
Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Digital Knowledge: From Facts to Rules and Back

Daria Stepanova
D5: Databases and Information Systems

Max Planck Institute for Informatics

03.05.2017

1 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

What is Knowledge?
Plato: “Knowledge is justified true belief”

1 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

What is Knowledge?
Plato: “Knowledge is justified true belief”

1 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

What is Digital Knowledge?
“Digital knowledge is semantically enriched machine processable data”

1 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Semantic Web Search

2 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Semantic Web Search

2 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Semantic Web Search

2 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Knowledge Graphs

3 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Knowledge Graphs

3 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Problem: Inconsistency

4 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Problem: Incompleteness

Google KG misses Roger’s living place, but contains his wife’s Mirka’s..

5 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Motivation

Important problems of KGs:

1 Inconsistency

2 Incompleteness

In this talk: Reasoning on top of KGs to address these issues

1 Deduction: detecting and repairing inconsistencies

2 Induction: learning common-sense rules and completing KGs

6 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Overview

Motivation

Ontologies and Rules

Inconsistencies in DL-programs

Nonmonotonic Rule Mining

Further and Future Work

7 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

History of Knowledge Representation

• 1950’s: First Order Logic (FOL) for KR (undecidable)
(e.g. [McCarthy, 1959])

• 1970’s: Network-shaped structures for KR (no formal semantics)
(e.g. semantic networks [Robinson, 1965], frames [Minsky, 1985])

• 1979: Encoding of network-shaped structures into FOL [Hayes, 1979]

• 1980’s: Description Logics (DL) for KR

• Decidable fragments of FOL
• Theories encoded in DLs are called ontologies
• Many DLs with different expressiveness and computational features
• Particularly suited for conceptual reasoning

8 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Description Logic Ontologies
Open World Assumption (OWA): what is not derived is unknown

Inclusions: Female v ¬Male,hasSister v hasSibling,hasBrother v hasSibling

Complex axioms: ∀X∃Y Z (Female(X) ∧ hasSibling(X ,Y) ∧ hasChild(Y ,Z))

9 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Description Logic Ontologies
Open World Assumption (OWA): what is not derived is unknown

Inclusions: Female v ¬Male,hasSister v hasSibling,hasBrother v hasSibling

Complex axioms: Uncle ≡ Male u ∃hasSibling.∃hasChild

9 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

What can not be said in DLs?

• Exceptions from theories (due to monotonicity)

WithBeard v Male
Female v ¬Male
WithBeard(c)
Female(c)
————————————
Male(c)
¬Male(c)

People with beards are male
Female are not male
C has a beard
C is female
————————————
C is male
C is not male

Monotonicity: the more we add, the more we get!

10 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

What can not be said in DLs?

• Exceptions from theories (due to monotonicity)

WithBeard v Male
Female v ¬Male
WithBeard(c)

Female(c)

————————————

Male(c)
¬Male(c)

People with beards are male
Female are not male
C has a beard

C is female

————————————

C is male
C is not male

Monotonicity: the more we add, the more we get!

10 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

What can not be said in DLs?

• Exceptions from theories (due to monotonicity)

WithBeard v Male
Female v ¬Male
WithBeard(c)

Female(c)

————————————
Male(c)

¬Male(c)

People with beards are male
Female are not male
C has a beard

C is female

————————————
C is male

C is not male

Monotonicity: the more we add, the more we get!

10 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

What can not be said in DLs?

• Exceptions from theories (due to monotonicity)

WithBeard v Male
Female v ¬Male
WithBeard(c)
Female(c)
————————————
Male(c)
¬Male(c)

People with beards are male
Female are not male
C has a beard
C is female
————————————
C is male
C is not male

Monotonicity: the more we add, the more we get!

10 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

History of Knowledge Representation

• 1970’s: Logic programming
(e.g. Prolog)

• 1980’s: Nonmonotonic logics
(e.g. circumscription [McCarthy, 1980], default logic [Reiter, 1980])

• 1988: Nonmonotonic rules under answer set semantics (ASP)
[Gelfond and Lifschitz, 1988]

• Logic programs with model-based semantics
• Disjunctive datalog with default negation not

11 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Not is not ¬!

