tracy follows ExFaKT framework introduced in our earlier work [3].
Tracy implements twomain components: (i)Query Rewriting Engine
(QRE), which is responsible for rewriting facts and generating expla-
nations, and (ii) Fact Spotting (FS), which is the component that finds
evidences in Web sources. Fig. 1 shows a graphical representation
of this architecture.

Our framework receives as input a candidate fact (i.e., the query),
a set of rules, and two knowledge sources: (i) A KG, which we
view as a reliable source; and (ii) an unstructured collection of
text corpora, which we consider as an unreliable source, since its
extractions by FS might be noisy.

Rules are Horn clauses of the form ofH ← B1, . . . ,Bn whereH is
the rule’s head and B1, ...,Bn is the body of the rule. In general, rules
can be automatically extracted from KGs using systems such as [2,
4, 6, 17]. However, extracted rules are restricted to the predicates
in the KG. Thus, Tracy also accepts manually specified rules with
user-defined predicates, which later can be spotted in the text.

The workflow of our system is as follows: First, a user submits an
input fact Q (i.e., the query) to QRE. Then, this component possibly
rewrites it into easier facts according to the logic specified by the
rules contacting FS every time it cannot find evidences in the KG.

Figure 2: Example explanation returned by Tracy.

If a sufficient number of evidences is found, then QRE uses them to
return one or more explanations for Q .

2.1 Query Rewriting Engine
The process starts by considering rules, whose head predicates are
the same as in the query. Then, it visits the rules’ bodies and effec-
tively rewrites the query into additional subqueries. The subqueries
might trigger new rules and this results in a recursive process until
all subqueries are answered. Such rule-based evaluation strategy is
well-known in logic programming and commonly used for query
answering. Indeed, our system implements an adaptation of a set-
based version of standard SLD resolution [7].

Our adaption consists of three modifications which are crucial
for our scenario of interest: First, we impose a maximum depth onto
the recursive process to ensure termination. Second, the system
attempts to answer the query consulting FS whenever it cannot
be answered relying on the KG. Third, we care about the quality
of the sources; and hence, we still rewrite the fact if the evidence
source is not trustful seekingmore reliable evidences. These two last
modifications are particularly important: In fact, it is well-known
that KGs are highly incomplete and a conventional query answering
engine would simply fail when evidence is not found. In contrast,
the ability of our system to also include extractions from additional
sources overcomes this problem and enables the construction of
explanations even when the content of the KG is not sufficient.

Once this process is finished, the answers (either from the KG
or Web sources) are used to compute the explanations. This is
done by revisiting the rules bottom-up. Fig. 2 shows an extract
of an example explanation provided by Tracy. In this case, the
explanation illustrates that the fact that Sadiq Khan is a citizen of
UK is likely to be true according to the rule

isCitizenOf (X , Y) ← mayorOf (X ,Z), hasCapital(Y ,Z)

https://www.mpi-inf.mpg.de/impact/exfakt#Tracy

and additional evidence found both in the KG and textual corpora.
Note that a given query might have multiple complex expla-

nations or a single trivial one, i.e., the fact itself. Moreover, some
explanations may be subsumed by others. Ideally, we aim at com-
puting non-trivial explanations that are (i) concise with a small
number of atoms; (ii) close to the query, i.e., obtained by using
few rules; (iii) reliable, i.e., contain as many facts from the KG as
possible, since KGs are usually more reliable than text.

In order to recognize these explanations, we compute a confi-
dence score for each explanation E, defined as:

confidence(E) = 1
|E |

∑
a∈E

trust(sources[a])
depth[a]

where a is the atom of the explanation E. This confidence score
is directly correlated with the quality of the sources containing a
(trust(sources[a])) and inversely correlated with the depth of the
rewriting performed to reach the atom a (i.e., the number of used
rewriting rules) and the number of distinct atoms in the explanation.

2.2 Fact Spotting
Tracy follows a modular design allowing integrating any fact-
spotting method. As default, we implemented a dictionary based
fact-spotting procedure similar to [9, 13]. It is a simple and highly
scalable method that does not require training. The main idea con-
sists of first converting the SPO query into a textual representation
(i.e., verbalization) using a paraphrasing dictionary. Then, queries
with the paraphrases are issued to a spotting engine to retrieve
documents that mention them.

We used two types of dictionaries, depending on whether the
used KG is YAGO or Wikidata (these are the only two which are
currently supported). With YAGO, we use the paraphrases learned
by PATTY [10] after some manual filtering. With Wikidata, we
exploit the name aliases included in the KG.

