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Combining Description Logic (DL) ontologies and nonmonotonic rules has gained increasing 
attention in the past decade, due to the growing range of applications of DLs. A well-known 
proposal for such a combination are non-monotonic DL-programs, which support rule-
based reasoning on top of DL ontologies in a loose coupling, using a well-defined query 
interface. However, inconsistency may easily arise as a result of the interaction of the rules 
and the ontology, such that no answer set (i.e., model) of a DL-program exists; this makes 
the program useless. To overcome this problem, we present a framework for repairing 
inconsistencies in DL-programs by exchanging formulas of an ontology formulated in 
DL-LiteA, which is a prominent DL that allows for tractable reasoning. Viewing the data 
part of the ontology as a source of inconsistency, we define program repairs and repair 
answer sets based on them. We analyze the complexity of the notion, and we extend 
an algorithm for evaluating DL-programs to compute repair answer sets, under optional 
selection of preferred repairs that satisfy additional constraints. The algorithm induces a 
generalized ontology repair problem, in which the entailment respectively non-entailment 
of queries to the ontology, subject to possible updates, must be achieved by a data 
change. While this problem is intractable in general, we identify several tractable classes of 
preferred repairs that are useful in practice. For the class of deletion repairs among them, 
we optimize the algorithm by reducing query evaluation to constraint matching, based 
on the novel concept of support set, which roughly speaking is a portion of the data from 
which entailment of an ontology query follows. Our repair approach is implemented within 
an answer set program system, using a declarative method for repair computation. An 
experimental evaluation on a suite of benchmark problems shows the effectiveness of our 
approach and promising results, both regarding performance and quality of the obtained 
repairs. While we concentrate on DL-LiteA ontologies, our notions extend to other DLs, for 
which more general computation approaches may be used.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Description Logics (DLs) [4], which emerged from semantic networks with the goal to equip respective formalisms with 
a clear formal semantics based on logic, nowadays play a dominant role among formalisms for Knowledge Representation 
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O =

⎧⎨
⎩

(1) Child � ∃hasParent (4) Male(pat)
(2) Adopted � Child (5) Male(john)

(3) Female � ¬Male (6) hasParent(john,pat)

⎫⎬
⎭

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7) ischildof (john,alex); (8) boy(john);
(9) hasfather(X, Y ) ← DL[Male � boy; Male](Y ),DL[; hasParent](X, Y );
(10) ⊥ ← not DL[; Adopted](X), Y1 �= Y2,hasfather(X, Y1),

ischildof (X, Y2),not DL[Child � boy; ¬Male](Y2);
(11) contact(X, Y ) ← DL[; hasParent](X, Y ),not omit(X, Y );
(12) omit(X, Y ) ← DL[; Adopted](X), Y �= Z ,hasfather(X, Y ), contact(X, Z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 1. DL-program � over a family ontology.

and Reasoning (KRR). As such, DLs are geared towards describing domains in terms of concepts that map to sets of domain 
objects and their relations, as well as roles that capture relationships among domain objects. This makes DLs well-suited 
for representing ontologies formally and to reason about them, which has a central role in the Semantic Web vision [9]; 
indeed, DLs provide the formal underpinning of the Web Ontology Language (OWL), a recommended standard for expressing 
ontological knowledge on the web. Fueled by the success in this area, DLs have been successfully deployed to many other 
contexts and applications, among them reasoning about actions [6], data integration and ontology based data access [20,19], 
spatial reasoning [69], runtime verification and program analysis [2,53], and many others.

Most DL ontologies are fragments of classical first-order logic, and as such lack sufficient expressiveness for the require-
ments of certain problems; for instance, they cannot model closed-world reasoning, nor can they express nonmonotonicity; 
these features are often essential in practical application scenarios. Furthermore, DLs do not offer rules, which are popular 
in practical knowledge representation and serve a complementary aspect: while DLs are focused on specifying and rea-
soning about conceptual knowledge, logic rules serve well for reasoning about individuals; furthermore they target issues 
associated with nonmonotonic inference as well as non-determinism. To overcome these shortcomings, several extensions of 
DLs have been developed, e.g. [80,5,26,27,65,15,23,52,47,14] and various notions of hybrid knowledge bases (KBs) have been 
proposed to get the best out of the DL and rules worlds by combining them (see [66] and references therein). Among them, 
Nonmonotonic Description Logic (DL-)programs [37] are the most prominent approach for a loose coupling between the rules 
and the ontology via so-called DL-atoms, which serve as query interfaces to the ontology that support information hiding 
and the use of legacy software (i.e., ontology reasoners). The possibility to add information from the rules part prior to 
query evaluation allows for adaptive combinations.

Example 1. Consider the DL-program � in Fig. 1, which captures information about children of a primary school and 
their parents in simplistic form. It is given as a pair � = 〈O, P〉 of an ontology O and a set of rules P . The ontology 
O contains a taxonomy T of concepts (i.e., classes) in (1)–(3) and factual data (i.e., assertions) A about some individuals 
in (4)–(6). Intuitively, T states that every child has a parent, adopted child is a child, and male and female are disjoint. 
The rules P contain some further facts (7), (8) and proper rules: (9) determines fathers from the ontology, upon feeding 
information to it; (10) checks, informally, against them for local parent information (ischildof ) the constraint that a child 
has for sure at most one father, unless it is adopted (where ⊥ stands for falsity); finally (11)–(12) single out contact 
persons for children, which by default are the parents; for adopted children, fathers from the ontology are omitted if some 
other contact exists. The rules and the ontology interact via DL-atoms, which are the expressions starting with “DL”; e.g., 
DL[Male � boy; Male](X) informally selects all individuals c, such that Male(c) is provable from O after temporarily adding 
for boys the assertions that they are male in the ontology.

The semantics of DL-programs was given in the seminal paper [37] in terms of answer sets, as a generalization of 
the answer set semantics of nonmonotonic logic programs [46]. In this way, DL-programs are an extension of answer 
set programming (ASP) [18] in which the user can evaluate in the rules queries over an ontology via DL-atoms. Notably, 
DL-atoms enable a bidirectional information flow between the rules and the ontology, which may even be cyclic; this makes 
DL-programs quite expressive, and allows one to formulate advanced reasoning applications on ontologies, such as extended 
closed-world or terminological default reasoning [37].

On the other hand, the information flow can lead to inconsistency, i.e., that no answer set of the DL-program exists, even 
if the ontology and rules are perfectly consistent when considered separately; this happens in the example above, where the 
DL-program has no answer set. An inconsistent DL-program yields no information and is of no use for constructive problem 
solving; it may be viewed as broken and in need of an appropriate management of this situation. Systems for evaluating 
DL-programs, among them dlvhex1 and DReW,2 however can not resolve inconsistencies easily; this is clearly a drawback 
for their deployment to applications.

1 www.kr.tuwien.ac.at/research/systems/dlvhex.
2 www.kr.tuwien.ac.at/research/systems/drew.

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/drew
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Adequate treatment of inconsistent information is a ubiquitous challenge faced by many KR formalisms in various set-
tings. The issue has been extensively studied in various fields, e.g. diagnosis [73], nonmonotonic reasoning [17,76], belief 
revision [1,42], knowledge base updates [28], databases (see [10] for an overview) and many others (e.g., [11,67,62,25]). 
Although a large number of “inconsistency-tolerant” approaches exist (see Section 7 for a discussion), most of them are ap-
plicable only to formalisms that are based on a single underlying logic. DL-programs in turn constitute a hybrid formalism, 
and existing approaches can not be readily applied for such a setting; thus, suitable methods for inconsistency handling in 
DL-programs are needed.

In this work, we address this need and develop techniques for repairing inconsistent DL-programs. Our main contribu-
tions can be summarized as follows.

(1) We formalize repairing DL-programs and introduce the notions of repair and repair answer set. They are based on 
changes of the assertions in the ontology that enable answer sets. As it turns out, repair answer sets do not have 
higher complexity than ordinary answer sets (more precisely, weak and flp answer sets) if queries in DL-atoms are 
evaluable in polynomial time; to ensure this, we concentrate on the prominent Description Logic DL-LiteA from the 
DL-Lite family [21]. Furthermore, we model repair preference by functions σ that select preferred repairs from a set of 
candidate repairs. As selecting most preferred repairs in a repair ordering may be a source of complexity, [54], we focus 
on selections σ that allow to filter preferred repairs independent of other repairs (which is relevant in practice).

(2) The task of repair computation involves a generalized ontology repair problem (ORP), which arises from a candidate an-
swer set and the DL-atoms of the program. It consists of two sets D1 and D2 containing entailment and non-entailment 
queries to the ontology, respectively, under temporary assertions induced by the answer set candidate, and asks for an 
ABox satisfying these sets. Importantly, if a selection function σ is independent, the σ -selected ABoxes also yield, mod-
ulo a conditional check on the rules part, the σ -selected repairs of the program. Unsurprisingly, the ORP problem is 
intractable (NP-complete) for DL-LiteA in general, and NP-hard even in elementary ontology settings, due to the tempo-
rary assertions. However, we identify several tractable cases of σ -selections that are useful in practice. The ORP problem 
is of independent interest, as it can arise in a general context where multiple ontologies are integrated which share the 
taxonomy and some defeasible data, where queries serve as constraints.

(3) To optimize repair answer set computation, we introduce support sets as means to shortcut the ontology access for 
query evaluation. Informally, a support set of a DL-atom is a portion of the data in the ontology and the answer set 
from which the entailment of the query in the DL-atom follows; by a simple ontology enhancement, this data can be 
described entirely in terms of data in the ontology. Furthermore, support sets lift faithfully to the nonground level, 
i.e., can be schematically described, and the latter can for DL-LiteA ontologies not only be efficiently computed, but 
are also small; this provides the basis for scalability in exploitation. Using support sets likewise proved to be effective 
for evaluating DL-programs, as was shown in [32]; they can be seen as non-ground justifications why a query to the 
ontology evaluates to true and informally generalize explanations of positive query answers [16] to a setting with 
further ad-hoc input data.

(4) Utilizing support sets, we devise an algorithm for the effective computation of deletion repairs of DL-programs under 
weak and flp-answer set semantics, and we discuss potential generalizations. The algorithm is implemented within the 
dlvhex answer set solving framework, using a declarative approach for support set evaluation. Furthermore, we report 
results of an extensive experimental evaluation of the implementation on a suite of benchmarks that gather scenarios 
of different characteristics. The results provide evidence for the effectiveness of the method and scalability with respect 
to intuitively increasing inconsistency in the data.

Organization. The remainder of this article is organized as follows. Section 2 provides necessary preliminaries on DL-
programs. In Section 3, the notions of repair and repair answer sets are introduced and a detailed analysis of their 
computational complexity is presented. Section 4 elaborates on support sets as optimization means and algorithms for 
deletion repair computation of DL-programs over DL-LiteA ontologies based on them. In Section 5 the structure of the 
prototype and the implementation details are given, and in Section 6 the evaluation results are presented and analyzed. 
A comprehensive discussion of further and related work is given in Section 7, followed by concluding remarks and an 
outlook in Section 8. In order not to distract from the flow of reading, longer proofs have been moved to the Appendix.

This article significantly extends the preliminary work in [33,35].

2. Preliminaries

In this section, we recall basic notions of Description Logics, where we focus on DL-LiteA [21,70], and DL-programs [37]; 
for more background on Description Logics, see [4].

2.1. Description logic knowledge bases

We consider Description Logic (DL) knowledge bases (KBs) over a signature �O = 〈I, C, R〉 with a set I of individuals 
(constants), a set C of concept names (unary predicates), and a set R of role names (binary predicates) as usual.
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A DL knowledge base (or ontology) is a pair O = 〈T , A〉 of a TBox T and an ABox A, which are finite sets of formulas 
capturing taxonomic resp. factual knowledge, whose form depends on the underlying DL. In abuse of notation, we also write 
O = T ∪A viewing O as a set of formulas.

Syntax. In DL-LiteA , concepts C , denoting sets of objects, and roles R , denoting binary relations between objects, obey the 
following syntax, where A ∈ C is an atomic concept and P ∈ R an atomic role:

C → A | ∃R, D → C | ¬C, R → P | P−, S → R | ¬R.

DL-LiteA TBox axioms are then of the form:

C � D, R � S, (funct R)

Axioms where D = C resp. S = R are positive inclusion axioms and where D = ¬C resp. S = ¬R are disjointness axioms; 
(funct R) is a functionality axiom. As a further constraint, roughly speaking in DL-LiteA (inverse) functional roles can not 
be specialized, i.e., they can not appear on the right-hand side of positive inclusion axioms; for formal details, see [70]
An assertion is a formula A(c) or P (c, d), where A ∈ C, P ∈ R, and c, d ∈ I (called positive) or its negation, i.e., ¬A(c) resp. 
¬P (c, d) (negative).3 An example of a DL-LiteA ontology is given in Fig. 1.

Semantics. The semantics of DL ontologies O is based on first-order interpretations [21].

Definition 2 (Interpretation). An interpretation is a pair I = 〈�I , ·I〉 of a non-empty domain �I and an interpretation 
function ·I that assigns to each individual c ∈ I an object cI ∈ �I , to each concept name C a subset CI of �I , and to each 
role name R a binary relation RI over �I .

An interpretation I extends inductively to non-atomic concepts C and roles R according to the concept resp. role 
constructors; as for DL-LiteA , (∃R)I = {o1 | 〈o1, o2〉 ∈ RI} and (¬C)I = �I\CI , and R−I = {〈o1, o2〉 | 〈o2, o1〉 ∈ RI} and 
(¬R)I = �I × �I \ RI . Based on this satisfaction of formulas in I |= ω is defined as follows.

Definition 3 (Satisfaction). Satisfaction of an axiom respectively assertion w.r.t. an interpretation I is as follows:

• I |= C � D , if CI ⊆ DI ;
• I |= R � S , if RI ⊆ SI ;
• I |= f unct(R), if (o1, o2) ∈ RI and (o1, o3) ∈ RI implies o2 = o3 for all o1, o2, o3 ∈ �I ;
• I |= C(a), if aI ∈ CI and I |= ¬C(a), if aI ∈ �I\CI ;
• I |= P (a, b), if (aI , bI) ∈ PI and I |= ¬P (a, b), if (aI , bI) ∈ �I×�I\PI .

Furthermore, I satisfies a set of formulas �, denoted I |= �, if I |= α for each α ∈ �.

A TBox T , ABox A respectively ontology O is satisfiable (or consistent), if some interpretation I satisfies it. We call A
consistent with T , if T ∪A is consistent.

Example 4 (cont’d). The ontology O in Fig. 1 is consistent, since there exists a satisfying interpretation I = 〈�I , ·I〉, defined
by setting �I = {john,pat}, MaleI = {john,pat}, hasParentI = {(john,pat)} and ChildI = FemaleI = ∅. The ontology O′ =
O ∪ {Female(pat)} does not have any model, and thus is inconsistent.

It has been shown that in DL-LiteA inconsistency arises by few assertions [21].

Proposition 5 (cf. [21]). In DL-LiteA , for a given TBox T every ⊆-minimal ABox A such that T ∪A is inconsistent fulfills |A| ≤ 2.

Throughout the paper, we consider ontologies in DL-LiteA under the unique names assumption, i.e., o1
I �= o2

I whenever 
o1 �= o2 holds in any interpretation.

2.2. DL-programs

A DL-program � = 〈O, P〉 is given as a pair of a DL ontology O and a set P of DL-rules, which extend rules in non-
monotonic logic programs with special DL-atoms. They are formed over a signature �� = 〈C, P, I, C, R〉, where �P = 〈C, P〉
is a signature of the rule part P with C being a finite set of constant symbols, and P a finite set of predicate symbols (called 

3 Negative assertions ¬F (�t) are easily compiled to positive ones using a fresh concept resp. role name F¬ and F¬(�t), F¬ � ¬F .
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lp predicates) of arities ≥ 0, and �O = 〈I, C, R〉 is a DL signature. The set P is disjoint with C, R. For simplicity, we assume 
here C = I.

Syntax. A (disjunctive) DL-program � = 〈O, P〉 consists of a DL ontology O and a finite set P of DL-rules r of the form

a1 ∨ . . . ∨ an ← b1, . . . ,bk,not bk+1, . . . ,not bm (1)

where not is negation as failure (NAF)4 and each ai , 0 ≤ i ≤ n, is a first-order atom p(�t) with predicate p ∈ P (called ordinary
or lp-atom) and each bi , 1 ≤ i ≤ m, is either an lp-atom or a DL-atom. If n = 0, the rule is a constraint, and if n ≤ 1, it is 
normal. The notions of a head and a body of a rule are naturally inherited from normal logic programs, i.e. for a DL-rule r of 
the form (1), H(r) = {a1, . . . , an} is called the head of r, and B(r) = {b1, . . . , bk, not bk+1, . . . , not bm} is called the body of r.

A DL-atom a(�t) is of the form

DL[λ; Q ](�t), (2)

where

(a) λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0 is the input list and for each i, 1 ≤ i ≤ m, Si ∈ C ∪ R, opi ∈ {�, −∪, −∩} is an update 
operator, and pi ∈ P is an input predicate of the same arity as Si ; intuitively, opi = � (resp., opi = −∪) increases Si (resp., 
¬Si ) by the extension of pi , while opi = −∩ constrains Si to pi ;

(b) Q (�t) is a DL-query, which has one of the forms (i) C(t), where C is a concept and t is a term; (ii) R(t1, t2), where R is a 
role and t1, t2 are terms; (iii) Q is an inclusion axiom and �t = ε; (iv) Q is a disjointness axiom and �t = ε; or (v) ¬Q ′(�t)
where Q ′(�t) is from (i)–(iv). We omit (�t) for �t = ε .

Example 6 (cont’d). Consider a ground version DL[Male � boy; Male](pat) of the DL-atom in the rule (9) of � in Fig. 1. It has 
a DL-query Male(pat); its list λ = Male � boy contains an input predicate boy which extends the ontology predicate Male via 
an update operator �.

Semantics. The semantics of a DL-program � = 〈O, P〉 is in terms of its grounding gr(�) = 〈O, gr(P)〉 over C , i.e., gr(P)

contains all ground instances of rules r in P over C . In the remainder, by default we assume that � is ground.
A (Herbrand) interpretation of � is a set I ⊆ HB� of ground atoms, where HB� is the Herbrand base w.r.t. C and P (i.e. 

all ground atoms over C and P); I satisfies an lp- or DL-atom a, if

(i) a ∈ I , if a is an lp-atom, and
(ii) 〈O ∪ λI (a)〉 |= Q (�t) where O = 〈T , A〉, if a is a DL-atom of form (2), where

λI (a) =
m⋃

i=1

Ai(I) (3)

and
– Ai(I) = {Si(�c) | pi(�c) ∈ I}, for opi = �;
– Ai(I) = {¬Si(�c) | pi(�c) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(�c) | pi(�c) ∈ HB� \ I}, for opi = −∩.

Satisfaction of a DL-rule r resp. set P of rules by I is then as usual, where I satisfies not b j , if I does not satisfy b j ; 
I satisfies �, if it satisfies each r ∈ P . We denote that I satisfies (is a model of) an object ω (atom, rule, etc.) with I |=Oω. 
A model I of ω is minimal, if no model I ′ of ω exists such that I ′ ⊂ I .

Example 7 (cont’d). The interpretation I = {ischildof ( john, alex), boy( john)} satisfies the DL-atom o = DL[Child � boy;
Male](john), as O ∪ λI (o) |= Male(john). Furthermore, I �|=ODL[; Adopted](john), since the input list of DL[; Adopted](john)

is empty and O �|= Adopted(john).

Answer sets. Various semantics for DL-programs extend the answer sets semantics of (disjunctive) logic programs [46] to 
DL-programs, e.g. [37,59,82,77]. We concentrate here on weak answer sets [37], in which DL-atoms are treated like atoms 
under NAF, and flp answer sets [38], which obey a stronger foundedness condition. Both are like answers sets of ordinary 
logic programs defined as interpretations that are minimal models of a program reduct, which intuitively captures that 
assumption-based application of the rules on an interpretation can reconstruct the latter.

Definition 8 (Weak answer sets). Let � = 〈O, P〉 be a DL-program. The weak reduct of P relative to O and to an interpretation 
I ⊆ H B� , denoted by P I,O

weak is the ordinary positive program obtained from gr(P) by deleting

4 Strong negation ¬a can be added resp. emulated as usual [37].
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• all DL-rules r such that either I �|=O a for some DL-atom a ∈ B+(r), or I |=O l for some l ∈ B−(r); and
• from every remaining DL-rule r all the DL-atoms in B+(r) and all the literals in B−(r).

A weak answer set of � is any interpretation I ⊆ H B� that is a minimal model of P I,O
weak . By ASweak(�) we denote the set 

of all weak answer sets of �.

Note that P I,O
weak is an ordinary ground positive program without DL-atoms and default-negated literals, which has the 

least (unique minimal) model if each rule in P is definite (i.e., n = 1 in (1)).

Example 9. Let O be as in Fig. 1 and let the rule set P be as follows:

P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(7) ischildof (john,alex); (8) boy(john);
(9) hasfather(john,pat) ← DL[Male � boy; Male](pat),DL[; hasParent](john,pat);
(10) contact(john,pat) ← DL[; hasParent](john,pat),not omit(john,pat);
(11) omit(john,pat) ← DL[; Adopted](john),hasfather(john,pat), contact(john,alex)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Consider I = {ischild(john,alex), boy(john), contact(john,pat), hasfather(john,pat)}. The weak-reduct P I,O
weak contains the fol-

lowing rules:

P I,O
weak =

⎧⎪⎨
⎪⎩

(7) ischildof (john,alex); (8) boy(john);
(9′) hasfather(john,pat);
(10′) contact(john,pat)

⎫⎪⎬
⎪⎭ .