Default negation not

At a rail road crossing cross the road if no train is known to approach

walk ← at(X), crossing(X),not train approaches(X)

Classical negation ¬

At a rail road crossing cross the road if no train approaches

walk ← at(X), crossing(X),¬train approaches(X)

12 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Nonmonotonic Rules

Closed World Assumption (CWA): what is not derived is false

Rule: a1 ∨ . . . ∨ ak︸ ︷︷ ︸
head

← b1, . . . , bm, not bm+1, . . . , not bn︸ ︷︷ ︸
body

Informal semantics: If b1, . . . , bm are true and none of bm+1, . . . , bn is known,
then at least one among a1, . . . , ak must be true

Default negation: unless a child is adopted one of his parents must be female

female(Y) ∨ female(Z)← hasParent(X ,Y), hasParent(X ,Z),
Y 6= Z , not adopted(X)

Constraint: ensure that no one is a parent of himself

⊥ ← parent(X ,Y), parent(Y ,X)

13 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Answer Set Programs
Evaluation of ASP programs is model-based

1. Grounding: substitute all variables with constants in all possible ways
2. Solving: compute a minimal model (answer set) I satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

(1) hasParent(john, pat) (2) hasParent(john, alex) (3) male(alex)

(4) female(Y)← hasParent(X ,Y), hasParent(X ,Z),
Y 6= Z ,male(Z), not adopted(X)

(5) adopted(john)

adopted(john)
I={hasParent(john, pat), hasParent(john, alex),male(alex), female(pat)}

CWA: adopted(john) can not be derived, thus it is false

Nonmonotonicity: adding facts might lead to loss of consequences!

14 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Answer Set Programs
Evaluation of ASP programs is model-based

1. Grounding: substitute all variables with constants in all possible ways

2. Solving: compute a minimal model (answer set) I satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

(1) hasParent(john, pat) (2) hasParent(john, alex) (3) male(alex)

(4) female(Y)← hasParent(X ,Y), hasParent(X ,Z),
Y 6= Z ,male(Z), not adopted(X)

(5) adopted(john)

adopted(john)
I={hasParent(john, pat), hasParent(john, alex),male(alex), female(pat)}

CWA: adopted(john) can not be derived, thus it is false

Nonmonotonicity: adding facts might lead to loss of consequences!

14 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Answer Set Programs
Evaluation of ASP programs is model-based

1. Grounding: substitute all variables with constants in all possible ways

2. Solving: compute a minimal model (answer set) I satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

(1) hasParent(john, pat) (2) hasParent(john, alex) (3) male(alex)

(4) female(pat)← hasParent(john, pat), hasParent(john, alex),
male(alex), not adopted(john)

(5) adopted(john)

adopted(john)
I={hasParent(john, pat), hasParent(john, alex),male(alex), female(pat)}

CWA: adopted(john) can not be derived, thus it is false

Nonmonotonicity: adding facts might lead to loss of consequences!

14 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Answer Set Programs
Evaluation of ASP programs is model-based

1. Grounding: substitute all variables with constants in all possible ways
2. Solving: compute a minimal model (answer set) I satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

(1) hasParent(john, pat) (2) hasParent(john, alex) (3) male(alex)

(4) female(pat)← hasParent(john, pat), hasParent(john, alex),
male(alex), not adopted(john)

(5) adopted(john)

adopted(john)

I={hasParent(john, pat), hasParent(john, alex),male(alex), female(pat)}

CWA: adopted(john) can not be derived, thus it is false

Nonmonotonicity: adding facts might lead to loss of consequences!

14 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Answer Set Programs
Evaluation of ASP programs is model-based

1. Grounding: substitute all variables with constants in all possible ways
2. Solving: compute a minimal model (answer set) I satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

(1) hasParent(john, pat) (2) hasParent(john, alex) (3) male(alex)

(4) female(pat)← hasParent(john, pat), hasParent(john, alex),
male(alex), not adopted(john)

(5) adopted(john)

adopted(john)
I={hasParent(john, pat), hasParent(john, alex),male(alex),((((

((female(pat)}

CWA: adopted(john) can not be derived, thus it is false

Nonmonotonicity: adding facts might lead to loss of consequences!