We also implemented two types of spotting engines, one that
uses a local text corpus and another one that consults a remote one:
• Local corpus:Weused Elasticsearch 1 to index allWikipedia
articles. As a prepossessing step, we filtered the textual parts
in the articles by removing semi-structured parts such as
tables and info-boxes. Then, we index the article sentences
separately along with the title. For spotting an SPO query,
we issue a boolean query with the paraphrases of each part
of the SPO separately. Then, we collect the top-5 matching
sentences as evidence for the query.
• Remote corpus:We also provide the option for searching
the Web using Bing Web search API 2. To query the API, we
compose a string query containing all possible paraphrases
of SPO and use the top-5 search results as evidence.

2.3 Experimental Results
To illustrate the potential of our system, we report the results of
an experiment using the YAGO KG. We simulated the case where
we need to verify 300 unseen candidate facts, uniformly distributed
over six different relations influences, isPoliticianOf ,wroteMusicFor ,

1https://www.elastic.co/
2http://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api

Table 1: Direct fact-spotting vs Tracy explanations

Textual Source Recall Prec@5 F1@5

Direct-spotting Wikipedia 0.25 0.85 0.40
Tracy 0.50 0.87 0.64

Direct-spotting Web Search 0.41 0.85 0.55
Tracy 0.90 0.97 0.93

mayorOf , actedWith, and countryWonPrize. A rule set was com-
piled for each predicate by selecting the top-ranked rules mined by
AMIE [4] and adding other manually created rules involving new
predicates that do not exist in YAGO.

Then, we used our system to extract explanations for the can-
didates over YAGO using either the Wikipedia articles (local fact-
spotting) or Web search (remote fact-spotting). Later, we asked
MTurk workers to judge the correctness of each candidate fact
based on the provided explanations. Based on these annotations,
we computed recall, precision@5 (Prec@5), and F1@5 score.

Table 1 shows a comparison between the results of using Tracy
against the baseline method which consists of using only direct
fact-spotting (thus without any rewriting). We can observe that
Tracy doubles the recall while slightly increasing the precision@5.
This leads to significant enhancement in the F1 score. These results
are encouraging, as they show that our system is 1) indeed capable
of finding additional evidence that might not be directly mentioned
and that 2) the explanations are actually valuable for human anno-
tators for judging the correctness of candidate facts. More detailed
experimental results can be found in [3].

3 DEMONSTRATION
We built a Web interface to allow an easy interaction with the
system. Fig. 3 shows a screenshot illustrating its main components.
System options. The left-hand side of Fig. 3 shows the system
options menu, which is the part where the user can select from a
predefined list of KGs and textual sources to work with. Moreover,
the interface allows the user to tune the QRE procedure by spec-
ifying a trust value for each textual source and the limit on the
number of used rules and output explanations.
Input. The top part in Fig. 3 contains the input form with three
fields for the SPO query and a text area for the rules. In the query
fields, the user can select the subject and the object of the fact in
question from a set of KG entities and specify the predicate, which
might be out of KG. In the rules text area, the user is expected to
input the rules using the standard logic programming syntax. For
example, a rule expressing that “a person is a citizen of a country if
he was born in one of its cities” is written as:

isCitizenOf (?x, ?y) :- bornIn(?x, ?z), isA(?z, ‘City’), in(?z, ?y)
where ?x, ?y, ?z are variables, ‘City’ is a constant, isCitizenOf is a
head predicate and the rest are body predicates. These rules can
also involve out-of-KG predicates, which Tracy spots in the text.
Output. Below the rules text area, Tracy returns the list of expla-
nations for the input fact. Each explanation card contains:
• A set of facts that support the correctness of the query;

https://www.elastic.co/
http://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api

Input

Output
System Options

Tracing Facts in Knowledge Graphs and Text!

T

Figure 3: Tracy Web interface.

• In case the explanation includes facts with textual evidence,
the user can view top-5 matching sentences with the links
to the Web-pages where they have been found;
• The set of rules used by Tracy to find the evidence;
• Explanation confidence score computed as described in Sec-
tion 2.1 and some execution insights (e.g., resources accesses).

Explanations can be sorted based on their generation order, quality,
length, rewriting depth, or cost.

During the demonstration session, We will showcase how Tracy
can be used to extract non-trivial explanations for several hard to
spot queries in different domains (e.g., art, sport, and politicians).
Users will have the chance to observe the results of changing the
ruleset and other parameters to experience the performance of
Tracy in different scenarios.