The interpretation I is a weak-answer set of �, since I is a minimal model of P I,O
weak . In fact, ASweak(�) = {I} holds.

The flp-answer set semantics is defined as follows.

Definition 10 (flp answer sets). Let � = 〈O, P〉 be a DL-program. The flp-reduct of P relative to O and an interpretation 
I ⊆ H B� is the set of rules P I,O

flp = {r I,O
flp | r ∈P} where r I,O

flp = r, if the body of r is satisfied, i.e., I |=O bi , for all bi , 1 ≤ i ≤ k

and I �|=O b j , for all k < j ≤ m; otherwise, r I,O
flp is empty.

An flp-answer set of � is any interpretation I ⊆ H B� that is a minimal model of P I,O
flp . By ASflp(�) we denote the set of 

all flp answer sets of �.

Example 11. Reconsider � = 〈O, P〉 and I from Example 9. The reduct P I,O
flp contains all rules of P apart from (11). It is 

not difficult to verify that I is a minimal model of P I,O
flp , and hence an flp-answer set of �; in fact ASflp(�) = {I}. �

In general, the set of all flp answer sets of a DL-program is contained in the set of its strong answer sets [37], which in 
turn is contained in the set of weak answer sets. Strong answer sets coincide with flp ones in some cases, in particular, if 
the constraint operator −∩ does not occur in �. For more information, see [37,82].

When dealing with evaluation of DL-atoms w.r.t. a given interpretation I , it is often convenient to consider input asser-
tions defined as follows.

Definition 12 (Input assertion). Given a DL-atom d = DL[λ; Q ](�t) and P ◦ p ∈ λ, ◦ ∈ {�, −∪}, we call P p(�c) an input assertion 
for d, where P p is a fresh ontology predicate and �c ⊆ C . By Ad we denote the set of all such assertions.

For a TBox T and a DL-atom d, we let

Td = T ∪ {P p � P | P � p ∈ λ} ∪ {P p � ¬P | P −∪ p ∈ λ},
and for an interpretation I , we let

O I
d = Td ∪A∪ {P p(�c) ∈ Ad | p(�c) ∈ I}.

We then have:

Lemma 13. For every O = 〈T , A〉, DL-atom d = DL[λ; Q ](�t) and interpretation I , it holds that I |=O d iff I |=O I
d DL[ε; Q ](�t) iff 

O I
d |= Q (�t).

Unlike (3), in O I
d there is a clear distinction between native assertions and input assertions of d w.r.t. I (via facts P p and 

axioms P p � (¬)P ), mirroring the lp-input of d.
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Table 1
Complexity of deciding weak and flpanswer set existence for ground DL-
programs over DL-LiteA (completeness results).

ASx(�) | RASx(�) �=∅? Normal � Disjunctive �

x = weak NP |NP � P
2 |� P

2

x = flp � P
2 |� P

2 � P
2 |� P

2

3. Repair semantics

The powerful formalism of DL-programs permits a bidirectional information flow between the rule part and the ontology, 
which makes it attractive for various application scenarios. This information flow, however, can have unforeseen effects and 
cause that a DL-program has no answer set; we call such DL-programs inconsistent.

Example 14 (cont’d). The DL-program � from Fig. 1 does not have any weak nor flp answer set, and thus is inconsistent. 
The inconsistency arises in this program as john, who is not provably adopted, has pat as father by the ontology, and by the 
local information possibly also alex; this causes the constraint (10) to be violated. �

Absence of answer sets makes a DL-program unusable, which calls for a remedy to this problem. As mentioned ear-
lier, there are two principled approaches: to tolerate inconsistency, in the sense that reasoning does not trivialize, or to 
repair the program, i.e., change formulas in it to obtain consistency. As regards DL-programs (and likewise similar hybrid 
formalisms), previous works [72,40] focused on inconsistency tolerance, by suppressing or weakening information that leads 
to inconsistency in model building.

In this section, we consider DL-program repair from a theoretical perspective by introducing a repair semantics and 
analyzing its computational complexity. In our setting, we assume that the rule part P , which is on top of the ontology 
O = 〈T , A〉, is reliable and that the cause for inconsistency is in the latter. Thus when searching for a repair, modifications 
should only be applied to O. In principle, the TBox T and the ABox A of the ontology could be subject to change; however, 
as usually the TBox is well-developed and a suitable TBox change is less clear in general (the more by an external user), 
we confine to change only the ABox. For example, in the DL-program � in Example 14 it would be sufficient to delete the 
assertion hasParent(john,pat) from the ABox to obtain a (weak respectively flp) answer set.

From a general perspective, our goal is, given a possibly inconsistent DL-program, to find an ABox A′ such that replacing 
the ABox A by A′ makes the DL-program consistent. The answer sets of such a “repaired” DL-program are then referred to 
as repair answer sets of the program.

Formally, they are defined as follows.

Definition 15 (x-repairs and x-repair answer sets). Given a DL-program � = 〈O, P〉, O = 〈T , A〉, an ABox A′ is an x-repair of 
�, where x ∈ {flp, weak}, if

(i) O′ = 〈T , A′〉 is consistent, and
(ii) �′ = 〈O′, P〉 has some x-answer set.

By repx(�) we denote the set of all x-repairs of �. An interpretation I is an x-repair answer set of �, if I ∈ A Sx(�
′), where 

�′ = 〈O′, P〉, O′ = 〈T , A′〉, and A′ ∈ repx(�). By RASx(�) we denote the set of all x-repair answer sets of �.
Furthermore, by repI

x(�) = {A′ ∈ repx(�) | I ∈ A Sx(�
′), �′ = 〈O′, P〉, O′ = 〈T , A′〉} we denote the set of all ABoxes A′

under which I becomes an x-answer set of �.

Example 16 (cont’d). Reconsider � in Example 1. The interpretation I1 = {boy(john), ischildof (john,alex)} is an flp-repair 
answer set with flp-repair A′

1 = {Male(john), Male(pat)}. Another flp-repair for I1 is A′
2 = {hasParent(john,pat), Female(pat),

Male(john)}. The interpretation I1 is also a weak-repair answer set with the weak-repairs A′
1 and A′

2.

3.1. Complexity of RAS existence for DL-programs over DL-LiteA DL

We now look at the problem of deciding whether a given DL-program � = 〈O, P〉 has an x-(repair) answer set for 
x ∈ { f lp, weak}. Table 1 compactly summarizes our complexity results for this problem for O in DL-LiteA .

Before formally addressing the complexity of repair answer sets, we first state the following proposition:

Proposition 17. Given any I ⊆ HB� , O in DL-LiteA , and a DL-atom a = DL[λ; Q ](�t), deciding I |=O a is feasible in polynomial time.

Proof. Deciding whether I |=O a is equivalent to checking O∪λI (a) |= Q (�t). As instance checking is known to be polynomial 
[21] in DL-LiteA , the result immediately follows. �
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We are now ready to formally prove basic complexity results for checking the existence of repair answer sets for a 
DL-program.

Theorem 18. Given a ground DL-program � = 〈O, P〉 with O in DL-LiteA deciding whether RASx(�) �= ∅ is

(i) NP-complete for normal � and x = weak;
(ii) � P

2 -complete for arbitrary � and x ∈ {weak, flp};
(iii) � P

2 -complete for normal � and x = flp.

We remark that the problem in (i) remains NP-hard even if � consists of a stratified DL-program in the sense of [37]
that has additional constraints, cf. [79]. In (ii), the � P

2 -hardness is inherited from the complexity of answer sets of ordinary 
disjunctive logic programs. In (iii), the complexity drops to NP-completeness if the update operator −∩ is excluded, as then 
the flp- and the strong answer sets of such DL-programs are guaranteed to coincide and deciding strong answer set existence 
is co-NP-complete [36]. Furthermore, all results extend to the setting where independent selection functions for determining 
preferred solutions, which are introduced in the next section, of polynomial time complexity are available.

3.2. Selection functions

Clearly, not all repairs are equally useful or interesting for a certain scenario. For instance, repairs that have no common 
assertions with the original ABox might be unwanted; repairs that introduce assertions that are not in the initial ABox; 
repairs that would cause non-minimal change etc. Formally, we model preferred repairs using a selection function:

Definition 19 (Selection function). A selection function is a mapping σ : 2AB×AB → 2AB , where AB is the set of all ABoxes, 
that assigns every pair (S, A) of a set S of ABoxes and an ABox A a set σ(S, A) ⊆ S of preferred (or selected) ABoxes.

This notion captures a variety of selection principles, including minimal repairs according to some preference relation, or 
some global selection property. We then define:

Definition 20 ((σ , x)-repairs and (σ , x)-repair answer sets). Given � = 〈O, P〉, O = 〈T , A〉, and a selection σ , we call 
rep(σ ,x)(�) = σ(repx(�), A) the (σ , x)-repairs of �. An interpretation I ⊆ HB� is a (σ , x)-repair answer set of �, if 
repI

(σ ,x)(�) �= ∅, where repI
(σ ,x)(�) = rep(σ ,x)(�) ∩ repI

x(�); by RAS(σ ,x)(�) we denote the set of all such repair answer 
sets.

Example 21. Consider a DL-program � = 〈O, P〉, where O = 〈∅, A〉 = {Child(john)} and P is as follows:

P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1) male(john);
(2) pupil(john) ← DL[; studiesAt](john, sch80);
(3) boy(john) ← DL[Child � boy; Child](john),male( john);
(4) ⊥ ← boy(john),not pupil(john)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

The interpretation I = {male(john),pupil(john),boy(john)} is a (σ , weak)-repair answer set of � with a possible (σ , weak)-
repair A′ = {studiesAt(john, sch80)}, i.e. I ∈ RAS(σ ,weak)(�) and A′ ∈ repI

(σ ,weak)(�), where σ chooses repairs A′ , such that 

the set difference between A and A′ contains at most 2 assertions. Indeed, we have that P I,O′
weak = {male(john); pupil(john);

boy(john)}, and clearly I is its minimal model.
Moreover, I ∈ RAS(σ ,flp)(�), and A′′ = {studiesAt(john, sch80), Child(john)} ∈ repI

σ ,flp(�) is an (σ , flp)-repair of �. To verify 

this, observe that the reduct P I,O′′
flp contains the rules (1)–(3), and I is a minimal model of 〈A′′, P I,O′′

flp 〉, where O′′ =
〈∅, A′′〉. Note that while A′′ ∈ repI

(σ ,weak)(�), we have that A′ /∈ repI
(σ ,flp)

(�). More specifically, I is not a minimal model 

of 〈O′, P I,O′
flp 〉, where P I,O′

flp =P I,O′′
flp and O′ = 〈∅, A′〉, since there is a smaller model I ′ = I \ {boy(john)}, which satisfies all 

rules of P I,O′
flp .

The repair A′
1 = {Male(john), Male(pat)} from Example 16 is in repI1

σ1,x(�) for I1 = {ischildof (john,alex), boy(john)}, 
where x ∈ {weak, flp} and σ1 selects deletion repairs, i.e. subsets of A. Furthermore, the ABox A′

2 = {hasParent(john,pat), 
Male(john), Female(pat)} is in repI1

σ2,x(�), where x ∈ {weak, flp}, and σ2 selects repairs A′ , which differ from A only on 
assertions over gender predicates Male, Female, and |A| = |A′|. Consequently, I1 ∈ RAS(σ1,x)(�) and I2 ∈ RAS(σ2,x)(�) for 
x ∈ {weak, flp}. �

In general, even polynomially computable selections σ may incur intractability, e.g., selecting ABoxes A′ with set-
minimal change to A, or with smallest Dalal (Hamming) distance (see e.g. [54]). Naturally, we aim at selections that are 
useful in practice and have benign computational properties, which are pragmatic specifically for our problem.
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Definition 22 (Independent selection). A selection σ : 2AB×AB → 2AB is independent, if σ(S, A) = σ(S ′, A) ∪ σ(S \ S ′, A)

whenever S ′ ⊆ S .

Example 23. All selection functions considered in Example 21 are independent. The selection function σ , which seeks repairs 
A′ that contain a minimal number of changes in assertions over predicate Adopted w.r.t. A in Example 1 is not independent, 
since to find the preferred σ -repair one needs to compute all repair candidates first, and then choose the best one among 
them. �

Independence allows us to decide whether a given repair A′ ∈ S is selected by σ without looking at other repairs, 
and composition works here easily. This makes the introduced property valuable, since independent selection functions of 
different kind can be conveniently combined without a major increase in the complexity. Formally,

Proposition 24. If selection functions σ1 and σ2 are independent, then their composition σ1 ◦ σ2 is also independent.

Proof. We show that whenever S ′ ⊆ S it holds that σ1(σ2(S, A), A) = σ1(σ2(S ′, A), A) ∪ σ1(σ2(S \ S ′, A), A). By indepen-
dence of σ2 we have σ2(S, A) = σ2(S ′, A) ∪ σ2(S \ S ′, A). Hence, σ2(S ′, A) ⊆ σ2(S, A), and thus by independence of σ1
we get σ1(σ2(S, A), A) = σ1(σ2(S ′, A), A) ∪ σ1(σ2(S, A) \ σ2(S ′, A), A). As σ2(S, A) \ σ2(S ′, A) = σ2(S \ S ′, A), the result 
follows. �

Clearly, set-minimal change and smallest Dalal distance are not independent, as to decide whether A′ ∈ σ(S, A) one 
has to compare A′ with all other ABoxes from S . On the other hand, selecting all ABoxes such that A′ ⊆ A, is obviously 
independent. The latter, and several other independent selections that are useful in practice, will be considered in the next 
section.

Independence leads to the following beneficial property.

Proposition 25. For every � and selection σ , if σ is independent, then repI
(σ ,x)(�) ⊆ rep(σ ,x)(�), for every I ⊆ HB� .

Proof. By definition rep(σ ,x)(�) = σ(repx(�), A) and repI
(σ ,x)(�) = σ(repI

x(�), A). Now as repI
x(�) ⊆ repx(�) and σ is 

independent, we obtain σ(repx(�), A) = σ(repI
x(�), A) ∪ σ(repx(�)\repI

x(�), A), from which the result is obtained. �
Proposition 25 implies that if we can turn an interpretation I into an answer set of � by a σ -selected repair from the 

repairs which achieve this for I , then I is a σ -repair answer set of �; that is, local selection is enough for a global σ -repair 
answer set. This will be exploited later in this section.

3.3. Ontology repair problem

In this section we introduce the Ontology Repair Problem (ORP), which is an important subtask of repair answer set 
computation. Intuitively, an ORP is the problem of identifying an ABox under which a simultaneous entailment and non-
entailment of sets of queries, where further individual additions for each query are possible, is guaranteed. In our setting 
updates and queries are obtained from a candidate interpretation and values of DL-atoms, under which this interpretation 
is an answer set of a DL-program at hand (see Section 4 for details).

Let us now provide a formal definition for this repair problem.

Definition 26 (Ontology repair problem (ORP)). An ontology repair problem (ORP) is a triple R = 〈O, D1, D2〉 where O = 〈T , A〉
is an ontology and Di = {〈U i

j, Q
i
j〉 | 1 ≤ j ≤mi}, i = 1, 2, are sets of pairs where each U i

j is an ABox and each Q i
j is a 

DL-query. A repair (solution) for R is any ABox A′ such that

(i) the ontology O′ = 〈T , A′〉 is consistent;
(ii) 〈T , A′ ∪ U 1

j 〉 |= Q 1
j holds for 1 ≤ j ≤ m1;

(iii) 〈T , A′ ∪ U 2
j 〉 �|= Q 2

j holds for 1 ≤ j ≤ m2.

For an illustration of ORPs, we resort to the ontology from Fig. 1.

Example 27. Consider R = 〈O, D1, D2〉 with O as in Fig. 1, and the following sets D1 and D2:

• D1 = {〈U 1
1, Q 1

1 〉, 〈U 1
2, Q 1

2 〉, 〈U 1
3, Q 1

3 〉}, where
– U 1

1 = {Male(john)}, Q 1
1 = Male(pat);

– U 1 = ∅, Q 1 = hasParent(john,pat);
2 2
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– U 1
3 = {Child(john)}, Q 1

2 = Male(alex);
• D2 = {〈U 2

1, Q 2
1 〉}, where

– U 2
1 = ∅, Q 2

1 = Adopted(john).

One of the possible solutions to the described ORP is the ABox A′ = {Male(alex), hasParent(john,pat), Male(pat)}. Indeed, 
it is easy to verify that

• 〈T , A′ ∪ Male(john)〉 |= Male(pat), 〈T , A′〉 |= hasParent(john,pat), 〈T , A′ ∪ Child(john)〉 |= Male(alex);
• 〈T , A′〉 �|= Adopted(john). �

We now analyze the complexity of the ORP problem in the general setting.

3.4. Complexity results for ORP

Unsurprisingly, the Ontology Repair Problem is intractable in general. However, this holds already for very simple on-
tologies, which we show in the next proposition.

Proposition 28. Deciding whether an ORP R = 〈〈T , A〉, D1, D2〉 has some repair A′ is NP-complete, and NP-hard even if T contains 
only positive concept inclusions and A = ∅.

In fact, even if both TBox and ABox are empty, the problem stays intractable, which is formally stated in the following 
proposition.

Theorem 29. Deciding whether an ORP R=〈〈T , A〉, D1, D2〉 has some repair is NP-hard even if O = ∅.

We note that ORP has two sources of NP-hardness, viz. the data part (as in the proof above) and the taxonomy, which 
under σ -repairs may derive further assertions. Furthermore, each ORP can be encountered in some DL-program setting; we 
show this on an example.

Example 30. Consider the ORP R = 〈O, D1, D2〉, where D1 = {δ1}, D2 = {δ2}, such that δ1 = 〈{C(c), ¬D(c)}, ¬E(c)〉, and 
δ2 = 〈{D(d), ¬S(d)}, C(d)〉. We introduce predicates pδ1

C , pδ1
D for δ1 and pδ2

D , pδ2
S for δ2 and construct � = 〈O, PI ∪ PDL〉, 

where

PI = {pδ1
C (c); pδ1

D (c); pδ2
D (d); pδ2

S (d)},

PDL =
{

⊥ ← not DL[C � pδ1
C , D −∪pδ1

D ; ¬E](c)︸ ︷︷ ︸
a1

(1) ⊥ ← DL[D � pδ2
D , S −∪pδ2

S ; C](d)︸ ︷︷ ︸
a2

} (2)
}

.

Then � has a single repair answer set candidate, in which a1 must evaluate to true and a2 to false. This gives rise to R; 
the rule (1) effects the pair δ1 in D1 and the rule (2) the pair δ2 in D2. �

Generalizing the above example, for each R = 〈O, D1, D2〉 one can construct a DL-program � = 〈O, P〉, such that the 
solutions of R correspond to the repairs of � as follows. A DL-atom a j

i is created for every pair 〈U j
i , Q

j
i 〉 ∈ D j , such that 

the DL-query of a j
i is Q j

i , and the input signature λ j
i encodes the update U j

i : for every C(�e) ∈ U j
i (resp. ¬C(�e)) the signature 

λ
j
i contains C � pi, j

C (resp. C −∪ pi, j
C ). Furthermore, for each such update the fact pi, j

C (�e) is added to P . The rules of P ensure 
that all DL-atoms a j

i are true for j = 1 and false for j = 2. That is, the logic program part P of � contains

• a constraint ⊥ ← not a1
i1

, for every a1
i1

, and

• a constraint ⊥ ← a2
i2

, for every a2
i2

.

As there are no predicates in P apart from those occurring in facts, the only possible repair answer set I of � contains 
all facts of P . Therefore, the update λI (a j

i ) of every a j
i corresponds exactly to U j

i , and the constraints of P guarantee the 
simultaneous entailment and non-entailment of sets of queries under possible temporary updates encoded by the given R.

3.5. Tractable ORP cases

As Theorem 29 demonstrates, we obtain intractability results for ORP even if the ontology is empty. In what follows we 
aim at finding tractable cases for the ORP problem given that O is in DL DL-LiteA .
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If there are few DL-atoms in the ground DL-program �, then the ORP becomes tractable. However, in application settings 
� is obtained by grounding a DL-program that has variables, which will lead to many DL-atoms in �. Therefore, the pairs 
D1 and D2 are hard to control in practice, and to gain tractability for ORP, we consider restrictions on repairs and the 
ontology. We present four tractable cases of σ -repairs with independent selection function σ , which are arguably useful in 
practice. In what follows, let R = 〈O, D1, D2〉, where O = 〈T , A〉.

3.5.1. Bounded δ±-change
A natural restriction that one could exploit is to bound the distance from the original ABox, i.e.

σδ±,k(S,A) = {A′ | |A′�A| ≤ k}, k ≥ 0, (4)

where A′�A = (A′\A) ∪ (A\A′) is the symmetric difference of sets. Our tractability result for this setting is as follows.

Proposition 31. Deciding whether an ORP R = 〈O, D1, D2〉 has a δ±, k-change repair, is feasible in polynomial time for fixed k.