14 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Combining Ontologies and Rules

15 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Combining Ontologies and Rules

15 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Overview

Motivation

Ontologies and Rules

Inconsistencies in DL-programs

Nonmonotonic Rule Mining

Further and Future Work

T. Eiter M. Fink

16 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-programs

DL-programs: loose coupling of ontologies and rules [Eiter et al., 2008]

17 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program

DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← ,

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program

DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program

DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat) ,

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program

DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat) ,
DL[Male] boy ; Male](pat)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program

DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat) ,
DL[Male] boy ; Male](pat)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program

DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat) Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat) ,
DL[Male] boy ; Male](pat)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program

DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat) Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat) ,
DL[Male] boy ; Male](pat)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program

DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat) ,
DL[Male] boy ; Male](pat)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}

18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Inconsistent DL-program
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Inconsistent DL-program: no answer sets!
18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program Repair
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat) Female(alex)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Repair answer set: I = {isChildOf (john, alex), boy(tim), hasFather(john, pat)}
18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program Repair
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4)���
��Male(pat) Female(pat)

Male(tim)

(5) Male(john)

(6) hasParent(john, pat)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Repair answer set: I = {isChildOf (john, alex), boy(tim)}
18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

DL-program Repair
DL ontology

Logical part

(1) Child v ∃hasParent
(2) Female v ¬Male
(3) Adopted v Child

Data part (KG)

(4) Male(pat)

Male(tim)

(5) Male(john)

Rules

(7) isChildOf (john, alex) (8) boy(tim)

(9) hasFather(john, pat)← DL[; hasParent](john, pat),
DL[Male] boy ; Male](pat)

(10) ⊥ ← hasFather(john, pat), isChildOf (john, alex),
not DL[; Adopted](john),
not DL[Child] boy ;¬Male](alex)

Repair answer set: I = {isChildOf (john, alex), boy(tim)}
18 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Inconsistency Handling in DL-programs
Goal: develop techniques for handling inconsistencies in DL-programs
Approach: repair ontology data part (KG) to regain consistency

19 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Complexity of Repair Answer Sets

INSTANCE: A ground DL-program Π = 〈O,P〉.
QUESTION: Does there exist a repair answer set for Π?

Theorem
Deciding repair and standard answer set existence have the same
complexity if instance query-answering in O is polynomial (DL-LiteA, EL).

Π FLP semantics weak semantics

normal ΣP
2 -complete NP-complete

disjunctive ΣP
2 -complete ΣP

2 -complete

T. Eiter, M. Fink, D. Stepanova. Data Repair of Inconsistent DL-programs. IJCAI2013
T. Eiter, M. Fink, D. Stepanova. Data Repair of Inconsistent Nonmonotonic Description Logic Programs. JAI2016

20 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Ontology Repair Problem

INSTANCE: Ontology O, Dtrue = {〈update, query〉}, Dfalse = {〈update, query〉}
QUESTION: Does there exist O data part, for which queries under their

updates from Dtrue are true and from Dfalse are false?

Theorem
The Ontology Repair Problem is NP-complete even if O = ∅.

Tractable cases:

• Deletion repair

• Bounded addition

• Bounded change

• . . .

21 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Optimized DL-program Repair
• For each DL-atom compute minimal sets of facts (), whose presence in

ontology ensures DL-atom’s query entailment (small for some DLs)

• Guess values of DL-atoms under which the program has an answer set

• Solve ontology repair problem as a variant of a hitting set problem

T. Eiter, M. Fink, D. Stepanova. Towards Practical Deletion Repair of Inconsistent DL-programs. ECAI2014
T. Eiter, M. Fink, D. Stepanova. Computing Repairs for Inconsistent DL-programs over EL Ontologies. JELIA2014, JAIR2016

22 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Optimized DL-program Repair
• For each DL-atom compute minimal sets of facts (), whose presence in

ontology ensures DL-atom’s query entailment (small for some DLs)