Users will also have the possibility to test Tracy with some
arbitrary queries and/or other rule sets. We will encourage them to
first try to collect related evidencemanually before using Tracywith
the same query. This illustrates how Tracy facilitates the discovery
of related evidence required for judging the correctness of the query.

4 CONCLUSION
Our tool represents a first step towards producing more human un-
derstandable evidence for unverified facts. Tracy can help curators
judging the correctness of new facts faster and more accurately. As
future work, it is interesting to enhance our tool to support more
complex rules, e.g., with negations. Such rules are useful to rep-
resent additional background knowledge. Moreover, developing a
more robust spotting engine that is capable of recognizing negative
mentions of facts would allow more complex reasoning. Finally, we
plan to further enhance the interface to make our system easier to
use for KG curators.

ACKNOWLEDGMENTS
This work was partially supported by the ERC Synergy Grant
610150 (imPACT).

REFERENCES
[1] Xin Luna Dong and Divesh Srivastava. 2013. Compact Explanation of Data Fusion

Decisions. In Proceedings of the 22Nd International Conference on World Wide Web
(WWW ’13). ACM, 379–390.

[2] Mohamed H Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard Weikum.
2016. Exception-enriched rule learning from knowledge graphs. In Proceedings
of ISWC. 234–251.

[3] Mohamed H. Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard Weikum.
2019. ExFaKT: A Framework for Explaining Facts over Knowledge Graphs and
Text. In Proceedings of WSDM. 87–95.

[4] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek.
2013. AMIE: Association Rule Mining Under Incomplete Evidence in Ontological
Knowledge Bases. In Proceedings of WWW. 413–422.

[5] Daniel Gerber, Diego Esteves, Jens Lehmann, Lorenz Bühmann, Ricardo Usbeck,
Axel-Cyrille Ngonga Ngomo, and René Speck. 2015. DeFacto-Temporal and
Multilingual Deep Fact Validation. Web Semant. 35, P2 (Dec. 2015), 85–101.

[6] Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-Elrab, Evgeny Kharlamov,
and Gerhard Weikum. 2018. Rule Learning from Knowledge Graphs Guided by
Embedding Models. In The Semantic Web - ISWC 2018, Proceedings, Part I. 72–90.

[7] Robert Kowalski and Donald Kuehner. 1971. Linear resolution with selection
function. Artificial Intelligence 2, 3 (1971), 227 – 260.

[8] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, and Jiawei
Han. 2015. A Survey on Truth Discovery. SIGKDD Explorations 17 (2015), 1–16.

[9] Ndapandula Nakashole and Tom M. Mitchell. 2014. Language-Aware Truth
Assessment of Fact Candidates. In Proceedings of ACL. 1009–1019.

[10] Ndapandula Nakashole, Gerhard Weikum, and Fabian Suchanek. 2012. PATTY: A
Taxonomy of Relational Patterns with Semantic Types. In Proceedings of EMNLP.
1135–1145.

[11] Jeff Pasternack and Dan Roth. 2013. Latent credibility analysis. In Proceedings of
WWW. 1009–1020.

[12] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic Web 8, 3 (2017), 489–508.

[13] Kashyap Popat, Subhabrata Mukherjee, Jannik Strötgen, and Gerhard Weikum.
2017. Where the Truth Lies: Explaining the Credibility of Emerging Claims on
the Web and Social Media. In Proceedings of WWW. 1003–1012.

[14] Daria Stepanova, Vinh Thinh Ho, and Mohamed Hassan Gad-Elrab. 2018. Rule In-
duction and Reasoning over Knowledge Graphs. In Reasoning Web (2018) (Lecture
Notes in Computer Science), Vol. 11078. Springer, 142–172.

[15] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A Core
of Semantic Knowledge. In Proceedings of WWW. 697–706.

[16] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Communications of ACM 57, 10 (2014), 78–85.

[17] Zhichun Wang and Juan-Zi Li. 2015. RDF2Rules: Learning Rules from RDF
Knowledge Bases by Mining Frequent Predicate Cycles. CoRR abs/1512.07734
(2015).

[18] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua Tian.
2015. Large-scale Knowledge Base Completion: Inferring via Grounding Network
Sampling over Selected Instances. In Proceedings of CIKM ’15. 1331–1340.

	Abstract
	1 Introduction
	2 System Overview
	2.1 Query Rewriting Engine
	2.2 Fact Spotting
	2.3 Experimental Results

	3 Demonstration
	4 Conclusion
	Acknowledgments
	References