Proof. As the number m of possible ABox assertions is polynomial in the size of T and A, traversing all O (
(m

k

)
) possible 

A′ and checking the repair condition can be done in polynomial time. �
We illustrate this repair type by the following example.

Example 32. For the DL-program from Fig. 1 the ABox A′ = (A\{Male(pat)}) ∪{Female(pat)} is a possible δ±, k-change repair 
for k = 2. Another repair candidate is A′ = (A\{Male(pat)}) ∪{Male(mat)} provided that mat is a constant from the ontology 
signature. �

The δ±-change repairs are arguably useful in practice. The repairs that restore consistency by getting rid of such deficien-
cies as typos and syntactical inaccuracies fall into this repair category. For instance, in Example 32 the fact Male(pat) was 
in the ontology instead of Male(mat), as the letters p and m were confused during the data engineering process. In such 
scenarios one can search for repairs by applying selective changes to certain ontology assertions. These selective changes 
include modifications of the predicate or constants occurring in the assertion, i.e. P (�t) could be changed to P (�t′) or P ′(�t).

To ensure tractability, the number of constants or predicates with which the initial facts can be modified is bounded by n. 
Under this restriction, an ABox A with at most k assertions allowed for modification has O (k2n) repair candidates; thus if 
both n and k are bounded by a constant, deciding whether a δ±-solution for ORP exists is polynomial. The alternatives 
(i.e. constants and predicates) used for fixing initial facts can be created by partitioning the elements of the ontology 
signature into subsets based on their syntactical similarity (measured by some string distance, cf. [24], such as Hamming or 
Levenshtein distance [57]). For example, the constants mat and pat differ just by a single letter and thus will be put to the 
same partition. This way one naturally limits the number of possibilities for changing a certain fact.

Swapping constants in role assertions is another special setting with obvious practical applications.

Example 33. A′ = A\{hasParent(john,pat)} ∪ {hasParent(pat, john)} would be a plausible repair for the DL-program � from 
Fig. 1. �
3.5.2. Deletion repair

Another important restriction is to allow only to delete assertions from the original ABox i.e., use

σdel(S,A) = {A′ | A′ ⊆ A}. (5)

Example 34. For � in Fig. 1, each A′ ⊂A except for {Male(pat), hasParent(john, pat)} is a deletion repair. �
Before formally stating the complexity results for this repair we establish the following lemma.

Lemma 35. If 〈T , A〉 is consistent, then 〈T , A ∪ U i
j〉 |= Q i

j iff 〈T , A0 ∪ U i
j〉 |= Q i

j for some A0 ⊆A with |A0| ≤ 1.

To achieve tractability, we exclude non-containment ( ��) DL-queries, i.e., of the form ¬Q where Q is an inclusion or a 
disjointness axiom, from P ; let us call any ORP ��-free, if no DL-query of this form occurs in it. Under the reasonable (and 
necessary) assumption that the original ontology is consistent, we then obtain.

Theorem 36. Deciding whether a ��-free ORP R = 〈O, D1, D2〉 with consistent O has a σdel-repair is feasible in polynomial time.

If non-containment queries are allowed in DL-atoms, computing deletion repairs remains NP-hard.
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Theorem 37. Deciding whether an ORP R = 〈D1, D2, O〉 with a consistent O has some σdel repair is NP-complete, and NP-hardness 
holds even if each 〈U 2

j , Q
2
j 〉 ∈ D2 has U 2

j = ∅ and either (i) each 〈U 1
i , Q 1

i 〉 ∈ D1 has U 1
i = ∅ (thus, R has only empty updates), or 

(ii) T = ∅.

3.5.3. Deletion δ+2 repair
This selection combines deletion and small change in a prioritized way. First one deletes assertions from A (assumed to 

be consistent) according to some polynomial method μ (using domain knowledge etc.) until some A0 = μ(O) ⊆ A results 
that satisfies Definition 26 (iii). If A0 is a repair, it is the result; otherwise, one looks for a close repair with bounded δ+
change. That is

σdel,δ+(S,A) =
{{μ(O)}, if μ(O) ∈ S

σδ+(S,μ(O)), if μ(O) /∈ S.
(6)

Example 38. If μ(O) drops unreliable information about the gender of certain persons in Example 1 (e.g. pat), 
A0={Male(john), hasParent(john,pat)} is a deletion repair. If the constraint

⊥ ← DL[; hasParent](X, Y ),not DL[; Male](Y ),not DL[; F emale](Y )

(the gender of parents must be known) would be in P , then one would have to add Female(pat) to A0 to obtain a 
deletion-δ+ repair. �

Then one can try all possible combinations of k assertions that can be added to the ABox A′ such that along with 
condition (iii), also (ii) and (i) of the repair definition hold. Observe that μ(O) is selected by an independent selection 
function σdel , which chooses subsets of A. Furthermore, σδ+ is applied to μ(O), the selection σδ+ chooses an ABox A′ ⊇
μ(O), such that A′ \μ(O) contains not more then k assertions. The selection σδ+ is independent by Proposition 24, as it is 
a composition of σdel and σδ+ both of which are independent. As both σdel and σδ+ are realizable in polynomial time, the 
overall problem is tractable.

3.5.4. Addition under bounded opposite polarity
Repairs by unbounded additions become tractable, if few of them are positive resp. negative, i.e., the number of assertions 

with opposite polarity is bounded (which by Theorem 29 is necessary). That is, if A+ (resp., A−) is the positive (negative) 
part of an ABox A, then

σbop,k(S,A) = {A′ ⊇ A | |A′+\A| ≤ k or |A′−\A| ≤ k}, k ≥ 0. (7)

The following result is instrumental.

Theorem 39. For a ��-free ORP R = 〈O, D1, D2〉, where O = 〈T , A〉 and T has no disjointness axioms5 deciding whether some 
σbop-repair exists is polynomial.

3.5.5. Applicability of independent selections
Like for relational databases, our tractable cases fit real applications, e.g. in case of deletion repairs (observing that 

non-subsumption queries are insignificant for practical DL-programs) and scenarios akin to key-constraint violations in 
databases. Restoring consistency by removing conflicting pieces of data is a common approach in data management.

Composability of independent selections adds to their applicability. Moreover, they may be combined with DB-style 
factorization and localization techniques (see [10] and references therein) and with local search to compute closest repairs.

Bounding the number of changes, especially additions, is also compliant with practice, where too many potential repairs 
suggest human intervention (cf. [10]). Finally, one may increase the bound in iterative deepening (assuming that not many 
changes are needed).

3.6. Domain-based restrictions on repairs

In previous sections we have proposed several technical means for treating inconsistencies in DL-programs. We have pre-
sented some repair forms that are practically usable and computationally effective, but until now no domain knowledge has 
been incorporated into the DL-program repair process. It is natural, however, to believe that the end users of DL-programs 
will wish to contribute to the repair by sharing their subject expertise.

Qualitative and domain-dependent aspects of repairs are of crucial importance for their practicability. These qualitative 
aspects formulated in terms of additional local restrictions put on repairs help to effectively filter out the irrelevant repair 

5 Disregarding axioms F¬ � ¬F to compile negative assertions.
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candidates. For example, availability of meta information about the trustfulness of certain ontology pieces may allow to 
adjust the repair process.

Example 40. Being aware of the unreliability of ontology facts about the individual john in Example 1 motivates one to 
consider the repair A′ =A\{hasParent(john,pat)} for the DL-program � in the first instance.

Knowing additionally that the set of Adopted children is very likely to be incomplete naturally adds A′′ = A ∪
{Adopted(john)} to the set of repair possibilities. �

Similarly the user might be willing to keep some information bits in the ontology unchanged.

Example 41. If in Example 40 one wants to avoid dropping the data about individuals belonging to the concept Child but 
not known to be Adopted; then the repair A′ is no longer among the preferred options. �

The guidelines on the operations that are allowed to be applied to the ontology could clearly influence the repair process 
further.

Example 42. If in Example 40 additions to the ontology are strongly prohibited, then the repair A′′ is automatically dropped 
from the set of leading candidates. �

In some scenarios various dependencies among the data parts stored in the ontology might influence the repair process. 
Deletion (resp. addition) of a certain fact might force further ontology changes to be incorporated.

Example 43. Consider a variant of Example 1, in which each Adopted child stored in the ontology is desired to have a 
certain identification number (ID) assigned to it through the predicate hasID. This additional constraint could be expressed 
by the TBox axiom Adopted � ∃hasID. However, this restriction might not be a formal requirement, but rather a wish of 
the user, for whom it is more convenient to track adopted children by their IDs. Thus the TBox axiom might not be in the 
ontology explicitly. In such a setting the repair A′′ from Example 40 in which information about john’s adoption is added, 
is not among the best repair candidates any longer, as together with this new information, the additional knowledge about 
the ID of john should be available.

Similarly, if not only adopted children, but all persons are required to have an ID, and the latter is indeed given in the 
original ontology, the repair A′ = A\{Male(pat)} ∪ {Male(mat)} from Example 32 forces one to delete the ID of pat and add 
the ID of mat; in case the latter is not known, the repair A′ becomes undesired. �
Integration of domain restrictions into the repair computation process. The wide spectrum of potential restrictions that 
could be applied to the repair candidates motivates one to consider various possible ways of integrating additional domain 
knowledge into the repair computation process. Three global modes of repairing inconsistent DL-programs seem reasonable 
in this context:

1) The first mode suggests the computation of repair candidates with some σ -selection function, followed by a post-
filtering of the candidates taking into account the domain knowledge. If some of the protected ontology elements are 
no longer present in the repair candidate, and their reintroduction violates the repair conditions, then one proceeds 
with the analysis of a next repair candidate. Otherwise, the desired repair is computed, and the computation process 
terminates.

2) The second mode assumes that the domain knowledge is encoded in the selection function and consequently all iden-
tified repairs a priori satisfy the introduced domain-based requirements.

Example 44. Suppose we want to compute the δ± repairs with the desired property expressed in Example 43, i.e. in 
the repairs for all Adopted children their ID should be known. Then our problem amounts to the problem of com-
puting δ± repairs of the original DL-program extended by the following rules that conveniently encode the additional 
requirement:

(1) assigned(X) ← DL[; Adopted](X), DL[; ID](Y ), DL[; hasID](X, Y );
(2) ⊥ ← DL[; Adopted](X), not assigned(X).

The repairs of the extended program correspond to the repairs of the original program post-filtered by the respective 
domain-specific condition. �

3) The third mode is the combination of the first two, where some domain conditions are incorporated into the repair 
search process, but further post-filtering conditions can be checked.
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4) The mode (2) can be extended to support prioritized repair computation. That is, first one aims at finding the best 
repairs that fully satisfy the domain specific requirements, and then if such search does not bring any results, the 
requirements are weakened accordingly or even dropped altogether.

Example 45. Recall the setting from Example 44. We first aim at repairs such that IDs of all adopted children are 
known. Once some repair answer set of � with rules (1) and (2) is found, the computation terminates and the result 
is output. If no such I was identified, then one might be willing to relax the repair condition by allowing at most k
adopted children to lack IDs. For that the constraint (2) can be changed to a rule (2′) having not_assigned(X) in the 
head. Repair answer sets I of the resulting program with at most k ground predicates over not_assigned will satisfy the 
above requirement, and consequently any repair A′ ∈ repI

σ ,x(�) is guaranteed to be preferred, where σ is a δ±-change 
selection function. �

All of the discussed domain-specific repair preferences can be combined and ordered in various ways. The techniques 
for their computation heavily depend on the application scenario, and in different concrete settings could be adapted and 
extended.

4. Computation

In this section, we first recall the essentials of the evaluation algorithm for DL-programs as a special class of so-called 
HEX-programs as in [30], and we then provide a naive and an optimized extension of that algorithm for computing repairs.

4.1. DL-program evaluation

The evaluation of a DL-program � builds on a program rewriting �̂, where DL-atoms a are replaced by ordinary atoms 
(called replacement atoms) ea , and a guess on the truth value of the latter by ‘choice’ rules ea ∨ nea is added.

Example 46. Consider the following grounding of some rules from Fig. 1:

P ′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(7) ischildof (john,alex); (8) boy(john);
(9) hasfather(john,pat) ← DL[Male � boy; Male](pat),DL[; hasParent](john,pat);
(10) ⊥ ← not DL[; Adopted](john),hasfather(john,pat),

ischildof (john,alex),not DL[Child � boy; ¬Male](alex)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The replacement program �̂′ for �′ = 〈O, P ′〉 comprises the following rules:

�̂′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(7) ischildof (john,alex); (11) ea1(pat) ∨ nea1(pat);
(8) boy(john) (12) ea2( john,pat) ∨ nea2( john,pat);
(9) hasfather(john,pat) ← ea1(pat), ea2( john,pat); (13) ea3( john) ∨ nea3( john);
(10) ⊥ ← not ea3( john),hasfather(john,pat), (14) ea4(alex) ∨ nea4(alex)

ischildof (john,alex),not ea4(alex);

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where

a1 = DL[Male � boy; Male](pat), a2 = DL[; hasParent](john,pat),

a3 = DL[; Adopted](john), a4 = DL[Child � boy; ¬Male](alex).
�

Given an interpretation Î of the replacement program �̂, we use I|� to denote its restriction to the original language 
of �. A crucial notion is that of compatible set.

Definition 47 (Compatible set). A compatible set of a (ground) DL-program � = 〈O, P〉 is an interpretation Î , such that (i) Î is 
an answer set of �̂, and (ii) ea ∈ Î iff I|� |=O a, for every a = DL[λ; Q ](c) occurring in �.

Example 48. Consider an interpretation Î = {ischildof (john,alex),boy(john),hasfather(john,pat), ea1 , ea2 , ea3 , nea4 } of �̂′
from Example 46. This interpretation is not compatible for �′ = 〈O, P ′〉, since ea3(john) ∈ Î , but it holds that I �|=O

DL[; Adopted](john), and thus (ii) of Definition 47 is not satisfied. However, the interpretation Î is a compatible set 
for �′′ = 〈O′, P ′〉 where O′ = O ∪ {Adopted(john)}. Furthermore, the restriction of Î to the language of �′′ is Î|�′′ =
{ischildof (john,alex),hasfather(john,pat), boy(john)}.
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Conversely, given an interpretation I of �, we denote by Ic the interpretation of �̂ such that Ic coincides with I on 
normal atoms, and each replacement atom ea is in Ic (i.e. true) iff I |=O a for the respective DL-atom a.

With these concepts in place, we are ready to describe the basic algorithm (cf. Algorithm 1) for evaluating a DL-program 
� = 〈O, P〉 adopted from [30]. First, �̂ is evaluated by an ordinary ASP solver; for every answer set Î of �̂ in (b), the 
function CMP checks for compatibility, while xFND tests foundedness, i.e., whether Î |� is a ⊆-minimal model of the reduct 
P I|�,O

x . In case of x = weak, xFND just returns true, otherwise (x = flp) it checks for disjointness with unfounded sets as 
defined in [30]. If both tests succeed, then Î |� is output as an answer set.

Algorithm 1: AnsSet: Compute ASx(�).
Input: A DL-program �, x ∈ {weak, flp}
Output: ASx(�)

(a) for Î ∈ AS(�̂) do
(b) if CMP( Î, �) ∧ xFND( Î, �) then

output Î|�
end

end

Example 49. Suppose we are interested in computing flp-answer sets of �′′ from Example 48. In (a) among AS(�̂′′) the 
interpretation Î = {ischild(john,alex),boy(john),hasfather(john,pat), ea1(pat), ea3(john),nea4(alex), ea2( john,pat)} is identified. Both 
the compatibility and the foundedness check in (b) for Î succeed, and thus Î |�′′ is output as an flp-answer set of �′′ .

An important link between the answer sets of � and �̂ is the following property.

Proposition 50. If I ∈ A Sx(�) then Ic ∈ A Sx(�̂).

While AnsSet is clearly sound, from this result its completeness follows, i.e. restricting the search to ASx(�̂) does not 
yield any loss of answer sets.

4.2. Naive algorithm for repair computation

We next present a naive algorithm for computing deletion repair answer sets which extends the above DL-program 
evaluation algorithm. First we aim at a procedure for computing (σ , x)-repairs given an independent selection function σ . 
Then, we describe how its main subroutine can be used for an extension of AnsSet that computes answer sets if they exist, 
and (σ , x)-repair answer sets otherwise.

A first key observation is that Proposition 50 generalizes to repair answer sets. More precisely:

Proposition 51. If I ∈ RASx(�) then Ic ∈ AS(�̂).

Proof. By definition of RASx(�), we get that I ∈ AS(�′), where �′ = 〈O′, P〉, O′ = 〈T , A′〉 and A′ ∈ repx(�). Since by 
Proposition 50 Ic ∈ AS(�̂′) and �̂ = �̂′ , the result immediately follows. �

Thus, our approach is to traverse AS(�̂) and check for each Î ∈ AS(�̂) whether Î|� is a (σ , x)-repair answer set of �. 
The latter proceeds in two steps, where the first step is to search for potential σ -repairs of the ontology such that Defini-
tion 47 (ii) holds for Î , that is to find solutions of the corresponding ontology repair problem.

Algorithm 2: RepAns: Compute (σ , x)-repairs rep Î|�
(σ ,x)(�) of � for x ∈{weak, flp}.

Input: � = 〈O,P〉, O = 〈T ,A〉, Î∈AS(�̂), σ

Output: repÎ |�
(σ ,x)(�)

(a) for A′ ∈ ORP( Î, �, σ) do
(b) if CMP( Î, 〈T , A′, P〉) ∧ xFND( Î, 〈T , A′, P〉) then

output A′
end

end

The procedure RepAns (cf. Algorithm 2) calls the subroutine ORP( Î, �, σ) in (a) to compute σ -repairs A′ of the corre-
sponding ORP, constructed from the DL-atoms with their guessed values and the ontology. Further on, RepAns re-uses the 
functions CMP and xFND in (b) to check whether Î is a compatible set of �′ and that it is founded w.r.t. �′ = 〈O′, P〉, 
O′ = 〈T , A′〉. It thus computes the set of all ABoxes under which Î becomes a (σ , x)-repair answer set. We demonstrate 
RepAns on an example.
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Algorithm 3: RepAnsSet: Compute a set RAS(σ ,x)(�) of (σ , x)-repair AS of � for x ∈{weak, flp}.
Input: � = 〈O,P〉, O = 〈T ,A〉, σ
Output: I ∈ RAS(σ ,x)(�)

for Î ∈ AS(�̂) do
if Rep Ans(�, O, ̂I, σ) �= ∅ then

output Î|�
end

end

Example 52. Suppose that RepAns gets as input �′ , Î from Examples 46 and 48, and σδ±,1 selection function com-
puting δ± repairs. The corresponding ORP R is given by R = 〈O, D1, D2〉, where D1 = {〈{Male(john)}, Male(pat)〉,
〈∅, hasParent(john,pat)〉, 〈∅, Adopted〉} and D2 = {〈∅, ¬Male(alex)〉}. The ABox A′ = {Male(john), Male(pat),
hasParent(john,pat),Adopted(john)} is computed in (a) as the σδ±-repair for R. The checks in (b) succeed for the ABox A′ , 
and it is output to the user.

Example 53. Let � = 〈O, P〉 be a DL-program, where

O =
{

A � ¬C; A(c); ¬E(c);
A � D; D(c); C(c)

}
P =

{
p(c); r(c); q(c) ← DL[C −∪ r; D](c);
⊥ ← DL[D � p, E −∪ r; ¬C](c)

}
.

We denote by a1 and a2 the DL-atoms DL[C −∪ r; D](c) and DL[D � p, E −∪ r; ¬C](c) respectively. Consider the interpretation 
Î = {p(c), r(c), q(c), ea1 , nea2}, in which a1 is guessed true and a2 guessed false. The corresponding ORP is given by R =
〈O, D1, D2〉, where D1 = {〈{¬C(c)}; D(c)〉} and D2 = {〈{D(c), ¬E(c)}; ¬C(c)〉}. Let σ select the deletion repairs, than we 
get A′ = {D(c), C(c)} as a possible output of the procedure ORP(Î,�,σ ), for which the compatibility check verified by the 
call CMP( Î, 〈T , A′, P〉) is passed. If we are interested in (σ , weak) repairs then A′ is output by the algorithm RepAns. Yet 
another foundedness test is needed to check whether A′ is a (σ , flp) repair. This test is done in flp-FND( Î, 〈T , A′, P〉), 
which checks whether I is a minimal model of the flp-reduct P I,O′

flp = {p(c); q(c); q(c) ← DL[C −∪ r; D](c)}. As the latter 
test succeeds, the ABox A′ is an flprepair and thus it is in the output of RepAns(�, Î, σdel). �

Let now RepAnsSet (Algorithm 3) be the algorithm that iteratively calls RepAns for every Î ∈ AS(�̂), and outputs any Î , 
where the result of RepAns is nonempty, i.e. some repair A′ was computed. We then have:

Theorem 54. RepAns and RepAnsSet are both sound and complete for rep(σ ,x)(�) and RAS(σ ,x)(�), respectively, for every independent 
selection function σ .

A natural question is whether computing repair answer sets via compatible sets Î of � makes repair answer set checking 
for Î|� easier than for arbitrary interpretations I . Unfortunately, this is not the case; we thus obtain a strengthening of the 
results of Theorem 18.

Theorem 55. For ground � = 〈O, P〉 and I ⊆ HB� , deciding whether I ∈ RASx(�) is (i) NP-complete for x =weak and (ii) �p
2 -com-

plete for x = flp; hardness holds even if I = Î|� for an answer set Î ∈ AS(�̂) (and, moreover, I is unique).