• Guess values of DL-atoms under which the program has an answer set

• Solve ontology repair problem as a variant of a hitting set problem

T. Eiter, M. Fink, D. Stepanova. Towards Practical Deletion Repair of Inconsistent DL-programs. ECAI2014
T. Eiter, M. Fink, D. Stepanova. Computing Repairs for Inconsistent DL-programs over EL Ontologies. JELIA2014, JAIR2016

22 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Optimized DL-program Repair
• For each DL-atom compute minimal sets of facts (), whose presence in

ontology ensures DL-atom’s query entailment (small for some DLs)

• Guess values of DL-atoms under which the program has an answer set

• Solve ontology repair problem as a variant of a hitting set problem

T. Eiter, M. Fink, D. Stepanova. Towards Practical Deletion Repair of Inconsistent DL-programs. ECAI2014
T. Eiter, M. Fink, D. Stepanova. Computing Repairs for Inconsistent DL-programs over EL Ontologies. JELIA2014, JAIR2016

22 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Example Benchmark

• Ontology: MyITS1

• personalized route planning with semantic information
• logical axioms (406), (building features located inside private areas

are not publicly accessible, covered bus stops are those with roofs)
• KG (4195 facts), Cork city map with leisure areas, bus stops,..

• Rules: check that public stations don’t lack public access, using
CWA on private areas

• Inconsistency: wrong GPS coordinates result in roofed bus stops
being located inside private areas

• Repair: found within 12 seconds
1

http://www.kr.tuwien.ac.at/research/projects/myits/
23 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Overview

Motivation

Ontologies and Rules

Inconsistencies in DL-programs

Nonmonotonic Rule Mining

Further and Future Work
M. Gad-Elrab J. Urbani G. Weikum D. H. Tran F. A. Lisi

24 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Horn Rule Mining

Horn rule mining for KG completion [Galárraga et al., 2015]

conf (r) =
| |

| |+ | |
=

2
4

r : livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z)

25 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Horn Rule Mining
Horn rule mining for KG completion [Galárraga et al., 2015]

conf (r) =
| |

| |+ | |
=

2
4

r : livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z)

25 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Horn Rule Mining
Horn rule mining for KG completion [Galárraga et al., 2015]

conf (r) =
| |

| |+ | |
=

2
4

r : livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z)

25 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Nonmonotonic Rule Mining
Nonmonotonic rule mining from KGs: OWA is a challenge!

conf (r) =
| |

| |+ | |
=1

r : livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z),not researcher(X)

25 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Declarative Programming Paradigm

26 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Declarative Programming Example

Graph 3-colorability

– a rule r, if Head(r) ∩ S 6= ∅ whenever Body+(r) ⊆ S and Body−(r) ∩ S = ∅;
– a logic program P (I is a model of P), if it satisfies all rules r of P .

Definition 8. A model I of a logic program P is called minimal, if there is no model I ′ of P , such that I ′ ⊂ I .

The semantics of ASP programs is given in terms of answer sets (or stable models).

Definition 9. Given a positive logic program P , an interpretation I is an answer set (stable model) of P if I |= P and
there does not exist I ′ ⊂ I , such that I ′ |= P . AS(P) denotes the set of all answer sets.

The notion of answer sets for logic programs with negation is defined using the Gelfond-Lifshitz reduct.

Definition 10. Given a logic program P and an interpretation I of P the Gelfond-Lifshitz (GL-)reduct denoted by PI
GL is

constructed from ground(P) by

– deleting all rules r from ground(P) s.t. Body−(r) ∩ I 6= ∅, and
– deleting the negative body for all of the remaining rules.

Note that for any program and interpretation the GL-reduct is positive. The definition of answer sets for arbitrary logic
programs is then as follows:

Definition 11. An answer set of a program P is an interpretation I ⊆ HBP , such that I is an answer set of the positive
program PI

GL.