Intuitively, even if we know Î , we still need to guess a repair A′ that witnesses Î|� . The verification of the guess involves 
a foundedness test, which is co-NP-hard in case of x = flp; this results in �p

2 -completeness.
Note that, for illustration, we kept the algorithms simple; several optimizations apply, some of which we discuss below. 

For instance, to compute just some (σ , x)-repair answer set, we can modify RepAns to a version that merely computes a 
first witnessing ABox A′ . Moreover, caching ABoxes A′ and/or all answer sets of the respective �′ (which can be straight 
output as (σ , x)-repair answer sets of �) further reduces the search space.

4.3. Support sets

The algorithms RepAns and RepAnsSet represent natural realizations of repair computation. However, they turn out as too 
naive and do not scale for practical applications; each ORP derived from an answer set Î of the replacement program �̂ is 
solved from scratch, as no information about past ORPs is exploited.

We thus develop an alternative approach for computing repair answer sets based on the notion of support set. Intuitively, 
a support set for a DL-atom d = DL[λ; Q ](�t) is a portion of its input that, together with ABox assertions, is sufficient to 
conclude that the query Q (�t) evaluates to true; i.e., given a subset I ′ ⊆ I of an interpretation I and a set A′ ⊆ A of ABox 
assertions from the ontology, we can conclude that I |=O Q (�t). Basically, our method precomputes support sets for each 
DL-atom at a nonground level. During DL-program evaluation, for each candidate interpretation the ground instantiations of 
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the support sets are effectively obtained. The latter help to prune the answer set search space and also allow one to solve 
ORPs by constraint matching.

Exploiting Lemma 13 we define support sets using only ontology predicates as follows:

Definition 56 (Ground support sets). Given a ground DL-atom d = DL[λ; Q ](�t), a set S of assertions from A ∪Ad is a support 
set for d w.r.t. an ontology O = 〈T , A〉, if Td ∪ S |= Q (�t). By SuppO(d) we denote the set of all support sets S for d w.r.t. O.

Support sets can be grouped into families of support sets or simply support families. More formally,

Definition 57 (Support family). Any collection S ⊆ SuppO(d) of support sets for a DL-atom d w.r.t. an ontology O is a support 
family of d w.r.t. O.

Clearly, support sets as defined above may be subsumed by other support sets (e.g., {A(c), R(c, d)} by {A(c)}) and re-
moved. We concentrate on ⊆-minimal support sets S for a DL-atom d, i.e. for every S ′ ⊂ S it holds that S ′ /∈ SuppO(d). 
In general even ⊆-minimal support sets can be arbitrarily large and there can be infinitely many (exponentially many for 
acyclic T ) support sets. However, fortunately it turns out that for DL-LiteA support sets are of a particular structure. In view 
of the property that in DL-LiteA a single assertion is sufficient to derive a query [21] from a consistent ontology, we obtain 
that for DL-LiteA support sets are at most of size 2. More formally,

Proposition 58. Every ⊆-minimal support set S for a DL-atom d = DL[λ; Q ](�t) w.r.t. an ontology O = 〈T , A〉 in DL-LiteA has either 
the form (i) S = {P (�c)}, such that Td ∪ S |= Q (�t), or (ii) S = {P (�c), P ′(�d)} such that Td ∪ S is inconsistent.

Support sets are linked to interpretations by the following notion.

Definition 59 (Coherence). A support set S of a DL-atom d is coherent with an interpretation I , if for each P p(�c) ∈ S it holds 
that p(c) ∈ I .

We illustrate the notion of coherence by the following example.

Example 60. The set {hasParent(john,pat)} is a support set for the DL-atom DL[; hasParent](john,pat) w.r.t. O, and so is 
{Male(pat)} for the DL-atom a = DL[Male � boy; Male](pat). Moreover, {Maleboy(pat)} is in SuppO(a) but incoherent with 
minimal models of �.

The evaluation of d w.r.t. I then reduces to the search for coherent support sets.

Proposition 61. Let d be a ground DL-atom, let O = 〈T , A〉 be an ontology, and let I be an interpretation. Then, I |=O d iff some 
S ∈ SuppO(d) exists s.t. S is coherent with I .

As a simple consequence, we get:

Corollary 62. Given a ground DL-atom d and an ontology O, some interpretation I exists such that I |=O d iff SuppO(d) �= ∅.

Apart from the maximal number of assertions that participate in support sets for DL-atoms accessing DL-LiteA ontologies, 
there is also a limit on the number of constants that can occur in such support sets. In fact, in Definition 58 �c ∪�d can involve 
at most 3 constants, which is formally stated in the following proposition.

Proposition 63. Let S be a ⊆-minimal support set of a ground DL-atom d w.r.t. a DL-LiteA ontology O = 〈T , A〉. Then S involves at 
most 3 constants.

When working with support sets for DL-atoms that access an DL-LiteA ontology, we can exploit the above proposition 
and limit ourselves only to support sets of size 2 involving at most 3 constants.

4.4. Nonground support sets

Using support sets, we can completely eliminate the ontology access for the evaluation of DL-atoms. In a naive approach, 
one precomputes all support sets for all ground DL-atoms with respect to relevant ABoxes, and then uses them during the 
repair answer set computation. This does not scale in practice, since support sets may be computed that are incoherent 
with all candidate repair answer sets.
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An alternative is to fully interleave the support set computation with the search for repair answer sets. Here we con-
struct coherent ground support sets for each DL-atom and interpretation on the fly. As the input to a DL-atom may change 
in different interpretations, its support sets must be recomputed, however, since reuse may not be possible; effective opti-
mizations are not immediate.

A better solution is to precompute support sets at a nonground level, that is, schematic support sets, prior to repair 
computation. Furthermore, in that we may leave the concrete ABox open; the support sets for a DL-atom instance are then 
easily obtained by syntactic matching. This leads to the following definition.

Definition 64 (Nonground support sets). Let T be a TBox, and let d( �X) = DL[λ; Q ]( �X) be a nonground DL-atom. Suppose that 
V is a set of distinct variables such that �X ⊆ V , and that C is a set of constants. A nonground support set for d w.r.t. T is a 
set S = {P1( �Y1), . . . , Pk( �Yk)} such that

(i) �Y1, . . . , �Yk ⊆ V and
(ii) for each substitution θ : V → C , the instance Sθ = {P1( �Y1θ), . . . , Pk(�Ykθ)} is a support set for d( �Xθ) w.r.t. OC =

〈T , AC〉, where AC is the set of all possible ABox assertions over C .

By SuppO(d) we denote the set of all nonground support sets for d.

Here AC takes care of any possible ABox, by considering the maximal ABox (since O⊆O′ implies that SuppO(d) ⊆
SuppO′ (d)). Now generalizing Propositions 58 and 63 we obtain the following characterization for nonground support sets 
accessing DL-LiteA ontologies:

Proposition 65. Every ⊆-minimal nonground support set S for a DL-atom d w.r.t. an ontology O in DL-LiteA has either the form 
(i) S = {P (�Y )} or (ii) S = {P (�Y ), P ′( �Y ′)}, where �Y ∪ �Y ′ contains at most 3 distinct variables.

Example 66 (cont’d). Certainly {hasParent(X, Y )} is a nonground support set for DL[; hasParent](X, Y ), and so are {Male(X)}
and {Maleboy(X)} for the DL-atom d(X) = DL[Male � boy; Male](X), but d(X) has also {Maleboy(Y ), Female(Y )} as a non-
ground support set.

Nonground support sets S for DL-LiteA are sound in the sense that each instance Sθ matching with A ∪Ad is a support 
set of the ground DL-atom dθ w.r.t. O = 〈T , A〉. They are also complete, i.e., every support set S of a ground DL-atom d
w.r.t. O = 〈T , A〉 results as such an instance, and thus can be determined by syntactic matching.

If a sufficient portion of support sets is precomputed, then the ontology access can be fully avoided. We call such a 
portion a complete support family.

Definition 67 (Completeness). A family S ⊆ SuppO(d) of nonground support sets for a (non-ground) DL-atom d( �X) w.r.t. a 
DL-LiteA ontology O is complete, if for every θ : �X → C and S ∈ SuppO(d( �Xθ)), some S ′ ∈ S exists such that S = S ′θ ′ , for 
some extension θ ′ : V → C of θ to V , where V is a set of distinct variables, such that �X ⊆ V .

Example 68. Consider the DL-atom d = DL[Male � boy; Male](X) from Fig. 1. For computing a complete family S of non-
ground support sets for d w.r.t.O, we may refer to Td = T ∪{Maleboy �Male}. The support family S = {S1, S2, S3, S4} is 
complete for d, where S1 = {Male(X)}, S2 = {Maleboy(X)}, S3 = {Maleboy(Y ), ¬Male(Y )}, S4 = {Maleboy(Y ), Female(Y )}. �
4.5. Determining nonground support sets

Our technique for computing the nonground support sets for DL-atoms over DL-LiteA ontologies is based on TBox classifi-
cation, which is an important problem in Description Logics [4]: given a TBox T over a signature �o , the TBox classification 
Clf (T ) determines all subsumption relations P � (¬)P ′ between concepts and roles P , P ′ in �o that are entailed by T . 
This can be exploited for our goal to compute nonground support sets, more precisely a complete family S of such sets. 
For example, [56] studies it for the OWL 2 QL profile and [51] discusses it for EL. Respective algorithms are thus suitable 
and also easily adapted for the computation of (a complete family of) nonground support sets for a DL-atom d( �X ) w.r.t. an 
ontology O in DL-LiteA .

In principle, one can exploit Proposition 13 and resort to Td , i.e., compute the classification Clf (Td), and determine 
nonground support sets of d( �X) minimal conflict sets [74]. To determine inconsistent support sets, perfect rewriting [21]
can be done over Pos(T ), i.e., the TBox obtained from T by substituting all negated concepts (roles) ¬C (¬R , ¬∃R , ¬∃R−) 
with positive replacements C (R , ∃R , ∃R−).

In practice (and as in our implementation), it can nonetheless be worthwhile to compute Clf (T ) first, as it is reusable for 
all DL-atoms. The additional axioms in Td , i.e., those of form P p � (¬)P (induced by update operators), are handled when 
determining the nonground support sets for a particular DL-atom from Clf (T ).
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Example 69. Consider the DL-atom d = DL[Male � boy; Male](X) from Example 1. For computing a complete family S
of nonground support sets for d w.r.t. O, we may refer to Td = T ∪{Maleboy �Male} and its classification Clf (Td). 
Here, S1 = {Male(X)} and S2 = {Maleboy(X)} are the only unary nonground support sets of d. Further nonground sup-
port sets are obtained by computing minimal conflict sets, yielding {P (�Y ), ¬P (�Y )} for each P ∈ C ∪ R, as well as 
S3 = {Maleboy(Y ), ¬Male(Y )}, S4 = {Maleboy(Y ), Female(Y )}, and S5 = {Male(Y ), Female(Y )}. However, since we are inter-
ested in completeness w.r.t. O and O is consistent, pairs not involving input assertions can be dropped (as they will not 
have a match in A). Hence, S = {S1, S2, S3, S4} is a complete support family for d w.r.t. O. �

Algorithm 4: SupRAnsSet: all deletion repair answer sets.
Input: �=〈T ,A,P〉
Output: flpRAS(�)

(a) compute a complete set S of nongr. supp. sets for the DL-atoms in �
(b) for Î ∈ AS(�̂) do

D p ← {d | ed ∈ Î}; Dn ∈ {d | ned ∈ Î}; S Î
gr ← Gr(S, ̂I, A);

(c) if S Î
gr(d) �= ∅ for d ∈ D p and every S ∈ S Î

gr(d) for d ∈ Dn fulfills S ∩A �= ∅ then
(d) for all d ∈ D p do

(e) if some S ∈ S Î
gr(d) exists s.t. S ∩A = ∅ then pick next d

else remove each S from S Î
gr(d) s.t. S ∩A ∩ ⋃

d′∈Dn
S Î

gr(d
′) �= ∅

(f) if S Î
gr(d) = ∅ then pick next Î

end

(g) A′ ← A \ ⋃
d′∈Dn

S Î
gr(d

′);

(h) if flpFND( Î, 〈T , A′, P〉) then output Î|�
end

end

4.6. Optimized algorithm for repair computation

We are now ready to describe our optimized algorithm SupRAnsSet (see Algorithm 4), which avoids multiple interface 
calls and merely needs to access the ontology once. Given a (ground) DL-program � for input, SupRAnsSet proceeds as 
follows.

We start (a) by computing a complete family S of nonground support sets for each DL-atom. Afterwards the replacement 
program �̂ is created and its answer sets are computed one by one. Once an answer set Î of �̂ is found (b), we first 
determine the sets of DL-atoms D p (resp. Dn) that are guessed true (resp. false) in Î . Next, for all ground DL-atoms in 
D p ∪ Dn , the function Gr(S, ̂I, A) instantiates S to relevant ground support sets, i.e., that are coherent with Î and match 
with A ∪ Ad . We then check in (c) for atoms in D p (resp. Dn) without support (resp. input only support). If either is the 
case, we skip to (b), the next model candidate, since no repair exists for the current one. Otherwise, in a loop (d) over 
atoms in D p –except for those supported input only (e)–we remove support sets S that are conflicting w.r.t. Dn . Intuitively, 
this is the case if S hinges on an assertion α ∈ A that also supports some atom d′ ∈ Dn (hence α needs to be deleted; 
note that due to consistency of A, even inconsistent support of d′ leaves no choice). If this operation leaves the atom from 
D p under consideration without support (check at (f)), then no repair exists and the next model candidate is considered. 
Otherwise (exiting the loop at (g)), a potential deletion repair A′ is obtained from A by removing assertions that occur in 
any support set for some atom d′ ∈ Dn . An eventual check (h) for foundedness (minimality) w.r.t. A′ determines whether a 
deletion repair answer set has been found.

Example 70. Consider the DL-atoms a = DL[; hasParent](john,pat) and b = DL[Male � boy; Male](pat) from Example 1, and 
assume that {ea, neb} ⊆ Î . Then, we get S Î

gr(a)={{hasParent(john,pat)}}, and we reach the else part of Step (e) where nothing 
is removed from S Î

gr(a), since S Î
gr(b) = {{Male(pat)}} and S Î

gr(a) ∩S Î
gr(b) = ∅. Hence, at Step (g) we must drop Male(pat) from 

A to make Î a deletion repair answer set. �
As we show, Algorithm SupRAnsSet correctly computes the deletion repair answer sets of the input DL-program. For the 

completeness part, i.e., that all deletion repair answer sets are indeed produced, the following proposition is crucial.

Proposition 71. Given a DL-program �, let Î be an answer set of �̂ such that I = Î|� is an answer set of � = 〈T , A, P〉. If Î is a 
compatible set for �′ = 〈T , A′, P〉 where A′ ⊇A, then I is an answer set for �′ = 〈T , A′, P〉.

Armed with this result, we establish the correctness result.
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Fig. 2. System architecture of the dlliteplugin for Repair Answer Set Computation.

Theorem 72. SupRAnsSet is sound and complete w.r.t. computing deletion repair answer sets, i.e., given a DL-program � = 〈O, P〉
with DL-LiteA ontology O, SupRAnsSet(�) correctly outputs all deletion repair answer sets of �.

In the next section, we turn to an implementation of Algorithm SupRAnsSet, where we discuss the key implementation 
issues and present a declarative realization of support set handling in the steps (c)–(g).

5. Implementation

We have implemented the repair answer set computation algorithms as a part of the dlliteplugin plugin of the dlvhex 
framework, thus providing a means to effectively compute deletion repair answer sets for DL-programs over DL-LiteA on-
tologies.

The dlvhex framework is a system for evaluating Answer Set Programs with external computations. The system is written 
in C++ and open source available.6 Implementations of external source functions can be conveniently provided as plugins, 
which distinguishes the dlvhex system from other ASP solvers. A wide range of such plugins are already available, ranging 
from string manipulation functions to complex plugins implementing Equilibrium-semantics of Multi-Context Systems.

The source code of the new plugin is available at https :/ /github .com /hexhex /dlliteplugin. The dlliteplugin uses the owlcpp7

[58] library for ontology parsing and invokes the fact++8 system as a back-end for ontology reasoning tasks. In the sequel, 
we present an overview of the dlliteplugin architecture and give some implementation details.

5.1. Architecture overview

The architecture of the dlliteplugin is shown in Fig. 2, where arcs model both control and data flow of the system. The 
DL-program at hand is described by the user in the files, storing the ontology part O and the DL-rules part P of the 
DL-program � respectively. After creating the replacement program �̂, complete nonground support families for DL-atoms 
in � are determined within the dlliteplugin. The support sets in these families are processed declaratively using rules �supp

(explained in detail below). These rules are then extended with the facts encoding ontology ABox and the program �̂. The 
models of the obtained program encode the repair answer sets and repairs of the original DL-program �. For evaluating the 
declarative program, the backend grounder and the solver of the dlvhex system are invoked. Finally, the repair answer set 
candidates I of � and their respective repairs A′ are extracted from the computed models. Each such I is already a weak 
repair answer set of �. For flp-repair answer sets, an additional flp-minimality check is made.

6 https :/ /github .com /hexhex.
7 http :/ /owl-cpp .sourceforge .net.
8 https :/ /code .google .com /p /factplusplus.

https://github.com/hexhex/dlliteplugin
https://github.com/hexhex
http://owl-cpp.sourceforge.net
https://code.google.com/p/factplusplus
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ProgTclass
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) sub(X,Z) ← sub(X,Y), sub(Y,Z);
(2) sub(Y ′,X′) ← sub(X,Y),op(X,X′),op(Y,Y ′);
(3) sub(X′,Y ′) ← sub(X,Y), inv(X,X′), inv(Y,Y ′);
(4) conf (X,Y ′) ← sub(X,Y),op(Y,Y ′);
(5) inv(X′,X) ← inv(X,X′);
(6) op(X,Y) ← op(Y,X);
(7) confref (X) ← conf (X,Y),op(Y , Z), inv(X, Z);

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 3. Program ProgTclass
for computing classification of T .

(1) ⊥ ← ea(�X),not Supa(�X); (3) Supa(�X) ← r(Sa(�Y )),not S̄A
a (�Y );

(2) ⊥ ← nea(�X), Supa(�X); (4) S̄A
a (�Y ) ← nea(�X), r(Sa(�Y ))

Fig. 4. Rules of the program �supp .

5.2. Implementation details

In order to take advantage of existing dlvhex data structures (e.g. for parsing) and optimization methods (such as no-
good learning, etc.), a declarative ASP approach was pursued to realize both construction of complete support families and 
computation of repair answer sets and repairs over DL-LiteA ontologies.

First we describe our approach to computing the support families. The routine for computing support families gets a 
DL-LiteA ontology and a nonground DL-atom as input. After parsing the ontology O using the owlcpp library, its TBox 
classification is computed. The latter is done declaratively using the program ProgTclass

shown in Fig. 3, which exploits a 
construction for computing unary and binary conflict sets expressed in [74].

The program ProgTclass
reifies concepts (roles, existential restrictions on roles), as well as positive replacements of their 

negations. Facts express subsumptions in Pos(T ) using predicate sub, role inverses using inv, role functionalities with funct, 
and the duality of concepts (roles, etc.) and their opposites with op. The rule (1) of ProgTclass

transitively closes the sub-
sumption relation, while (2) expresses contraposition for subsumption and (3) derives subsumption relations for roles whose 
inverses are subsumed. The rules (4)–(7) mimic the construction of binary and unary conflict sets (based on the theoretical 
results from [74]) that are then stored in the predicates conf and confref respectively. Since the program ProgTclass

is positive, 
it has a single answer set MTclass

, from which the support family S for a DL-atom d = DL[λ; Q ](X) is conveniently extracted 
in the following way:

• for every sub(P , Q ) ∈ MTclass , where P is a positive ontology predicate, we add S = {P ( �X)} to S;
• for every sub(P , Q ) ∈ MTclass , where P is a replacement for an existential restriction ∃R , we add S = {R(X, Y )} to S;
• for every conf (P , P ′) ∈ MTclass , we add S = {P p(�Y ), P ′(�Y )} to S , if P p(�c) ∈ Ad for some c ∈ C , and there is no S ′ ⊂ S

such that S ′ ∈ S;
• for every conf (P , P ′) ∈ MTclass , we add S = {P p(�Y ), P ′

p(�Y )} to S , if P p(�c), P ′
p(�d) ∈ Ad for some �c, �d ∈ C , and there is no 

S ′ ⊂ S such that S ′ ∈ S;
• for every conf ref (P ) ∈ MTclass , we add S = {P p(Y , Y )} to S , if P p(c, d) ∈Ad for some c, d ∈ C;
• for every funct(P) ∈ MTclass , we add S = {P p(Y , Z), P p(Y , Z ′), Z �= Z ′} to S , if P p(c, d), P p(c, e) ∈Ad for some c, d, e ∈ C;
• for every f unct(P ) ∈ MTclass , we add S = {P p(Y , Z), P (Y , Z ′), Z �= Z ′} to S , if P p(c, d) ∈ Ad and P (c, e) ∈ A for some 

c, d, e ∈ C .

From Proposition 58, the definition of complete support families and the results in [74], we obtain:

Proposition 73. The support family constructed from the model MTclass of ProgTclass
is complete.

We now turn to determining the repair answer sets, for which we use also a declarative approach. More specifically, for 
every nonground DL-atom a( �X) and its nonground support set Sa(�Y ) with �Y = �X �X ′ , the rules from Fig. 4 are constructed. 
These form a program �supp , which is added to the replacement program �̂ to filter candidate deletion repair answer sets 
as done by the algorithm SupRAnsSet. Here r(Sa(�Y )) is a suitable representation of a support set Sa(�Y ) for a DL-atom a( �X)

using predicates p( �X) for input assertions P p( �X), resp. p P ( �X) (np P ( �X)) for ABox assertions P ( �X) (¬P ( �X)). S̄Aa states that 
the ABox part of Sa is marked for deletion if Sa ∩ A �= ∅, otherwise it is void. Furthermore, Supa is a fresh predicate not 
occurring in P , that says a has an applicable support set, i.e. its ABox part is either empty or not marked for deletion. 
The resulting program intuitively prunes candidates Î (resp. encodes deletion repair answer sets) according to the algorithm 
SupRAnsSet.
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(1) man(X) ← ea1 (X); (3) ea1 (X) ∨ nea1 (X);
(2) ⊥ ← ea2 (X); (4) ea2 (X) ∨ nea2 (X);
(5) ⊥ ← ea1 (X),not Supa1 (X); (8) Supa1 (X) ← r(S1a1 (X)),not S̄1

A
a1

(X);
(6) ⊥ ← nea1 (X), Supa1 (X); (9) S̄1

A
a1

(X) ← nea1 (X), r(S1a1 (X));
(7) Supa1 (X) ← r(S2a1 (X)),not S̄2

A
a1

(X); (10) S̄2
A
a1

(X) ← nea1 (X), r(S2a1 (X));
(11) ⊥ ← ea2 (X),not Supa2 (X); (13) Supa2 (X) ← r(S1a2 (X)),not S̄1

A
a1

(X)

(12) ⊥ ← nea2 (X), Supa2 (X); (14) S̄1
A
a2

(X) ← nea2 (X), r(S1a2 (X));
Fig. 5. Rules of the program �supp .

Example 74. Consider a simple program � = 〈O, P〉, where

O = {Student(pat)},

P =
{

(1) man(X) ← DL[Male � man; Male](X);
(2) ⊥ ← DL[; Student](X)

}
.

The DL-atom a1(X) = DL[Male � man; Male](X) has S1a1 (X) = {Male(X)} and S2a1 (X) = {Maleman(X)} as its support sets, 
while the DL-atom a2(X) = DL[; Student](X) has the support set S1a2 (X) = {Student(X)}. The declarative program �̂∪�supp ∪
facts(A) contains the data part facts(A) = {pStudent(pat)} encoding the ABox assertion Student(pat) using a fresh predicate 
pStudent , and the rules �̂ ∪ �supp shown in Fig. 5, where

• r(S1a1 (X)) = pMale(X); S̄1
A
a1

(X) = p̄Male(X); r(S2a1 (X)) = man(X);

• S̄2
A
a1

(X) = ∅; r(S1a2 (X)) = pStudent(X); S̄1
A
a2

(X) = p̄Student(X).

The rules (1)–(4) correspond to �̂, the other rules form the program �supp encoding the support information for the 
DL-atoms a1(X) in (5)–(10) and a2(X) in (11)–(14) respectively. �

The correctness of the described declarative implementation is now formally stated.

Proposition 75. Let � = 〈O, P〉 be a ground DL-program, where O is a DL-LiteA ontology, and let a1, . . . , an be the DL-atoms of �. 
Let, moreover, S1, . . . , Sn be complete nonground support families for a1, . . . , an w.r.t. O, and let �supp be the set of rules of the forms
(r1)–(r4) constructed for every support set from Si covering ai , 1 ≤ i ≤ n. Then

AS(�̂ ∪ �supp ∪ f acts(A))|� = R A Sweak(�),

where f acts(A) = {p P (�c) | P (�c) ∈ A} ∪ {np P (�c) | ¬P (�c) ∈ A} is the set of facts corresponding to the assertions from A and AS(�̂ ∪
�supp ∪ f acts(A))|� = {I|� | I ∈ AS(�̂ ∪ �supp ∪ f acts(A))}.

Observe that our declarative implementation computes exactly the weak repair answer sets. Thus, in some cases rarely 
met in practice [30] an additional minimality check is needed to ensure that the identified weak repair answer set is also 
an flp-repair answer set. This happens in case of cyclic support, i.e. recursion through a DL-atom that makes an atom true 
[37]. We illustrate this by the following example:

Example 76. Reconsider � = 〈O, P〉 from Example 74. For the interpretation Î = {man(pat), ea1 , nea2 , Supa1 pStudent(pat),

p̄Student(pat)} we have that (�̂ ∪ �supp) Î
gl contains the rules (1)–(5), (7), (9), (10’), (11) and (12), where (10’) is the rule 

⊥ ← ea2 . It holds that Î is a minimal model of this reduct, thus an answer set of �̂ ∪ �supp . As p̄Student(pat) ∈ I the repair 
A′ = A \ {Student(pat)} is extracted from Î . Let us now look at I|� = {man(pat)}. Certainly, I|� is a minimal model of the 
weak reduct

P I|�,O′
weak = {man(pat)},

where O′ = ∅, and therefore I|� is a weak repair answer set of �. However, I|� is not an flp-repair answer set of �, since 
I ′ ⊂ I|� exists, namely I ′ = ∅, which is a smaller model of the flp reduct

P I|�,O′
flp = {man(pat) ← DL[Male � man; Male](pat)}. �
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6. Evaluation

For evaluating the developed deletion repair answer set computation algorithms based on complete support families, 
we have built a benchmark suite, consisting of DL-programs over ontologies in DL-LiteA . The assessment of our algorithms 
concerned the following aspects:

• Performance. We evaluated the performance of deletion repair answer set computation in comparison to the standard 
answer set computation on various benchmarks including Family, Network, Taxi and LUBM. For the Family benchmark 
we additionally varied the following parameters:
– size of the DL-program data part;
– size of the ontology TBox;
– number of rules in the DL-program.

• Exploiting DL-programs expressive power. We analyzed how various advanced expressive features allowed in DL-programs 
like defaults, guesses and recursiveness, influence the repair answer set computation running time (Network, LUBM 
benchmarks).

• Repair quality. The σ -selection functions that we introduced allow one to restrict the repair search space to application-
relevant repair candidates, thus ensuring a certain level of quality of the results. We evaluated how the independent 
σ -selection functions, like bound on the number/type of assertions eligible for deletion influence the overall algorithm 
runtime.

• Real world data. To demonstrate the applicability of the developed algorithms to the real world scenarios, we conducted 
experiments on the DL-programs from the taxi-driver assignment problem over the MyITS ontology9 designed for per-
sonalized route planning.

6.1. Platform description

We have evaluated the repair answer set computation approach on a Linux server with two 12-core AMD 6176 SE CPUs 
with 128 GB RAM running the HTCondor load distribution system,10 which is a specialized workload management system 
for compute-intensive tasks. We used the version 2.3.0 of the dlvhex system. For each run the system usage was limited 
to two cores and 8 GB RAM. The timeout was set to 300 seconds for each instance. The experimental data are online 
available.11

Since to the best of our knowledge no other algorithms for repairing DL-programs are available, we had to proceed with 
comparison of our approach to the standard answer set computation.

The list of systems for DL-programs evaluation includes the following:

• The DReW system12 [83] is designed for evaluating DL-programs by means of a rewriting to datalog. A straightforward 
implementation of the repair computation was realized within the DReW system with the naive guess of the repair 
ABox candidate, followed by a check of its suitability. However, this implementation turned out to be ineffective even 
on small instances, since in general the search space of the repairs is too big for its full exploitation, and guided search 
is vital to ensure scalability. We have not performed a full comparison of our implementation with the DReW system, 
since in its current version negative queries and the negative updates (operator −∪) are not supported.

• The dlplugin of dlvhex,13 which uses the RacerPro reasoner as a back-end for evaluation of the calls to the ontol-
ogy, is another candidate for comparison. However, since the dlliteplugin used for standard answer set computation for 
DL-programs over lightweight ontologies scales better than the former [32], we use the latter for comparison in our 
experiments.

6.2. Evaluation workflow

We now describe the general workflow of the experimental evaluation.

In the first step of the evaluation process we constructed benchmarks. This was nontrivial, since first very few bench-
marks already exist [83] and second it is difficult to synthesize random test instances whose conflict space would effectively 
reflect realistic scenarios. We exploited the existing ontologies and aimed at building rules and constraints on top of them 
in such a way that for some data parts the constructed programs become inconsistent.

9 http :/ /www.kr.tuwien .ac .at /research /projects /myits/.
10 http :/ /research .cs .wisc .edu /htcondor.
11 http :/ /www.kr.tuwien .ac .at /staff /dasha /thesis /experimental _data .zip.
12 http :/ /www.kr.tuwien .ac .at /research /systems /drew/.
13 https :/ /github .com /hexhex /dlplugin.

http://www.kr.tuwien.ac.at/research/projects/myits/
http://research.cs.wisc.edu/htcondor
http://www.kr.tuwien.ac.at/staff/dasha/thesis/experimental_data.zip
http://www.kr.tuwien.ac.at/research/systems/drew/
https://github.com/hexhex/dlplugin
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Table 2
Family benchmark: data size variations, fixed P and T .

p A50 A1000

AS RAS AS RAS

no_restr lim = 10 no_restr lim = 20

10 (20) 0.14 (0)[0] 0.22 (0)[20] 1.73 (0)[20] 63.12 (0)[0] 37.03 (0)[20] 60.21 (0)[20]
20 (20) 0.14 (0)[0] 0.23 (0)[20] 2.10 (0)[19] 62.56 (0)[0] 38.56 (0)[20] 62.19 (0)[20]
30 (20) 0.14 (0)[0] 0.24 (0)[20] 2.33 (0)[18] 62.83 (0)[0] 40.03 (0)[20] 64.27 (0)[20]
40 (20) 0.14 (0)[0] 0.25 (0)[20] 2.88 (0)[11] 63.23 (0)[0] 41.81 (0)[20] 66.81 (0)[20]
50 (20) 0.14 (0)[0] 0.25 (0)[20] 3.93 (0) [1] 63.42 (0)[0] 43.86 (0)[20] 68.87 (0)[20]
60 (20) 0.15 (0)[0] 0.26 (0)[20] 3.93 (0) [2] 63.42 (0)[0] 45.87 (0)[20] 71.63 (0)[20]
70 (20) 0.14 (0)[0] 0.27 (0)[20] 4.00 (0) [0] 63.18 (0)[0] 47.83 (0)[20] 74.14 (0)[20]
80 (20) 0.15 (0)[0] 0.28 (0)[20] 4.08 (0) [0] 63.38 (0)[0] 49.71 (0)[20] 76.35 (0)[20]
90 (20) 0.15 (0)[0] 0.29 (0)[20] 4.48 (0) [0] 63.59 (0)[0] 52.18 (0)[20] 79.14 (0)[20]

100 (20) 0.14 (0)[0] 0.30 (0)[20] 4.42 (0) [0] 63.08 (0)[0] 54.14 (0)[20] 81.81 (0)[20]

When the scenario was defined, we created shell scripts for instance generation with certain varying parameters (e.g. 
data size, rules size, TBox size), specific for each benchmark.14 We then ran the benchmarks using the HTCondor system 
and finally extracted the results from the log files of the runs.

For each benchmark we present our experimental results in tables. The first column, p, in the tables specifies the size of 
the instance (varied according to certain parameters specific for each benchmark), and the number of generated instances 
in round brackets. For example, the value 10(20) in the first column states that 20 instances with the size of the parameter 
equal to 10 were evaluated. The rest of the columns vary from benchmark to benchmark. They represent configurations, in 
which the system was tested: AS (RAS) stands for normal (repair) answer set computation. Restrictions on repairs are applied 
in some cases the meaning of which is separately clarified where tables are presented. The cells contain combinations of 
numbers of the form t(m)[n], where t is the total average running time in seconds, m is the number of timeouts and n is 
the number of (repair) answer sets computed.

6.3. Benchmarks

For the evaluation of the algorithms, we considered the following benchmarks.

(1.1) The Family benchmark describes a scenario that is built from a version of Example 1 with ABoxes A50 and A1000
containing 50 and 1000 children and information about their families;

(1.2) The Network benchmark comprises rules with recursion and guessing features over an ontology containing data about 
availability of nodes and edges of a network. We considered a fragment of the Vienna transport system with 161 
nodes, and its part with 67 nodes, covering central area;

(1.3) The Taxi benchmark represents a driver-customer assignment problem over an ontology with ABoxes A50 and A500
containing information about 50 and 500 customers respectively. Based on certain conditions about the drivers, cus-
tomers, their positions and intentions, the customers are assigned to drivers for serving needs of customers;

(1.4) The LUBM benchmark is a set of rules with various expressiveness features built over the famous LUBM ontology15 in 
its DL-LiteA form containing information about one university. The original version of LUBM is in ALEHI(D) form. 
For creating the DL-LiteA version of LUBM we rewrote if possible and removed otherwise the TBox axioms that do not 
fall into the DL DL-LiteA . For ABox generation we used the dedicated Combo tool.16

6.3.1. Family benchmark
The first benchmark is derived from Example 1. For our evaluation we have constructed different scenarios, varying the 

size of the TBox, the data part as well as the rule part of the DL-program.

1. Size of the data part. In the first setting, we fixed two ABoxes A50 and A1000, where A50 contains 50 children 
(7 adopted), 20 female and 32 male adults; and for A1000 twenty times as many. Every child has at most two parents 
of different sex and the number of children per parent varies from 1 to 3. Rules (11) and (12), not involved in conflicts, 
have been dropped from P . Instances are varied in terms of facts over I included in P . The parameter reflecting the instance 
size is p, which ranges from 10 to 100. A benchmark instance has size p if for every child c, additional facts boy(c) and 
isChildOf (c, d) appear in P with a probability p/100, where d is a random male adult non-parent. As the number of facts 
in P varies, the size of the actual conflict part in the program can be controlled.

14 The scripts are available at https :/ /github .com /hexhex /dlplugin /benchmarks.
15 http :/ /swat .cse .lehigh .edu /projects /lubm/.
16 http :/ /code .google .com /p /combo-obda/.

https://github.com/hexhex/dlplugin/benchmarks
http://swat.cse.lehigh.edu/projects/lubm/
http://code.google.com/p/combo-obda/
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Table 3
Family benchmark: TBox size variations, fixed P and A50.

p T500 T5000

AS RAS AS RAS

no_restr lim = 10 no_restr lim = 10

10 (20) 0.15 (0)[0] 0.32 (0)[20] 1.95 (0)[20] 0.28 (0)[0] 3.58 (0)[20] 6.03 (0)[20]
20 (20) 0.16 (0)[0] 0.47 (0)[20] 2.17 (0)[20] 0.48 (0)[0] 12.89 (0)[20] 15.96 (0)[20]
30 (20) 0.17 (0)[0] 0.68 (0)[20] 2.47 (0)[20] 0.75 (0)[0] 27.76 (0)[20] 31.42 (0)[20]
40 (20) 0.19 (0)[0] 0.93 (0)[20] 2.78 (0)[20] 1.10 (0)[0] 48.46 (0)[20] 53.24 (0)[20]
50 (20) 0.20 (0)[0] 1.25 (0)[20] 3.19 (0)[20] 1.51 (0)[0] 76.39 (0)[20] 81.54 (0)[20]
60 (20) 0.21 (0)[0] 1.58 (0)[20] 3.56 (0)[20] 1.99 (0)[0] 108.33 (0)[20] 114.71 (0)[20]
70 (20) 0.23 (0)[0] 2.09 (0)[20] 4.18 (0)[20] 2.56 (0)[0] 146.62 (0)[20] 152.91 (0)[20]
80 (20) 0.24 (0)[0] 2.54 (0)[20] 4.68 (0)[20] 3.17 (0)[0] 191.37 (0)[20] 198.72 (0)[20]
90 (20) 0.26 (0)[0] 3.06 (0)[20] 5.28 (0)[20] 3.91 (0)[0] 241.51 (0)[20] 248.19 (0)[20]

Table 4
Family benchmark: rule size variations, fixed T and A50.

p Rules50 Rules500 Rules5000

RAS RASlim=10 RAS RASlim=10 RAS RASlim=20

10 (20) 0.55 (0)[20] 2.09 (0)[20] 2.56 (0)[20] 23.23 (0)[0] 64.65 (0)[20] 110.92 (0)[20]
20 (20) 0.69 (0)[20] 2.35 (0)[20] 5.22 (0)[20] 77.30 (0)[0] 257.35 (11)[9] 300.00 (20)[0]
30 (20) 0.90 (0)[20] 2.67 (0)[20] 8.50 (0)[20] 158.23 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
40 (20) 0.97 (0)[20] 2.86 (0)[20] 11.86 (0)[20] 128.87 (1)[0] 300.00 (20)[0] 300.00 (20)[0]
50 (20) 1.18 (0)[20] 3.11 (0)[20] 14.91 (0)[20] 144.71 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
60 (20) 1.29 (0)[20] 3.28 (0)[20] 17.68 (0)[20] 164.70 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
70 (20) 1.42 (0)[20] 3.19 (0)[20] 20.11 (0)[20] 186.38 (3)[0] 300.00 (20)[0] 300.00 (20)[0]

The results for this benchmark are provided in Table 2. For each probability p we generated 20 random instances with 
the fixed A50 and A1000 ABoxes, and evaluated the running time for the standard answer set (column AS) and the repair 
answer set computation (column RAS) with no restrictions on the repairs (column no_restr) as well as limiting the number 
of allowed assertions for deletion to 10 for A50 and 20 for A1000 (columns lim = 10 and lim = 20 resp.).

The numbers in the second column reveal that all considered instances are inconsistent, which is recognized by the AS 
solver within 2 milliseconds. In most cases all the repairs are found for both A50 and A1000 except for lim = 10 of A50, 
where the repairs are computed only for some of the instances up to p = 60.

2. Ontology TBox size. In the second setting, we built instances based on the size of the TBox, leaving the ontology ABox 
fixed to A50 and the rule part same as in the previous benchmark setting. The TBox axioms from Example 1 are extended 
by the inclusions P � Person for all concepts P , informally stating that every individual known to be either child, adopted, 
male or female is a person. Moreover, for each concept P from the ontology signature and 1 ≤ i ≤ Tmax , we added the 
following inclusions with probability p/100 (p ranges from 10, 20 to 90).

(1) PMemberOfSocGroupi � P (2) ∃hasIDOfSocGroupi � Person.

Intuitively, (1) reflects that a P -member of a social group i is in the class P , while (2) states that each individual having ID 
of a certain social group i is a person.

The evaluation results for this setting are presented in Table 3. One can see that the repair computation is slower then 
the standard answer set computation, which is more obvious for T5000; This is due to the construction of support sets and 
their exploitation in the declarative approach for repair answer set computation. In the standard setting, we do not exploit 
the TBox extensively, and therefore its growing size does not affect the running time. As expected, bounding a number of 
eliminated facts to k slows down the repair computation process.

3. Size of the rule part. The third setting evaluates the influence of the rule part size. Apart from the rules (11) and 
(12) from Example 1 that were excluded in the previous settings, we also added for 1 ≤ i ≤ Rmax and for 1 ≤ j ≤ i with 
probability p/100 (10 ≤ p ≤ 70) the following rules:

(1) contacti(X,Y) ← contact(X,Y),not omit(X,Y) (2) omiti(X,Y) ← omit(X,Y)

(3) contactj(X,Y) ← contacti(X,Y),not omitj(X,Y) (4) omitj(X,Y) ← omiti(X,Y).

The fresh predicates contacti(c, d) informally mean that d is a contact representative for a child c within a social group i. 
The rules (1)–(4) state that if a contact for a child was identified, then this contact can be propagated to randomly chosen 
social groups i and j.
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Table 5
Network-connectivity benchmark results: A67.

p AS RAS

no_restr lim = 3 lim = 20 Broken, f orbid

2 (20) 0.10 (0)[12] 0.46 (0)[20] 0.84 (0)[20] 0.66 (0)[20] 0.46 (0)[20]
6 (20) 0.10 (0) [5] 0.45 (0)[16] 0.79 (0)[16] 0.61 (0)[16] 0.44 (0)[16]

10 (20) 0.09 (0) [3] 0.43 (0)[14] 0.76 (0)[14] 0.59 (0)[14] 0.43 (0)[14]
14 (20) 0.09 (0) [2] 0.41 (0)[10] 0.71 (0)[10] 0.54 (0)[10] 0.41 (0)[10]
18 (20) 0.09 (0) [0] 0.40 (0) [7] 0.67 (0) [7] 0.51 (0) [7] 0.40 (0) [7]
22 (20) 0.09 (0) [0] 0.41 (0) [9] 0.70 (0) [9] 0.54 (0) [9] 0.41 (0) [9]
26 (20) 0.09 (0) [0] 0.38 (0) [3] 0.63 (0) [3] 0.47 (0) [3] 0.38 (0) [3]
30 (20) 0.09 (0) [0] 0.37 (0) [2] 0.62 (0) [2] 0.46 (0) [2] 0.37 (0) [2]

The results are presented in Table 4. Standard answer set computation times out even for smaller instances. Intuitively, 
this is due to the large number of rules in the programs. For a fair comparison, standard answer set optimization techniques 
that evaluate independent components of a DL-program separately were not considered. We used a monolithic evaluation 
heuristics instead. The repair model generator does not support module-based heuristics at the moment and the extensions 
are nontrivial.