The availability of advanced reasoners makes the ASP formalism applicable to solving practical tasks. The standard
reasoner comprises two components: a grounder and a solver. The list of the most well-known grounders include: dlv4,
gringo5, lparse6, etc. Among the solvers one can mention dlv, clasp7, claspd8, gnt9. Potassco10 represents a collection of
ASP reasoning tools, combining clasp and gringo into a system architecture.

We now present an example that illustrates the basic notions of the Answer Set Programming that we have inroduced.

Example 10. Consider a graph 3-colourability problem, in which we are given a graph and three colours, e.g. red, blue and
green, and we aim at finding the assignment of colours to the nodes of a graph in such a way that no adjacent nodes share
the same color. The encoding of this problem is as follows.

1

2

6

3

5

4

PI =





(1) node(1 . . . 6); (2) edge(1 , 2); . . . (8) edge(5 , 6);
(9) coloured(V , red)← not coloured(V , blue), not coloured(V , green), node(V);
(10) coloured(V , green)← not coloured(V , blue), not coloured(V , red), node(V);
(11) coloured(V , blue)← not coloured(V , green), not coloured(V , red), node(V);
(12) ⊥ ← coloured(V , C), coloured(V , C ′), C 6= C′;
(13) ⊥ ← coloured(V , C), coloured(V ′, C), edge(V , V ′)





The facts of the programs P describe the nodes and edges of the graph from above. The rules (9)-(11) state that each
node has to be colored in at least one of the three colours. The constraint (12) forbids the nodes to be colored in more then
one color, while the constraint (13) says that two nodes connected via an edge must have different colours.

4 http://www.dlvsystem.com/
5 http://potassco.sourceforge.net/
6 http://www.tcs.hut.fi/Software/smodels/
7 http://potassco.sourceforge.net/
8 http://www.cs.uni-potsdam.de/claspD/
9 http://www.tcs.hut.fi/Software/gnt/

10 http://potassco.sourceforge.net/

For the logic program P , the grounding ground(P) is obtained by substituting the variables V, V ′, C, C ′ with constants
from the set {1, 2, 3, 5, 6, blue, green, red} in all possible ways.

Let us now look at the interpretation I = {coloured(1 , red),node(1),node(2)} and the following ground rules of
ground(P):

r1 : coloured(1 , red)← not coloured(1 , blue), not coloured(1 , green), node(1);
r2 : coloured(2 , green)← not coloured(1 , blue), not coloured(1 , red), node(2)

We have that I |= node(1). Furthermore, I |= r1, and I 6|= r2.
Consider now an interpretation I , which apart from the graph description contains the facts: coloured(1 , red), coloured(2 , blue), coloured(3 , red), coloured(4 , green), coloured(6 , green),

coloured(5 , blue).
The GL-reduct PI

GL of P is as follows:

PI
GL =





(1) node(1 . . . 6); . . . (8) edge(5 , 6);
(9) coloured(1 , red)← node(1);
(10) coloured(3 , red)← node(3);
(11) coloured(4 , green)← node(4);
(12) coloured(6 , green)← node(6);
(13) coloured(2 , blue)← node(2);
(14) coloured(5 , blue)← node(5)





One can see that I is the minimal model of the positive program PI
GL, and thus an answer set of P . Furthermore, it

encodes the following valid graph coloring:

1

2

6

3

5

4

B Related Work

From the theoretical side the problem of learning nonmonotonic rules from the data has been studied in several works both
in discrete and probabilistic settings. However, many available techniques are heavily based on CWA, and thus can not
be directly applied to our setting. For example, Bain and Muggleton [3] developed the algorithm called Closed World
Specialization (CWS), in which an initial program and an intended interpretation that a learned program should satisfy are
given. In this setting, any atom which is not included in the interpretation is considered false. For example, let the program
contain the rule {flies(X)← bird(X).} Furthermore, let the KB be as follows: {bird(eagle), flies(eagle), bird(emu)}.
The CWS algorithm would interpret flies(emu) as false, and would specialize P to {flies(X)← bird(X),not ab(X)},
from which the fact {ab(emu)} would be learned.