The maximal number of rules that were added is specified in the column “names”. Each such rule is present in the 
test instance with probability p/100. We can see that the growing number of rules makes an impact on the running 
time of the algorithm, which is not surprising, as the added rules introduce conflicts due to a cycle through negation. 
Restricting the elimination to 10 facts slows down the computation for Rule50 compared to the unrestricted scenario. For 
larger instance size, i.e. Rules500, this restriction turns out to be too strict, thus no repairs are actually found. Weakening 
the restriction for larger instance size (Rules5000) produces again some repair answer sets, though only for smaller p. For 
larger p timeouts result, which is natural as even for a standard ASP solver and consistent DL-programs with thousands of 
rules, their evaluation is time-consuming.

6.3.2. Network benchmark
In the next scenario, the properties of the nodes and edges in a network are described by a fixed ontology O using 

predicates Blocked, Broken, Avail for nodes and f orbid for edges. The TBox encodes that if an edge is forbidden, then its 
starting point must be blocked, and if a node is known to be broken, then it is automatically blocked, moreover blocked 
nodes are not available:

O = { ∃forbid � Block, Broken � Block, Block � ¬Avail }.
We considered two networks, N1 and N2, that are fragments of the Vienna public transportation net. Network N1 cor-

responds to the central area of the metro lines and has 67 nodes and 117 edges; N2 covers all metro lines and part of the 
urban railways, and has 161 nodes and 335 edges. In each network we randomly made 30% of the nodes broken and 20% 
of the edges forbidden; network N2 has in addition 47 blocked nodes. This information is stored in the data part of O.

The experiments were run on two DL-programs Pconn and Pguess over O. Both programs contain as facts edges and nodes 
of the graph, as well as randomly generated facts determining the portion of the nodes on which a condition expressed by 
the rules of the program is checked. For creating the data part of the Pconn program, we partitioned the set of nodes 
randomly into two sets, i.e. the set of in nodes and the set of out nodes. For each node n from the in set, the fact in(n)

is added with probability p/100. For each node n′ from the set of out nodes, the fact out(n′) is added with probability p′
computed in the following way: if 0 ≤ p ≤ 20, then p′ = p ∗ 4/100, if 20 ≤ p ≤ 30, then p′ = p ∗ 3/100. Pconn contains, 
moreover, the following rules:

Pconn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) go(X, Y ) ← open(X),open(Y ), edge(X, Y );
(2) route(X, Z) ← route(X, Y ), route(Y , Z);
(3) route(X, Y ) ← go(X, Y ),not DL[; forbid](X, Y );
(4) open(X) ← node(X),not DL[; ¬Avail](X);
(5) ok(X) ← in(X),out(Y), route(X, Y );
(6) fail ← in(X),not ok(X);
(7) ⊥ ← fail.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Intuitively, (1)–(4) recursively determine routes over non-blocked (open) nodes, where (3) expresses that by default a route 
is recommended unless it is known to be forbidden. Rules (5)–(7) encode the requirement that each node from the in
set must be connected to at least one node from the out set via a route, which amounts to a variation of a generalized 
connectivity problem.

The running times and repair results for the benchmark with N1 are given in Table 5. The same number of repairs is 
computed for all of the RAS settings, but the running times for these settings slightly vary as expected. The last column, 
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Table 6
Network-connectivity benchmark results: A161.

p RAS

no_restr lim = 3 lim = 20 lim = 100 Broken, f orbid

2 (20) 179.49 (1)[19] 280.73 (16)[0] 288.64 (17)[3] 176.06 (1)[19] 125.47 (0)[0]
4 (20) 218.80 (8)[12] 291.80 (18)[0] 295.48 (19)[1] 226.25 (8)[12] 127.68 (0)[0]
8 (20) 230.79 (9)[11] 298.39 (19)[0] 300.00 (20)[0] 232.65 (9)[11] 126.97 (0)[0]

10 (20) 258.08 (14)[5] 300.00 (20)[0] 300.00 (17)[0] 259.69 (14)[6] 125.63 (0)[0]

Table 7
Network-guessing benchmark results: A67.

p AS RAS

no_restr lim = 3 lim = 10 limc = 10 Broken

2 (20) 180.06 (12)[0] 0.51 (0)[20] 0.91 (0)[19] 0.90 (0)[20] 0.69 (0)[20] 0.50 (0)[20]
10 (20) 15.17 (1) [0] 1.33 (0)[16] 0.89 (0) [2] 1.61 (0)[16] 0.85 (0)[16] 1.31 (0)[16]
18 (20) 0.18 (0) [0] 1.68 (0) [8] 0.90 (0) [0] 1.40 (0) [8] 0.81 (0) [8] 1.68 (0) [8]
26 (20) 0.19 (0) [0] 0.62 (0) [1] 0.97 (0) [0] 0.95 (0) [1] 0.60 (0) [1] 0.62 (0) [1]
34 (20) 0.20 (0) [0] 0.79 (0) [1] 1.04 (0) [0] 1.02 (0) [1] 0.62 (0) [1] 0.78 (0) [1]

Table 8
Network-guessing benchmark results: A161.

p RAS

no_restr lim = 10 limc = 100 Broken

2 (20) 178.52 (3)[15] 187.65 (2)[16] 175.64 (2)[16] 179.57 (3)[15]
4 (20) 201.89 (6)[10] 211.10 (7) [9] 213.66 (9) [7] 178.55 (3)[13]
8 (20) 212.18 (10) [2] 215.44 (10) [2] 205.77 (9) [3] 191.97 (7) [5]

10 (20) 190.58 (9) [0] 184.80 (8) [1] 191.54 (9) [0] 191.06 (9) [0]

where only broken nodes and forbidden edges are allowed for removal, has similar running times as the unrestricted setting. 
This is also the case for network N2 (Table 6), where this restriction does not yield repairs. Here one also needs to remove 
blocked/unavailable nodes from the ontology in order to obtain repairs.

Another setting that we considered is a benchmark over the program Pguess , which has the same rules (1) and (2) as 
Pconn , while the rest of the rules are as follows:

(3*) route(X, Y ) ← go(X, Y ),not DL[Block � block; forbid](X, Y );
(4*) open(X) ∨ block(X) ← domain(X),not DL[; ¬Avail](X);
(5*) open(X) ← node(X),not DL[; Broken](X),not block(X);
(6*) negis(X) ← domain(X), route(X,Y), X �= Y ;
(7*) ⊥ ← domain(X),not negis(X)

The rule (3*) has an update in the DL-atom; the rule (4*) amounts to guessing for all selected nodes (predicate domain) 
not known to be unavailable, whether they are blocked or not, i.e. it contains nondeterminism, which makes rule processing 
challenging. Other nodes are open by default, unless they are known to be broken, which is encoded in the rule (5*). Rules 
(6*) and (7*) check whether none of the domain nodes is isolated, i.e. does not have a connection to any other node via a 
route.

The results for Pguess with the two networks are in Tables 7 and 8, respectively. The facts domain(n) are added for each 
node n with probability p/100. For the smaller network N1 one can observe a strict increase in the running time for p = 2
and p = 10 in the standard answer set computation mode. As many of the instances for smaller p are consistent, due to the 
guessing rules the standard answer set solver can not compute the answer sets within the time frame of 300 seconds. For 
bigger p the instances are inconsistent and the conflict is quickly determined by the solver. The results for network N2 in 
Table 8 show that the guided search (last column) increases the number of found repairs quite a bit, and less timeouts are 
hit for p = 4 and p = 8.

6.3.3. Taxi benchmark
The third experimental setting represents a taxi-driver assignment problem. Imagine a system that assigns potential 

customers to taxi drivers under constraints, using (in a simplistic form) the DL-program � = 〈O, P〉 presented in Fig. 6. The 
(external) ontology O has a taxonomy T in (1)–(3). The logic program P has the following rules: (5) and (6) single out 
customers resp. taxi drivers; (7) assigns taxi drivers to customers in the same region; and (8) forbids drivers of electro-cars 
to serve needs going outside their working region. Finally, the rules (9), (10) and a constraint (11) make sure that each 
customer is assigned to at least one driver.
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Table 9
Taxi-basic benchmark results: A50.

p AS RAS

no_restr lim = 3 lim = 10 limp = 2 limc = 10 E Driver

10 (20) 0.69 (0)[0] 0.14 (0)[13] 0.75 (0)[11] 0.75 (0)[13] 0.31 (0)[13] 0.26 (0)[13] 0.14 (0)[13]
20 (20) 0.37 (0)[0] 0.15 (0) [8] 0.89 (0) [4] 0.87 (0) [8] 0.32 (0) [8] 0.25 (0) [8] 0.15 (0) [8]
30 (20) 0.22 (0)[0] 0.16 (0) [7] 0.92 (0) [2] 0.89 (0) [7] 0.32 (0) [7] 0.26 (0) [7] 0.16 (0) [7]
40 (20) 0.58 (0)[0] 0.18 (0) [8] 1.06 (0) [1] 1.04 (0) [8] 0.36 (0) [8] 0.28 (0) [8] 0.18 (0) [8]
50 (20) 0.46 (0)[0] 0.18 (0) [7] 1.01 (0) [2] 0.98 (0) [7] 0.36 (0) [7] 0.29 (0) [7] 0.18 (0) [7]
60 (20) 0.22 (0)[0] 0.19 (0)[11] 1.02 (0) [1] 0.99 (0)[11] 0.38 (0)[11] 0.31 (0)[11] 0.19 (0)[11]
70 (20) 0.22 (0)[0] 0.21 (0) [4] 1.00 (0) [0] 0.99 (0) [4] 0.37 (0) [4] 0.29 (0) [4] 0.20 (0) [4]
80 (20) 1.02 (0)[0] 0.22 (0) [9] 1.10 (0) [1] 1.10 (0) [9] 0.40 (0) [9] 0.33 (0) [9] 0.22 (0) [9]
90 (20) 1.30 (0)[0] 0.23 (0)[12] 1.26 (0) [0] 1.20 (0)[12] 0.44 (0)[12] 0.36 (0)[12] 0.24 (0)[12]

100 (20) 1.47 (0)[0] 0.24 (0)[13] 1.20 (0) [0] 1.15 (0)[13] 0.45 (0)[13] 0.37 (0)[13] 0.26 (0)[13]

O =
{

(1) Driver � ¬Cust (3) ∃worksIn � Driver

(2) EDriver � Driver (4) worksIn � ¬notworksIn

}

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5) cust(X) ← isIn(X,Y),not DL[; ¬Cust](X);
(6) driver(X) ← not cust(X), isIn(X,Y);
(7) drives(X,Y) ← cust(Y), isIn(Y,Z), isIn(X,Z),

driver(X),not omit(X,Y);
(8) omit(X,Y) ← needsTo(Y,Z), DL[; notworksIn](X, Z),

DL[Driver �driver; EDriver](X);
(9) ok(Y) ← customer(Y),drives(X,Y);
(10) fail ← customer(Y),not ok(Y);
(11) ⊥ ← fail.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 6. DL-program from Taxi-basic benchmark.

1. Guided repair search. One might argue that in case of inconsistency there are not many possibilities for repairing the 
given system. Indeed, for instance, removing information about the drivers seems absurd at first glance, as some individuals 
are no longer known to be drivers, and thus assumed to be customers by default (5). Observe that a complete removal 
of driver information will not make the system consistent, but on the contrary will create even more customers, who will 
then possibly need to be assigned to the drivers. Therefore, it is obvious that the guided repair search is often crucial and it 
should not only improve the repair quality but also reduce the computation runtime.

In this setting we considered the evaluation time of the repair computation under various independent selection func-
tions. The latter include restrictions to a certain set of predicates for deletion (in our case E Driver assertions) and limiting 
the number of removed facts, predicates and constants. While the latter is natural and can be easily justified, one might 
wonder when removal of e-car driver is of practical use. We can imagine that e-cars are hybrid and can run on petrol, 
which for environmental reasons is undesired, and the government wants to reduce petrol usage. However, in case it is vital 
and some customers are left without drivers, they still can switch back to the petrol energy supply.

For the DL-program � the ABox A50 contains 50 customers, 20 drivers (among them 19 driving electro-cars), and 
5 regions; every driver works in 2–4 regions. In the program P from above, facts isIn(c, r), needsTo(c, r), goTo(d, r) for 
appropriate constants c, d, r from A are randomly added with probability p/100 under the following constraints: persons 
are in at most one region; customers need to go to at most one region, and their position is known in that case. Furthermore, 
driver positions are added as facts isIn(d, r) with fixed probabilities of 0.3, 0.7 and 1 growing discretely in accordance 
with p.

The results for A50 are given in Table 9, where the first column shows in parentheses the number of instances generated 
per value p. The second and third column state results for standard and repair answer set computation, respectively, while 
the rest of the columns present the running times for repair computation under various selection functions, i.e. in the fourth 
and fifth column we restricted repairs by allowing removal of only a limited number of assertions (3 and 10) and in the 
sixth and seventh column we computed repairs where only facts containing 2 predicates and 10 constants are eliminated. 
Finally in the last column the results for removing only E Driver facts are shown.

One can see that bounding the number of removed assertions makes the computation slower. For repdel = E Driver, the 
guided repair computation effectively reduces the search space, and it helps the solver to find repairs quicker. In fact, the 
analysis of the program reveals that most of the valid repairs exclude certain E Driver concept memberships, since they 
often cause the omission of driver-customer assignments and thus violate constraint (11).
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Table 10
Taxi-districts benchmark results: A50.

p AS RAS

no_restr lim = 3 lim = 10 limp = 2 limc = 10 E Driver

2 (20) 0.25 (0) [5] 4.12 (0) [5] 5.27 (0) [5] 5.32 (0) [5] 5.01 (0) [5] 4.98 (0) [5] 4.10 (0) [5]
10 (20) 0.25 (0) [0] 4.18 (0)[11] 6.19 (0) [7] 6.18 (0)[11] 5.22 (0)[11] 5.15 (0)[11] 4.13 (0) [3]
18 (20) 0.25 (0) [1] 4.24 (0)[14] 6.71 (0)[10] 6.74 (0)[14] 5.34 (0)[14] 5.19 (0)[14] 4.15 (0) [3]
26 (20) 0.25 (0) [1] 4.28 (0)[14] 7.26 (0) [9] 7.42 (0)[14] 5.50 (0)[14] 5.24 (0)[14] 4.22 (0) [5]
34 (20) 0.26 (0) [3] 4.39 (0)[19] 8.54 (0)[16] 8.52 (0)[19] 5.74 (0)[19] 5.40 (0)[19] 4.35 (0) [9]
42 (20) 0.27 (0) [5] 4.42 (0)[18] 9.35 (0)[18] 9.31 (0)[18] 5.86 (0)[18] 5.49 (0)[18] 4.51 (0)[16]
50 (20) 0.29 (0)[10] 4.49 (0)[19] 10.42 (0)[19] 10.29 (0)[19] 6.05 (0)[19] 5.54 (0)[19] 4.63 (0)[19]
58 (20) 0.32 (0)[14] 4.62 (0)[20] 11.48 (0)[20] 11.50 (0)[20] 6.33 (0)[20] 5.63 (0)[20] 4.76 (0)[20]
66 (20) 0.31 (0)[11] 4.61 (0)[20] 11.59 (0)[20] 13.42 (0)[20] 6.27 (0)[20] 5.71 (0)[20] 4.76 (0)[18]

Table 11
Taxi-districts benchmark results: A500.

p AS RAS

no_restr lim = 3 lim = 10 limp = 2 limc = 10 E Driver

2 (20) 2.11 (0) [0] 9.22 (0) [7] 25.05 (0) [6] 24.91 (0) [7] 12.32 (0) [7] 10.24 (0) [6] 7.56 (0) [0]
10 (20) 2.23 (0) [0] 14.17 (0)[20] 46.37 (0)[20] 46.52 (0)[20] 20.54 (0)[20] 15.75 (0)[15] 12.16 (0) [4]
18 (20) 5.58 (0) [5] 15.96 (0)[20] 51.89 (0)[20] 52.44 (0)[20] 23.11 (0)[20] 17.93 (0)[20] 28.00 (0)[20]
26 (20) 17.95 (0)[12] 18.28 (0)[20] 55.30 (0)[20] 55.84 (0)[20] 25.57 (0)[20] 20.27 (0)[20] 31.76 (0)[20]
34 (20) 37.87 (0)[17] 20.81 (0)[20] 58.71 (0)[20] 58.51 (0)[20] 28.35 (0)[20] 22.93 (0)[20] 36.00 (0)[20]

2. Real world data. For another benchmark, we considered rules on top of the ontology developed in the MyITS project, 
which enhanced personalized route planning with semantic information [39].17 That ontology is augmented with axioms 
(1)–(4) in Fig. 6 and the axiom (5’) adjoint � ¬disjoint, stating that adjoint regions are not disjoint; the resulting ontology 
has 389 TBox axioms on 339 concepts and 41 roles. This scenario is modeled to demonstrate the applicability of the repair 
answer set computation approach for TBoxes from a real world domain. We considered DL-programs over two ABoxes A50
and A500 (containing 10 times as many customers, drivers and e-car drivers as A50). Along with customer and driver 
information from above, the ABoxes also contain data about mutual spatial relations among the districts of Vienna. These 
relations are stored using the predicates adjoint and disjoint. The rule part of the DL-program has the same rules (5)–(6) 
and (9)–(11) as in Fig. 6, while the rules (7) and (8) are as follows:

(7*) drives(X,Y) ← driver(X), cust(Y),needsTo(X,Z1),

goTo(X,Z2),DL[; adjoint](Z1,Z2),not omit(X,Y)

(8*) omit(X,Y) ← DL[; EDriver](X),needsTo(Y,Z),DL[; notworksIn](X, Z)

Intuitively, the rule (7*) states that a driver can be assigned to a customer only if the driver is going to a region adjoint 
to the destination region of the customer. Similar as in the previous scenario, some of the assignments are dropped if they 
involve drivers of e-cars aiming at the regions they are not assigned to. The rule (8*) is the same as the rule (8), with the 
only difference that the DL-atom involved in it does not have any updates.

The benchmark results for this setting and A50 are presented in Table 10. Unsurprisingly, the restriction on the number 
of assertions allowed for deletion slows down the repair computation again. With the increase of this limit the running 
time slightly improves. As in the previous setting the restriction of the set of predicates allowed for deletion to E Driver
does not yield much of the computation overhead; however, in contrast to the previous setting the number of repairs found 
decreases. Since the number of districts increased compared to the previous setting, apart from the information about 
drivers of e-cars, one needs to expand the working area of the drivers too; thus removal of notworksIn facts should again 
increase the number of obtained repairs.

Table 11 presents the results for the ABox A500. Despite a natural increase in running times compared to the smaller 
ABox, repairs are found in many cases for this setting. While the number of regions stays the same as for A50, proportionally 
there are more available drivers per district, and more customers can be served.

6.3.4. LUBM benchmark
We have evaluated also DL-programs over the famous LUBM ontology18 in its DL-LiteA form. For ABox generation we 

used the dedicated Combo tool.19 We considered an extended assignment problem in combination with multiple mutually 

17 http :/ /www.kr.tuwien .ac .at /research /projects /myits/.
18 http :/ /swat .cse .lehigh .edu /projects /lubm/.
19 http :/ /code .google .com /p /combo-obda/.

http://www.kr.tuwien.ac.at/research/projects/myits/
http://swat.cse.lehigh.edu/projects/lubm/
http://code.google.com/p/combo-obda/
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O =
⎧⎨
⎩

(1) Student � ¬NonStudent (4) VisitPostDoc � PostDoc
(2) VisitPostDoc � ResearchAssistant (5) Student � OrgHelp
(3) VisitPostDoc � NonStudent

⎫⎬
⎭

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6) resas(X) ← DL[; ResearchAssistant](X);
(7) student(X) ← resas(X),not negStudent(X);
(8) negStudent(X) ← resas(X),DL[Student � student; ¬Student](X);
(9) helps(Y , X) ← resas(X),DL[; PostDoc](Y ),not omit(Y , X);
(10) omit(Y , X) ← helps(Y,X),DL[; PostDoc](X);
(11) visitPostDoc(Z) ← DL[; VisitPostDoc](Z);
(12) orghelp(Z1) ← DL[; OrgHelp](Z1);
(13) supports(Z1, Z) ← orghelp(Z1),visitPostDoc(Z),not drop(Z1, Z);
(14) negStudent(Z1) ← orghelp(Z1),not student(Z1);
(15) student(Z1) ← orghelp(Z1),DL[NonStudent � negStudent; ¬NonStudent](Z1);
(16) drop(Z1, Z) ← supports(Z1, Z),DL[; InternationalStudent](Z1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 7. DL-program from LUBM benchmark.

Table 12
LUBM benchmark results.

p AS RAS

RAS lim = 20 limp = 2 limc = 20 I S

2 (20) 3.97 (0)[0] 13.98 (0)[20] 38.90 (0)[20] 16.01 (0)[20] 15.24 (0)[20] 15.20 (0)[6]
6 (20) 4.25 (0)[0] 16.16 (0)[20] 115.62 (0)[19] 18.08 (0)[20] 18.63 (0)[19] 11.16 (0)[2]

10 (20) 4.64 (0)[0] 18.95 (0)[20] 245.40 (0)[7] 20.85 (0)[20] 20.79 (0)[4] 9.12 (0)[0]
14 (20) 4.86 (0)[0] 21.50 (0)[20] 236.40 (1)[3] 23.73 (0)[20] 23.50 (0)[1] 9.53 (0)[0]
18 (20) 5.33 (0)[0] 24.86 (0)[20] 230.21 (0)[1] 27.11 (0)[20] 26.86 (0)[0] 10.15 (0)[0]
22 (20) 5.54 (0)[0] 28.21 (0)[20] 228.12 (0)[0] 30.19 (0)[20] 29.93 (0)[0] 10.36 (0)[0]
26 (20) 5.71 (0)[0] 31.50 (0)[20] 222.78 (0)[0] 33.84 (0)[20] 33.26 (0)[0] 10.75 (0)[0]
30 (20) 6.07 (0)[0] 36.88 (0)[20] 225.18 (0)[0] 38.82 (0)[20] 38.47 (0)[0] 11.45 (0)[0]
34 (20) 6.36 (0)[0] 42.18 (0)[20] 241.30 (0)[0] 44.29 (0)[20] 44.01 (0)[0] 12.22 (0)[0]
38 (20) 6.55 (0)[0] 46.07 (0)[20] 245.77 (0)[0] 47.87 (0)[20] 47.64 (0)[0] 12.41 (0)[0]
42 (20) 6.93 (0)[0] 52.50 (0)[20] 255.74 (0)[0] 54.17 (0)[20] 56.91 (0)[0] 12.94 (0)[0]
46 (20) 7.15 (0)[0] 56.98 (0)[20] 276.52 (5)[0] 58.96 (0)[20] 58.47 (0)[0] 13.35 (0)[0]
50 (20) 7.53 (0)[0] 63.96 (0)[20] 276.07 (5)[0] 65.79 (0)[20] 65.50 (0)[0] 14.18 (0)[0]

related defaults (see Fig. 7). Informally, the goal of this program is to construct candidate assignments by identifying post-
docs helping students with their research work and organizational staff supporting visiting postdocs with language related 
issues. From every model of the program a set of candidate assignments satisfying additional side constraints expressed by 
the rules of the program is extracted.

• The rules (6)–(8) encode the default that research assistants are students unless the contrary is derived.
• The rule (9) assigns postdocs to every research assistant (who is a student by default). In case the “supposed” student 

has problems, there is always a person to contact, viz. some assigned postdoc; the possible assignments are collected 
in the helps. However, a research assistant may happen to be a visiting postdoc and thus a postdoc (axiom (4) in O); 
then, no help from another postdoc is needed (rule (10)).

• Visiting postdocs do not need help with their work-related problems, but they need language support, as (being foreign-
ers) they will not know the local language. Hence, a person who can provide organizational help ought to be found for 
each postdoc. Rule (11) collects all visiting postdocs into a respective predicate, and rule (12) similarly persons capable 
of providing organizational help. Rule (13) assigns any such person to a visiting postdoc using the supports predicate.

• However, not all people who can provide organizational help are equally good in rule (13), and some may be exempted; 
in particular, rule (16) exempts international students from organizational help.

• As for organizational help, persons are assumed not to be students by default (rules (14)–(15)).

The absence of answer sets for the program is caused by the cyclic dependencies of a literal from its default negation, 
which manifests in the rules (9)–(10) and (13)–(16). The results of the experiments are given in Table 12. Standard answer 
set computation outperforms repair answer set computation; thus in this benchmark inconsistency is found faster than the 
first repair. There are many DL-atoms without input predicates, so called outer DL-atoms. In the standard answer set mode, 
for these atoms all relevant constants are retrieved at an early stage, which speeds up the computation. The restricted 
repairs are found in this benchmark too, and the results are as expected: the stricter the limit, the less repairs are found 
and the more time is needed. The last column of Table 12 shows the results for removal restricted to InternationalStudents. 
As one can see, this guided search speeds up the computation but significantly decreases the number of found repairs. Note 
that allowing deletion of at most 20 facts leads to higher running time than the other restrictions; this is explained by the 
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structure of repairs, which do not involve many different predicates, but the number of facts in each repair is very likely to 
exceed 20.

7. Discussion

In this section, we discuss extensions of our work for DL-programs on ontologies beyond DL-LiteA and consider related 
work on inconsistency management in more detail.

7.1. Further work

Our notions of repair and repair answer set naturally generalize to DL-programs over ontologies in other DLs, and similar 
techniques as above can be employed to compute repair answer sets. Algorithms 2 and 3 are general and work for arbi-
trary DLs, and similarly Algorithm 4 works for DLs that admit complete (non-ground) support families. In particular, the 
approach was extended in [34,79] to DL-programs over EL ontologies; the EL family [3] includes like the DL-Lite family 
prominent DLs that are tractable and despite limited expressiveness still useful for many application domains. The general 
complexity results in Sections 3.1 and 3.3 carry over to the core DL EL, assuming that negative concepts assertions are 
admissible (which do not affect tractability of standard reasoning tasks). In absence of such assertions, and thus of the up-
date operators −∪ and −∩, deciding existence of flp-repair answer sets for normal DL-programs drops to NP. However, like for 
DL-LiteAdeciding weak- or flp-repair answer set existence is NP-hard for DL-programs with simple structure and input-free 
DL-atoms where deciding answer set existence is tractable [79]. Furthermore, deletion repairs for ORPs over EL ontologies 
are intractable, even in absence of negative assertions, and so are the other repair notions in Section 3.5 except bounded 
δ±-change repairs. Intuitively, support sets for DL-atoms over EL ontologies can involve arbitrarily many assertions, and dis-
abling a support set leads to choosing one of them; thus, hypergraph 2-colorability, which is well-known to be NP-complete 
[44], can be easily expressed. Complete support families for DL-atoms over EL can get very large (exponential size) or even 
infinite in case of cyclic TBoxes (which are though less frequent in practice [43]).

To address these issues, a version of the algorithm for repair answer set computation was given in [34] that operates on 
incomplete (partial) support families; this algorithm and the underlying framework can be applied to repair DL-programs 
over ontologies in other DLs as well. It uses hitting sets to disable known support sets of negative DL-atoms and performs 
evaluation postchecks–if needed–to compensate incompleteness of support families. Moreover, it trades answer complete-
ness for scalability by using minimal hitting sets. A declarative implementation for ontologies in EL is available on top of 
dlvhex, where partial support families for DL-atoms are computed by unfolding datalog rewritings of queries over an EL
ontology; for more details, see [34,79]. Finally, we remark that the notion of support set has been fruitfully generalized to 
HEX programs [38], in which instead of an ontology arbitrary external information sources of computation can be accessed 
from an answer set program [32] (see also Appendix A).

7.2. Related work

Handling inconsistencies in DL-programs is a rather recent issue, which has been targeted in few works, including [72,
40], and these works focused on inconsistency tolerance. Pührer et al. [72] aimed to avoid answer sets that are non-intuitive 
due to inconsistency in DL-atoms, by dynamically disabling rules that possibly involve spoiled information. Here the under-
lying assumption is that the ontology can or should not be changed; for the case where changes are possible, ontology 
repair was posed as an important open issue. Fink [40] addressed inconsistency of DL-programs due to the lack of stabil-
ity in models by resorting to semi-stable models based on [31], and combined the resulting paracoherent semantics with 
paraconsistency techniques for handling classical conflicts (i.e., truth of a formula and its negation) similar as in Description 
Logics [60]. Semi-stable models repair in a sense the DL-program by changing the data part, but are quite different from 
repair answer sets: indeed, only addition of data is possible, but no deletion; additions are not restricted to ontology as-
sertions; and noticeably, the additions are treated as unjustified beliefs rather than as facts that are true. Finally, additions 
must be smallest possible (w.r.t. set inclusion), which leads to a complexity increase that makes reasoning from semi-stable 
models harder than from repair answer sets.

Like for DL-programs, for other hybrid formalisms inconsistency management has so far concentrated on inconsistency 
tolerance rather than repair. For instance, Huang et al. [49] presented a four-valued paraconsistent semantics, based on 
Belnap’s logic [8], for hybrid MKNF knowledge bases [66], which are the most prominent tightly coupled combination 
of rules and ontologies. Inspired by the paracoherent stable semantics from [75], the work [49] was extended in [48]
to handle also incoherent MKNF KBs, i.e. programs in which inconsistency arises as a result of dependency of an atom 
on its default negation in analogy to [40]. Another direction of inconsistency handling for hybrid MKNF KBs is using the 
three-valued (well-founded) semantics of Knorr et al. [52], which avoids incoherence for disjunction-free stratified programs. 
Most recently, this has been extended in [50] with additional truth values to evaluate contradictory pieces of knowledge, 
such that inconsistency can be modeled with a new truth value and non-contradictory knowledge that is only derivable from 
the inconsistent part of a KB is still considered to be true in the classical sense, or in another view truth which depends 
on the inconsistent part of a KB is distinguished from truth derivable without involving any contradictory knowledge (also 
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known as suspicious reasoning). However, these works aim at inconsistency tolerance rather than repair, and are geared in 
spirit to query answering that is inherent to well-founded semantics.

In the context of Description Logics, repairing ontologies has been studied intensively, foremost to handle inconsistency. 
In particular, Lembo et al. [54] and Bienvenu [12] studied consistent query answering over DL-Lite ontologies based on the 
repair technique from databases (see [10]). A framework for explaining (negative) query answers under the inconsistency 
tolerant semantics. In the spirit of minimal change, an inconsistent ontology (with a consistent TBox) is repaired by iden-
tifying and eliminating minimal conflict sets causing (i.e., explaining) the inconsistency; this results in maximal deletion 
repairs. Note that our algorithm SupRAnsSet constructs in its search all maximal deletion repairs; in that it is similar to 
ABox cleaning [64,74] (though in general non-maximal repairs are also computed by our method). However, our setting dif-
fers also in other respects fundamentally from those in [54,12]: (i) the ontology is consistent and inconsistency arises only 
through the interface of a DL-atom; (ii) several DL-atom queries, where each is either an entailment or a non-entailment 
query, have to be considered en bloc; and (iii) in addition, individual ABox updates are possible.

Calvanese et al. [22] considered explaining negative answers to instance queries and unions of conjunctive queries 
in DL-LiteA , i.e., to give reasons for tuples missing from the output, complementing [16] which considered explanations 
for positive query answers in DL-Lite. They proposed abductive explanations that correspond to repairs by increasing the 
ABox, and they characterized the computational complexity of deciding explanation existence and other reasoning problems 
around explanations, for arbitrary and preferred explanations that amount to non-independent σ -selections. In absence of 
preferences and with empty ABox, this problem can be seen as a special ORP with a single query and empty update sets, 
and thus contributes a tractable case. On the other hand, the issues (ii) and (iii) in the previous paragraph apply also here 
and turn ORPs into multi-abduction problems of positive and negative queries with individual ABox additions; it remains 
unclear how one could readily exploit the existing abduction algorithms to solve such ORPs efficiently.

Repairing inconsistent non-monotonic logic programs is less developed. Sakama and Inoue [76] used extended abduction 
to delete minimal sets of rules; however, notably also adding rules can remove inconsistency from such a program. This 
was exploited by Balduccini and Gelfond [7], who proposed consistency-restoring rules that may be added, under Occam’s 
razor, in order to remove inconsistency. Syränen [81] aimed at finding reasons for the absence of answer sets and addressed 
debugging logic programs based on model-based diagnosis [73], which in a generalized setting was considered by Gebser 
et al. [45], who provided explanations why interpretations are not answer sets of a program. Repairing rules in a DL-program 
subsumes repair of ordinary nonmonotonic logic programs, and thus represents a challenge as such, especially if repair 
goes beyond merely dropping rules. Inconsistent DL-programs can be seen as programs with bugs that need appropriate 
debugging techniques for fixing. These were studied in [68], where an approach building on [81,45,71] was developed. The 
idea is to proceed in a user-interactive way by stepping through the rules of the DL-program, and to distinguish at each 
step a set of active rules along with an intermediate interpretation. Faulty rules are identified if a conflict is reached in the 
stepping process. It would be interesting to see if stepwise debugging and data repair can be fruitfully combined, which 
remains for future work.

Our ideas on domain-dependent restrictions on repairs are related to the inconsistency policy for databases discussed 
e.g. in [78,63], where the authors presented preference-based techniques for repairing databases. In the context of DL-
programs, this has not been considered before. The complexity of consistent query answering based on preferred repairs 
over lightweight ontologies (in particular, in DL-LiteR) has been recently studied in [13], where for a number of preferences 
that amount to non-independent σ -selections intractability was shown, which in most cases is beyond NP.

8. Conclusion

We have considered the issue of repairing DL-programs, which are a well-known loose-coupling combination of non-
monotonic logic rules and Description Logic ontologies, in case of inconsistency, i.e., when no answer set (model) of a 
DL-program exists. To this end, we have introduced repair answer sets based on repairs, which change the data part (ABox) of 
the ontology to gain consistency. We have characterized the computational complexity of repair answer sets, showing that 
they do not add to the complexity of answer sets (more specifically, to weak and flp answer sets) for ontologies in DL-LiteA , 
which is a prominent Description Logic featuring tractable reasoning. This similarly holds for other tractable Description 
Logics. Indeed, while we concentrated on DL-LiteA , our general methodology for restoring consistency can be applied to 
DL-programs over ontologies in a range of Description Logics; we refer the reader to [79] for further discussion. We have 
provided selection functions to single out preferred repairs from a candidate set, and we have discussed the benign property 
of independence which allows for local preferred repair selection (filtering).

We have then extended an in-use algorithm for DL-program evaluation for computing repair answer sets. At the heart 
of this extension is a generalized Ontology Repair Problem (ORP), which asks for a modified ABox that simultaneously en-
tails respectively non-entails sets of queries, possibly under individual ABox updates. While intractable in general, we have 
presented several non-trivial tractable cases, among them deletion repairs, which are often applied in practice.

As a naive extension lacks scalability, we developed a new evaluation approach that is based on the novel notion of 
support set for DL-atoms, and we showed that for DL-programs over DL-LiteA ontologies, a complete support family of 
such supports sets that allows to completely avoid ontology reasoning during the repair computation can be efficiently 
constructed. For the experimental evaluation of the approach, we have built a set of benchmarks in different scenarios that 
involve different ontologies. The experimental results are promising. In particular, for inconsistent DL-programs the repair 
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answer set computation is often faster than standard answer set computation. Furthermore, use-case guided restrictions on 
repairs often did not introduce much overhead. Overall, the empirical evaluation has revealed a great potential of the novel 
repair methodology.

8.1. Outlook

We can see several directions for future work. One is to consider repair semantics and computation for DL-programs 
over Description Logics other than DL-LiteA . As mentioned above, for EL this was done in [34,79], but more expressive 
DLs can be considered, e.g. the DLs SHIQ, SHOIN , and SROIQ that are important in the Semantic Web context. 
Orthogonal to other DLs, additional repair possibilities may be considered besides ABox changes. For repairing DL-rules 
the works on ASP debugging [41,45,81] may serve as starting point, but the problem is challenging as the search space 
of possible changes is large. The latter applies to changes of DL-atoms as well, and in both cases restrictions and/or user 
interaction will be necessary. Another direction would be to consider other formalisms for hybrid knowledge bases, or more 
general formalisms than DL-programs for combining knowledge bases such as HEX programs [38]. Heterogeneity of external 
sources in HEX-programs makes both repair and inconsistency-tolerant reasoning very challenging.

Regarding optimizations, learning techniques may be exploited for repair computation, e.g. caching of intermediate re-
pairs/repair answer sets, considering correlation patters between them, and identifying mutual dependence of DL-atoms 
might be worthwhile. Furthermore, program and repair decomposition can be considered, where a DL-program is split into 
modular components that can be handled separately, and local repairs for them are combined into a global repair. It re-
mains to be seen, however, to what extent and for which program classes the repair methods can be adapted for a modular 
setting. As regards ABox change, localization and decomposition methods from databases may be exploited [29].

Another direction are alternative evaluation approaches. Instead of turning answer sets of the replacement program into 
repair answer sets by suitable changes of the ontology ABox, one could aim at finding repair answer sets incrementally, 
e.g., by exploiting debugging based on stepping techniques [68]. In a user-interactive mode, one traverses the rules of a 
DL-program until a conflict is identified. If the latter occurred due to a DL-atom, the ontology ABox is repaired and then the 
stepping process is continued. While this strategy may not work in general, it can be of interest in restricted settings, e.g. 
for stratified DL-programs.

On the practical side, providing other independent selection functions apart from deletions (see Section 3) is an im-
portant issue, along with means to incorporate domain specific information in the repair process (e.g., protected ontology 
parts). This calls for convenient representation and effective exploitation of such information with the dlliteplugin.

Appendix A. Supplement to Section 2

This section introduces HEX-programs [38] and explains their correspondence with DL-programs (which are a proper 
instance of HEX programs). The material is included for the convenience of the reader, as a supplement to ease deeper 
understanding of the evaluation algorithm for DL-programs, which is in terms of the more general class of HEX programs 
[30]. However, this appendix is not strictly needed and can be omitted.

A.1. HEX-programs

Apart from the interaction with the DL ontology through a logic program there are other ways of accessing information 
from different external sources. An important generalization of DL-programs are HEX-programs [38], which accommodate a 
universal bidirectional interface for arbitrary sources of external computation. This is achieved by means of the notion of 
an external atom. Using such external atoms, whose semantics is abstractly modeled by an input-output relationship, one 
can access different kinds of information and reasoning in a single program. HEX-programs have been successfully used 
in various kinds of applications. Some examples include multi-agent systems, rule-based policy specification, distributed 
SPARQL processing, to mention a few.

We assume that for a given HEX-program the vocabulary consists of mutually disjoint sets C of constants, V of variables, 
P of predicates, X of external predicates. Next we recall syntax and semantics of HEX-programs.

Syntax. HEX-programs generalize (disjunctive) extended logic programs under the answer set semantics described earlier 
with external atoms, allowed in the bodies of the rules. External atoms have a list of input parameters (constants or predicate 
names) and a list of output parameters.

Definition 77 (External atom). An external atom a(�Z) is of the form

&g[�Y ]( �X), (A.1)

where &g ∈X, �Y = Y1, . . . , Y , and �X = X1, . . . , Xm , such that Yi, X j ∈ P ∪ C ∪ V, for 1 ≤ i ≤ and 1 ≤ j ≤m, and �Z is the 
restriction of �Y and �X to elements from V.

An external atom is ground if Yi ∈ C ∪ P for all 1 ≤ i ≤ l and X j ∈ C for all 1 ≤ j ≤ m.
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Example 78. Consider the external atom a( �X) = &diff [p, q]( �X), where p and q are predicates. The atom a( �X) computes the 
set of all elements X , which are in the extension of p but not in the extension of q. �

HEX-programs are defined as follows:

Definition 79 (HEX-program). A HEX-program consists of rules r of form

a1 ∨ · · · ∨ an ← b1, . . . ,bk,not bk+1, . . . ,not bm , (A.2)

where each ai is an (ordinary) atom, each b j is either an ordinary atom or an external atom, and n + m > 0.

Like for ordinary logic programs, we refer to H(r) = {a1, . . . , an} as the head of r, and to B(r) = {b1, . . . , bk, not bk+1, . . . ,
not bn} as the body of r.

Example 80. Consider the program �

d(c) ←; q(c) ← d(c),&diff [d,p](c);
p(c) ← d(c),&diff [d,q](c)

Informally, this program implements a choice from p(c) and q(c) �
A program is ground, no variables occur in it. For non-ground HEX-programs, a suitable safety conditions allows to use a 

grounding procedure that transforms the program to a ground program with the same answer sets.

Semantics. The semantics of a HEX-program is defined via interpretations I over the Herbrand base, which is naturally 
generalized from ordinary logic programs as follows:

Definition 81 (Herbrand base). The Herbrand Base of a HEX-program �, denoted HB(�) is the set of all atoms constructable 
from the predicates occurring in � and the constants from C .

Given a HEX-program �, satisfaction of (sets of) literals, rules, etc. O w.r.t. an interpretation I over H B(�), denoted 
I |= O , extends naturally from ordinary [46] to HEX-programs, and the satisfaction of a ground external atom &g[�y](�x) is 
more involved. It is given by the value of a 1+|�y|+|�x|-ary Boolean function f&g . Formally,

Definition 82 (Satisfaction). Let � be a HEX-program and I ⊆ H B(�) an interpretation. The satisfaction relation is defined 
as follows:

• for an ordinary atom b, I |= b, if b ∈ I , and I �|= b, if b /∈ I;
• for a ground external atom &g[�y](�x), I |= &g[�y](�x), if f&g(I, �y, �x) = 1, and I �|= &g[�y](�x), if f&g(I, �y, �x) = 0;
• I satisfies an (ordinary or external) literal not b, if I �|= b;
• I satisfies a rule of form (A.2), if I |= ai for some 1 ≤ i ≤ k or I �|= bi for some 1 ≤ i ≤ m or I |= bi for some m < i ≤ n;
• I satisfies a ground HEX-program � (I is a model of �), if I |= r for all rules r of �.

The answer sets of HEX-programs are defined in terms of the flp-reduct.

Definition 83 (flp reduct). Let � be a HEX-program and let I be an assignment. An flp-reduct of � w.r.t. I is a program 
�I

flp = {r ∈ � | I |= B(r)}.