The Open World Specialization (OWS) [9] is a modification of the CWS algorithm, which avoids using CWA to derive
negative instances by considering a three-valued setting. The OWS technique does not involve confidence degrees of the
rules that are mined, which prevents it from being used for our purpose.

node(1 . . . 6); edge(1, 2); . . .

col(V , red)← not col(V , blue), not col(V , green), node(V);

col(V , green)← not col(V , blue), not col(V , red), node(V);

col(V , blue)← not col(V , green), not col(V , red), node(V);

⊥ ← col(V , C), col(V , C′), C 6= C′;
⊥ ← col(V , C), col(V ′, C), edge(V , V ′)

node(1 . . . 6); edge(1, 2); . . .
col(1, red), col(2, blue),
col(3, red), col(4, green),
col(6, green), col(5, blue)

26 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Nonmonotonic Rule Mining

27 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Nonmonotonic Rule Mining

livesIn(Y , Z)← isMarried(X , Y),
livesIn(X , Y),
not researcher(Y)

isMarriedTo(brad, ann);
isMarriedTo(john, kate);
isMarriedTo(bob, alice);
isMarriedTo(clara, dave);
livesIn(brad, berlin;
. . .
researcher(alice);
researcher(dave)

27 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Nonmonotonic Rule Mining from KGs
Goal: learn nonmonotonic rules from KG
Approach: revise association rules learned using data mining methods

28 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Horn Theory Revision

Quality-based Horn Theory Revision

Given:
• Available KG

• Horn rule set

Find:
• Nonmonotonic revision of Horn rule set

with better predictive quality

29 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Horn Theory Revision

Quality-based Horn Theory Revision

Given:
• Available KG

• Horn rule set

Find:
• Nonmonotonic revision of Horn rule set

with better predictive quality

29 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Horn Theory Revision

Quality-based Horn Theory Revision

Given:
• Available KG

• Horn rule set

Find:
• Nonmonotonic revision of Horn rule set

with better predictive quality

29 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Horn Theory Revision

Quality-based Horn Theory Revision

Given:
• Available KG

• Horn rule set

Find:
• Nonmonotonic revision of Horn rule set

with better predictive quality

29 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Avoid Data Overfitting

How to distinguish exceptions from noise?

r1 : livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z), not researcher(X)

not livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z), researcher(X)

r2 : livesIn(X ,Z)← bornIn(X ,Z), not moved(X)

not livesIn(X ,Z)← bornIn(X ,Z),moved(X)

{livesIn(c, d), not livesIn(c, d)} are conflicting predictions

Intuition: Rules with good exceptions should make few conflicting predictions

30 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Avoid Data Overfitting

How to distinguish exceptions from noise?

r1 : livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z), not researcher(X)

not livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z), researcher(X)

r2 : livesIn(X ,Z)← bornIn(X ,Z), not moved(X)

not livesIn(X ,Z)← bornIn(X ,Z),moved(X)

{livesIn(c, d), not livesIn(c, d)} are conflicting predictions

Intuition: Rules with good exceptions should make few conflicting predictions

30 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Avoid Data Overfitting

How to distinguish exceptions from noise?

r1 : livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z), not researcher(X)

not livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z), researcher(X)

r2 : livesIn(X ,Z)← bornIn(X ,Z), not moved(X)

not livesIn(X ,Z)← bornIn(X ,Z),moved(X)

{livesIn(c, d), not livesIn(c, d)} are conflicting predictions

Intuition: Rules with good exceptions should make few conflicting predictions

30 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Avoid Data Overfitting

How to distinguish exceptions from noise?

r1 : livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z), not researcher(X)

not livesIn(X ,Z)← isMarriedTo(Y ,X), livesIn(Y ,Z), researcher(X)

r2 : livesIn(X ,Z)← bornIn(X ,Z), not moved(X)

not livesIn(X ,Z)← bornIn(X ,Z),moved(X)

{livesIn(c, d), not livesIn(c, d)} are conflicting predictions

Intuition: Rules with good exceptions should make few conflicting predictions

30 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Horn Theory Revision

Quality-based Horn Theory Revision

Given:
• Available KG

• Horn rule set

Find:
• Nonmonotonic revision of Horn rules, such that

• number of conflicting predictions is minimal
• average conviction is maximal

31 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Exception Candidates

r : livesIn(X ,Z)← isMarriedTo(Y ,X) , livesIn(Y ,Z)
32 / 38

{
not researcher(X)
not artist(Y)

}

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Exception Ranking

rule1 {e1, e2 , e3, . . . }
rule2 {e1, e2, e3, . . . }
rule3 {e1, e2 , e3, . . . }

Finding globally best revision is expensive, exponentially many candidates!

• Naive ranking: for every rule inject exception that results in the
highest conviction

• Partial materialization (PM): apply all rules apart from a given one,
inject exception that results in the highest average conviction of the
rule and its rewriting

• Ordered PM (OPM): same as PM plus ordered rules application

• Weighted OPM: same as OPM plus weights on predictions

M. Gad-Elrab, D. Stepanova, J. Urbani, G. Weikum. Exception-enriched Rule Learning from Knowledge Graphs. ISWC2016
D. Tran, D. Stepanova, M. Gad-Elrab, F. Lisi, G. Weikum. Towards Nonmonotonic Relational Learning from KGs. ILP2016

33 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Experimental Setup
• Approximated ideal KG: original KG

• Available KG: for every relation randomly remove 20% of facts from
approximated ideal KG

• Horn rules: h(X ,Y)← p(X ,Z), q(Z ,Y)

• Exceptions: e1(X), e2(Y), e3(X ,Y)

• Predictions are computed using answer set solver DLV

Examples of revised rules:

Plots of films in a sequel are written by the same writer, unless a film is American

r1 : writtenBy(X ,Z)← hasPredecessor(X ,Y),writtenBy(Y ,Z), not american film(X)

Spouses of film directors appear on the cast, unless they are silent film actors

r2 : actedIn(X ,Z)← isMarriedTo(X ,Y), directed(Y ,Z), not silent film actor(X)

34 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Experimental Setup
• Approximated ideal KG: original KG

• Available KG: for every relation randomly remove 20% of facts from
approximated ideal KG

• Horn rules: h(X ,Y)← p(X ,Z), q(Z ,Y)

• Exceptions: e1(X), e2(Y), e3(X ,Y)

• Predictions are computed using answer set solver DLV

Examples of revised rules:

Plots of films in a sequel are written by the same writer, unless a film is American

r1 : writtenBy(X ,Z)← hasPredecessor(X ,Y),writtenBy(Y ,Z), not american film(X)

Spouses of film directors appear on the cast, unless they are silent film actors

r2 : actedIn(X ,Z)← isMarriedTo(X ,Y), directed(Y ,Z), not silent film actor(X)

34 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Overview

Motivation

Ontologies and Rules

Inconsistencies in DL-programs

Nonmonotonic Rule Mining

Ongoing and Future Work

35 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Completeness-aware Rule Mining
• Exploit cardinality meta-data [Mirza et al., 2016] in rule mining

John has 5 children, Mary is a citizen of 2 countries

Joint work with T. Pellissier-Tanon, S. Razniewski, P. Mirza, G. Weikum

36 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Ongoing and Future Work

• Make use of logical background knowledge in
• Rule learning and other data mining tasks2

• Information extraction from text corpora3

• Natural language processing tasks

• Exploit answer set programs with
external computations [Eiter et al., 2009]
for the above problems

2
S. Paramonov, D. Stepanova, P. Miettinen. Hybrid Approach to Constraint-based Pattern Mining. Accepted to RR2017

3
Joint work with M. Gad-Elrab, J. Urbani, G. Weikum

37 / 38

Motivation Ontologies and Rules Inconsistencies in DL-programs Nonmonotonic Rule Mining Ongoing and Future Work

Conclusion
Summary:
• Inconsistencies in combination of rules and ontologies

• Repair semantics and its complexity analysis
• Optimized algorithms for repair computation

and their evaluation (DL-LiteA and EL DLs)

• Nonmonotonic rule mining from KGs
• Quality-based Horn theory revision framework under OWA
• Approach for computing and ranking exceptions based on

cross-talk among rules and its evaluation on real-world KGs

Future Directions:

• Interlinking mining and reasoning in the KG context

• Exploiting logical background knowledge in information
extraction and natural language processing tasks

38 / 38

References I

Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the semantic web.
Artificial Intelligence, 172(12-13):1495–1539, August 2008.

Thomas Eiter, Gerhard Brewka, Minh Dao-Tran, Michael Fink, Giovambattista Ianni, and Thomas Krennwallner.
Combining nonmonotonic knowledge bases with external sources.
In Frontiers of Combining Systems, 7th International Symposium, FroCoS 2009, Trento, Italy, September 16-18, 2009.
Proceedings, pages 18–42, 2009.

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek.
Fast rule mining in ontological knowledge bases with AMIE+.
VLDB J., 24(6):707–730, 2015.

Michael Gelfond and Vladimir Lifschitz.
The stable model semantics for logic programming.
In Proceedings of the 5th International Conference and Symposium on Logoc Programming, ICLP 1988, pages 1070–1080.
The MIT Press, 1988.

P. J. Hayes.
The logic of frames.
In Frame Conceptions and Text Understanding, pages 46–61. 1979.

John McCarthy.
Programs with common sense.
In TeddingtonConference, pages 75–91, 1959.

John McCarthy.
Circumscription - A form of non-monotonic reasoning.
Artif. Intell., 13(1-2):27–39, 1980.

Marvin Minsky.
A framework for representing knowledge.
In Readings in Knowledge Representation, pages 245–262. Kaufmann, 1985.

References II

Paramita Mirza, Simon Razniewski, and Werner Nutt.
Expanding wikidata’s parenthood information by 178%, or how to mine relation cardinality information.
In ISWC 2016 Posters & Demos, 2016.

Raymond Reiter.
A logic for default reasoning.
Artif. Intell., 13(1-2):81–132, 1980.

J. Robinson.
A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(6):23–41, 1965.

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

DL-program Repair Algorithm

3 / 6

Additional Material

Spurious Rules due to Incompleteness

In real world:

conf (r) =
| |

| |+ | |
=

2
3

r : isPoliticianOf (X ,Z)← hasChild(X ,Y), isCitizenOf (Y ,Z)
4 / 6

Additional Material

Spurious Rules due to Incompleteness

In real world:

conf (r) =
| |

| |+ | |
=

2
3

r : isPoliticianOf (X ,Z)← hasChild(X ,Y), isCitizenOf (Y ,Z)
4 / 6

Additional Material

Spurious Rules due to Incompleteness
In real world:

conf (r) =
| |

| |+ | |
=

2
6

r :

complete︷ ︸︸ ︷
isPoliticianOf (X ,Z)←

incomplete︷ ︸︸ ︷
hasChild(X ,Y), isCitizenOf (Y ,Z)

4 / 6

Additional Material

Hybrid Constraint-based Pattern Mining
• Interlink mining and reasoning
• Use declarative logic programming

for frequent pattern (itemset/sequence) filtering
• Combine various domain-specific constraints

Sergey Paramonov, Daria Stepanova, Pauli Miettinen. Hybrid Approach to Constraint-based Pattern Mining. RR2017

5 / 6

Additional Material

Semantically-enhanced Fact Spotting

KG population problem: some facts are hard to spot in text due to
reporting bias lost(nadal, australianOpen2017)

Given:
• Fact: lost(nadal, australianOpen2017)

• Rule set: lost(Z ,Y)← won(X ,Y), finalist(Z ,Y),X 6= Z
• KG: won(federer , australianOpen2017)

• Text: “... another finalist of Australian Open in 2017 was Nadal”

Find:
• Fact’s truth value: lost(nadal, australianOpen2017) is true!

Joint work with Mohamed Gad Elrab, Jacopo Urbani and Gerhard Weikum

6 / 6

	Motivation
	Ontologies and Rules
	Inconsistencies in DL-programs
	Nonmonotonic Rule Mining
	Ongoing and Future Work
	Appendix
	Additional Material