Definition 84 (flp-answer set). Given a HEX-program �, an assignment I is an flp-answer set of �, if I is a ⊆-minimal model 
of �I

flp . ASflp(�) denotes the set of all flp-answer sets of a HEX-program �.

Example 85. Recall the HEX-program from Example 80 and consider an assignment I1 = {d(c)}. The reduct �I1
flp of � relative 

to I1 is as follows:

�
I1
flp = {d(c); p(c) ← &diff [d, q](c)}.

Observe, that I1 is a minimal model of �I1
flp , therefore I1 ∈ A Sflp(�).

The assignment I2 = {d(c), q(c)} is another flp-answer set of �. Indeed, the flp-reduct comprises

�
I2
flp = {d(c); q(c) ← &diff [d, p](c)}.

As I2 is the minimal model of �I2
flp , we get that I2 ∈ A Sflp(�). �
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A.2. From HEX-programs to DL-programs

We now provide a correlation between DL-programs and HEX-programs.
Let � = 〈O, P〉 be a DL-program, where O is a consistent ontology fixed as an external source and P is a set of 

DL-rules. DL-atoms are encoded as external atoms of the form &DL[c+, c−, r+, r−, Q ](�x), where c+, c− (r+, r−) are binary 
(resp. ternary) predicates and Q is a string which encodes an ontology query. The query Q is a possibly negated ontology 
concept or a role name, concept or role subsumption or its negation.

The oracle function of &DL is defined by

f&DL(I, c+, c−, r+, r−, �x) = 1 ⇐⇒ O ∪ U I (c+, c−, r+, r−) |= Q (�x),
where U I (c+, c−, r+, r−) is an update to O, specified by the (extension of the) predicates c+, c−, r+, r− . More specifically, 
it contains for each c+(C, a) ∈ I (resp. c−(C, a) ∈ I), a concept assertion C(a) (resp. ¬C(a)). Updates of roles, generated by 
the predicates r+ and r− are analogous.

Example 86. DL[Male � boy; Male](X) from Fig. 1 is translated to &DL[c+, c−, r+, r−, Male](X), s.t. P is extended by the rule 
c+(Male, X) ← boy(X), and the predicate c+ does not occur elsewhere P .

The rule (9) of P in Fig. 1 corresponds to the following rules in the HEX-program:

P =

⎧⎪⎨
⎪⎩

(9) hasfather(X,Y) ← &DL[c′ +, c′ −, r′ +, r′ −,hasParent](X, Y ),

&DL[c+, c−, r+, r−,Male](Y );
(9’) c+(Male,X) ← boy(X)

⎫⎪⎬
⎪⎭ �

Appendix B. Proofs of Section 3

Proof of Theorem 18. (i) NP-completeness result for normal � and x = weak.
(Membership) Let � = 〈O, P〉 be a normal DL-program, where O = 〈T , A〉. The algorithm of deciding whether RAS(�) �= ∅
proceeds as follows: we guess an interpretation I , the values of the DL-atoms and the repair ABox A′ . We then check 
whether I is a repair answer set of � as follows:

(1) evaluate all DL-atoms over O′ = 〈T , A′〉 and compare their values with the guessed values;
(2) check whether I is a minimal model of the reduct P I,O′

weak .

The check (1) is feasible in polynomial time, which follows from the Proposition 17. As for the check (2), observe that 
the reduct P I,O′

weak is constructable in polynomial time, and it is a normal positive ASP program, which has a single model. 
Therefore, the check (2) is also polynomial. The above algorithm solves the target problem, which proves its membership 
in NP.

(Hardness) The NP-hardness is inherited from ordinary normal logic programs, whose repair answer sets coincide with their 
answer sets; as deciding answer set existence for normal logic programs is NP-hard [61], the result follows.

(ii) � P
2 -completeness result for arbitrary � and x = weak.

(Membership) The overall algorithm of deciding the existence of a weak repair answer set proceeds as follows: we guess an 
interpretation I , values of DL-atoms and an ABox A′ and then check whether:

(1) the real values of DL-atoms over I and O′ = 〈T , A′〉 coincide with the guessed values;
(2) I is a minimal model of P I,O′

weak .

Like in (i) the check (1) is polynomial. P I,O
weak is a propositional disjunctive program. Deciding whether I is its minimal 

model can be verified with a call to an NP oracle, from which the membership in � P
2 follows.

(Hardness) Similar like in (i), the hardness results for arbitrary DL-programs and weakRAS-existence are inherited from the 
answer set existence for ordinary disjunctive logic programs.

(iii) � P
2 -completeness result for normal � and x = flp.

(Membership) We can guess a repair A′ together with an interpretation I and then check whether I is an flp-repair answer 
set of �′ = 〈O′, P〉, where O′ = 〈T , A′〉. Constructing the reduct P I,O′

flp is polynomial, as we only need to pick those rules 

of � whose body is satisfied by I , and all DL-atoms can be evaluated in polynomial time. With the reduct P I,O′
flp at hand 

we then need to check whether
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(1) all values of DL-atoms over O′ coincide with the guessed ones;
(2) I is a minimal model of P I,O′

flp .

The check (1) can be done in polynomial time. For (2) we have that the interpretation I is not a minimal model of P I,O′
flp

iff there exists an interpretation I ′ ⊂ I such that I ′ |= P I,O′
flp . A guess for I ′ is verifiable in polynomial time, thus deciding 

whether I is not an answer set of P I,O′
flp is in NP. From this we get that deciding whether I is an answer set of P I,O′

flp is in 
co-NP. Hence for the check (ii) we need to make a call to a co-NP oracle. Since having an oracle for co-NP is equivalent to 
having an oracle for NP, we get that the overall problem can be solved in NPNP = � P

2 .

(Hardness) We prove the �p
2 -hardness result by a reduction from deciding validity of a QBF formula

φ = ∃x1 . . . xn∀y1 . . . ym E, n,m ≥ 1, (B.1)

where E = χ1 ∨ . . . ∨ χr is a DNF formula, and each χk = lk1 ∧ lk2 ∧ lk3 is a conjunction of literals over atoms 
x1, . . . , xn, y1, . . . , ym .

For each atom xi we introduce a fresh concept Xi , and for each atom y j we introduce a fresh concept Y j and a fresh 
logic program predicate y j . Furthermore, we introduce an additional fresh predicate w . Given φ, we construct � = 〈∅, A, P〉
with A = {X1(b), . . . , Xn(b)} and P as follows:

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) ⊥ ← not DL[; Xi](b),not DL[; ¬Xi](b);
(2) ⊥ ← DL[; Y j](b);
(3) ⊥ ← DL[; ¬Y j](b);
(4) w(b) ← not w(b);
(5) y j(b) ← w(b);
(6) w(b) ← f (lk1), f (lk2), f (lk3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where f (xi) = DL[Xi � w; Xi](b), f (y j) = DL[Y j � y j, Y j � w; Y j](b),

f (¬xi) = DL[Xi −∪ w; ¬Xi](b), f (¬y j) = DL[Y j −∩ y j, Y j −∪ w; ¬Y j](b).

Intuitively, the rules of the form (1) of P ensure that for each xi at least one of Xi(b) and ¬Xi(b) is present in the repair 
ABox A′ , while the rules (2) and (3) forbid that Y j(b) resp. ¬Y j(b) is in A′ . The rule (4) forces each consistent flp-repair 
answer set of � to contain w(b). The rule (5) ensures that the ground atoms of the form y j(b) are also contained in each 
repair answer set. Finally, the rules of the form (6) are present in P for each clause χk of φ. For each literal lkh in χk these 
rules have a DL-atom f (lkh ) in the body, which poses to the ontology under some updates an instance query corresponding 
to the literal lkh .

We now formally show that φ is valid iff RASflp(�) �= ∅.
(⇒) Let φ be valid and let ν(φ) be a satisfying assignment, i.e. for all extensions of ν to variables y1, . . . , ym it holds that 

ν(φ) is true. From this we construct a repair ABox A′ as follows. If ν(xi) = true, then Xi(b) ∈A′ , otherwise ¬Xi(b) ∈A′ . By 
construction the repair A′ represents a maximal consistent subset of {Xi(b), ¬Xi(b) | 1 ≤ i ≤n}. Therefore, the constraints 
(1)–(3) are not violated under A′ .

We now show that for any interpretation I the body of at least one rule of the form (6) of �′ = 〈∅, A′, P〉 must be 
satisfied by I . Let us consider various possibilities for an interpretation I of �′ .

• I ∩ {y1(b), . . . , ym(b)} = ∅. Let us look at an extension ν ′ of ν , under which all variables y j of φ are false. Since 
ν ′(φ) = true, there must exist a clause χk , such that ν ′(χk) = true. Consider the rule rk of the form (6) that corresponds 
to χk . The clause χk is a conjunction of literals, thus all of its conjuncts over y j must be negative. We have that each 
¬y j occurring in χk corresponds to a DL-atom of the form f (¬y j) = DL[Y j −∩ y j, Y j −∪ w; ¬Y j](b). As y j(b) /∈ I , it holds 
that λI ( f (y j)) = {¬Y j(b)}, leading to I |=O′

f (¬y j). All DL-atoms of the forms f (xi) and f (¬xi) are satisfied by the 
construction of A′ .

• I ∩ {y1(b), . . . ym(b)} �= ∅. Let us look at an extension ν ′ of ν such that

ν ′(y j) =
{

true, if y j(b) ∈ I

false, if y j(b) /∈ I.

Since ν(φ) is a satisfying assignment of φ, there must exist a clause χk in φ such that ν ′(χk) = true. Let us look at 
the rule rk of the form (6) corresponding to χk . For all literals lkh we have that I |= f (lkh ). Indeed, if lkh is a literal 
over xi , then the corresponding DL-atom is true by construction of A′ . If lkh = y j then as ν ′(y j) = true we have that 
y j(b) ∈ I and thus λI ( f (y j)) = {Y j(b)}. Similarly, if lkh = ¬y j , then λI ( f (¬y j)) = {¬Y j(b)}. Therefore, I |= f (lkh ) for all 
lk occurring in χk .
h
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So we have that for any I the body of at least one rule rk of the form (6) must be satisfied, and hence the rule rk must 
be present in the reduct P I,O′

flp . Moreover, if �′ has some flp-answer set I , then it must contain w(b) (this follows from 

w(b) ← not w(b)), and thus the rule of the form (4) is not in P I,O′
flp . Finally, according to the rules (5) the answer set I

should also contain all y j(b) for 1 ≤ j ≤ m.
As there are no other atoms which could be in the answer set, we now show that I = {w(b), y1(b), . . . , ym(b)} is a 

minimal model of P I,O
flp . First, obviously I satisfies all rules of the reduct; we only need to show its minimality. Towards a 

contradiction, assume that there is an interpretation I ′ ⊂ I , such that I ′ |=P I,O′
flp . There are two possibilities: either w(b) ∈ I ′

or w(b) /∈ I ′ . The former can not be true, as then there is some y j(b), such that y j(b) /∈ I ′ , and hence for some rule r of 
the form (5) we have that r is not satisfied by I ′ . If the latter holds, then we know that there are no rules of the form (6), 
whose body is satisfied by I ′ . Consider an extension ν ′′ of the assignment ν to the atoms y j , such that ν ′′(y j) = true, if 
y j(b) ∈ I ′ , and ν ′′(y j) = false otherwise. We know that ν ′′(φ) = true, i.e. there is a disjunct χk in φ, such that ν ′′(χk) = true. 
Let us look at the rule rk corresponding to the disjunct χk . All DL-atoms f (xi) are satisfied by I ′ , due to the construction of 
the ABox A′ . The DL-atoms of the forms f (y j) are satisfied by I ′ , because y j(b) ∈ I ′ , and thus λI ( f (y j)) |= Y j(b). Similarly, 
the DL-atoms of the form f (¬y j) are satisfied, as for them we have that y j(b) /∈ I ′ , and thus λI ( f (¬y j)) |= ¬Y j(b). Hence 
I ′ must satisfy B(rk); but since w(b) /∈ I ′ , we have that I ′ �|= rk , leading to a contradiction. Therefore, I is indeed an flp-repair 
answer set of �.

(⇐) Let I ∈ RASflp(�) be some flp-repair answer set of � with a repair ABox A′ , i.e. I ∈ A Sflp(〈T , A′, P〉). Since I is a 
repair answer set, the repair ABox A′ must contain a nonempty consistent subset of {Xi(b), ¬Xi(b)}, 1 ≤ i ≤ n because of 
constraints of the form (1). We construct an assignment ν of φ from A′ as follows:

ν(xi) =
{

true, if Xi(b) ∈ A′

false, if ¬Xi(b) ∈ A′.

We now show that ν is a satisfying assignment of φ, i.e. for any extension ν ′ of ν to the values of y j , we have that 
ν ′(φ) = true. Towards a contradiction, assume that this is not the case, i.e. there exists an extension ν ′ of ν to the values of 
y j , such that ν ′(φ) = false, that is ν ′(χk) = false for all clauses χk of φ.

Let us now look at the interpretation I ′ of �′ , such that y j(b) ∈ I ′ , if ν ′(y j) = true and y j(b) /∈ I ′ , if ν ′(y j) = false. We 
know that I ⊃ I ′ is a minimal model of P I,O′

flp . Therefore, it must hold that I ′ �|= r for some rule r of P I,O′
flp , i.e. I ′ |= B(r), 

but I ′ �|= H(r). Observe that the reduct P I,O′
flp contains only the rules (5) and (6). Since w(b) /∈ I ′ by construction, the rule 

r that I ′ does not satisfy can not be of the form (5), hence it must be of the form (6). Let us look at the corresponding 
clause χk in φ. By our assumption ν ′(χk) = false, i.e. there is a conjunct lkh in χk , such that ν ′(lkh ) = false. We distinguish 
the following cases:

• lkh is a literal over xi . We know that λI ′ ( f (lkh )) = ∅, because w(b) /∈ I . Thus it must be true that A′ |= f (lkh ). Since A′ is 
a repair, by Definition 26 it must be consistent. Thus the query of f (lkh ) must be explicitly present in A′ , i.e. Xi(b) ∈A′ , 
if lkh = xi ; ¬Xi(b) ∈ A′ , if lkh = ¬xi . However, then by construction of ν ′ we have that ν(lkh ) = true, which leads to a 
contradiction.

• lkh is a literal over y j . There are two possibilities: either lkh = y j or lkh = ¬y j .
– First suppose that lkh = y j . The corresponding DL-atom f (y j) = DL[Y j � y j, Y j � w; Y j](b) is true under I ′ by our 

assumption. Since the repair ABox A′ is consistent and does not contain any concepts of the form Y j(b), it must hold 
that λI ′ ( f (y j)) |= Y j(b). Observe that w(b) /∈ I ′ , thus it must be true that y j(b) ∈ I ′; however, then ν ′(lkh ) = true, 
leading to a contradiction.

– Now assume that lkh = ¬y j . We have that I ′ |= f (¬y j), where f (¬y j) = DL[Y j −∩ y j, Y j −∪ w; ¬Y j](b). It must hold 
that λI ′ ( f (¬y j)) |= ¬Y j(b), and hence y j(b) /∈ I ′ since w(b) /∈ I ′ . Therefore, ν ′(y j) = false, i.e. ν ′(lkh ) = true, contra-
dicting our assumption.

We have shown that ν ′ is a satisfying assignment for φ for each extension of ν to variables y j , from which the validity of 
φ follows. �
Proof of Proposition 28. A guess for A′ is verifiable in polynomial time, as deciding all 〈T , A′ ∪ Ui〉 |= Q i is polynomial 
in DL-LiteA [21]. NP-hardness is shown by a reduction from SAT instances φ = χ1 ∧ · · · ∧ χm over atoms x1, . . . , xn . We 
construct the ORP R = 〈〈T , ∅〉, D1, D2〉, using concepts Xi, X̄i for the xi , C j for the χ j , and a fresh concept ν as follows:

• T = {X j � Ci, X̄ j′ � Ci | 1 ≤ i ≤ m, x j ∈ χi, ¬x j′ ∈ χi}
• D1 = {〈∅, Ci(b)〉, 〈Ui, ¬Ci(b)〉, 〈V j, A(b)〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, where Ui = { X̄k(b), Xk′ (b) | xk ∈ χi, ¬xk′ ∈ χi}, 1 ≤ i ≤ m, 

and V j = {¬X j(b), ¬ X̄ j(b)}, 1 ≤ j ≤ n; and
• D2 = {〈∅, ¬Ci(b)〉 | 1 ≤ i ≤ m} ∪ {〈∅, A(b)〉}.
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Intuitively, by D2 a repair A′ must not contain ¬Ci(b) nor A(b), and must be consistent. By D1 the repair must entail 
Ci(b). Therefore, for each i, the ABox A′ must contain some Xk (resp. X̄k), such that Xk � Ci (resp. X̄k � Ci ). Moreover, 
adding either Ui or V j to A′ causes inconsistency. The former implies that A′ contains some ¬ X̄k(b) (resp. ¬Xk(b)) such 
that xk ∈ χk (¬xk ∈ χk), and the latter implies that at least one of ¬Xk(b) and ¬ X̄k(b) must be in A′ for all 1 ≤ k ≤ n. Since 
in addition the ABox is consistent as argued above, it can not contain both ¬ X̄k and ¬Xk thus A′ represents a consistent 
choice of literals that satisfies φ.

We formally show that φ is satisfiable iff R has a repair.
(⇒) Let ν be a satisfying assignment for φ. We construct a repair ABox A′ for R as follows: if a variable xk is set to 

true in the satisfying assignment of φ, then we add Xk(b) and ¬ X̄k(b) to the ABox A′ , otherwise, i.e. if xk is set to false 
in ν , we add X̄k(b) and ¬Xk(b) to A′ . We now verify whether the constructed ABox is indeed a repair for R by checking 
whether it satisfies the conditions (i) to (iii) of Definition 26.

(i) T ∪ A′ is consistent, since ν is a consistent set of literals (not both Xk(b) and ¬Xk(b) (resp. X̄k(b), ¬ X̄k(b)) can be 
present in A′).

(ii) We check whether for all 〈U 1
i , Q 1

i 〉 ∈ D1 it holds that T ∪ A′ ∪ U 1
i |= Q 1

i . Let us first consider 〈∅, Ci〉, 1 ≤ i ≤ m. 
Observe that ν is a satisfying assignment of φ, therefore each clause of φ is satisfied under ν . Thus, for each clause 
either there exists a variable x j occurring as a disjunct in the clause Ci positively and being set to true in the satisfying 
assignment ν or occurring negatively as a disjunct in Ci and being set to false in ν . By construction of A′ , we have 
that T ∪ A′ |= Ci(b) for all 1 ≤ i ≤ m due to the inclusion X j � Ci (resp. X̄ j � Ci ). Similarly, we have that for all Ui , 
A′ ∪ Ui is inconsistent and, therefore trivially entails ¬Ci(b). Finally, since the assignment ν is full, each xi has a truth 
value. Hence, due to the form of updates V j , we have that A′ ∪ V j is inconsistent for all j, and thus the queries A(b)

are also entailed.
(iii) It is left to show that for all 〈U 2

i , Q 2
i 〉 ∈ D2 we have that T ∪A′ ∪ U 2

i �|= Q 2
i . The latter holds since the ontology 〈T , A′〉

is consistent, and there is no way to derive either ¬C(b) or A(b) by means of the TBox axioms and the facts in A′ .

The above shows that the ABox A′ is indeed a solution to the R.
(⇐) Now assume that there exists an ABox A′ that is a solution to R. We show that then the formula φ is satisfiable. 

First since T ∪A′ ∪ V j |= A(b), T ∪A′ �|= A(b) and T ∪ V j �|= A(b), we have that T ∪A′ ∪ V j must be inconsistent. Moreover, 
as T ∪A′ �|= ¬Ci(b), we know that the inconsistency must occur due to the facts X j(b), X̄ j(b). Therefore, for each j either 
¬X j(b) or ¬ X̄ j(b) must be in A′ . Observe now, that due to 〈∅, Ci(b)〉, 〈Ui, ¬Ci(b)〉 ∈ D1, the ABox A′ must contain such 
X j(b) (resp. X̄ j(b)), that x j (resp. ¬x j) is a disjunct in the clause χi . Moreover, due to 〈Ui, ¬Ci(b)〉 for some k such that 
xk ∈ χi (or ¬xk ∈ χi ), it must hold that ¬ X̄k(b) (resp. ¬Xk(b)) is in A′ . The above argument shows that the ABox A′ encodes 
a satisfying assignment ν for φ: if Xi(b) ∈A′ , then ν(xi) = true; if X̄i(b) ∈A′ , then ν(xi) = f alse. �
Proof of Theorem 29. NP-hardness of an ORP holds by a reduction from SAT. Given φ = χ1 ∧ · · · ∧χm on atoms x1, . . . , xn , 
we construct R = 〈〈∅, ∅〉, D1, D2〉, with concepts X j, X̄ j for the x j and a fresh concept A, such that

• D1 = {〈Ui, A(b)〉, 〈V j, A(b)〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, where Ui = { X̄ j(b), X j′ (b) | x j ∈ χi, ¬x j′ ∈ χi}, 1 ≤ i ≤ m and V j =
{¬X j(b), ¬ X̄ j(b)}, 1 ≤ j ≤ n, and

• D2 = {〈∅, A(b)〉}.

Intuitively, by D2 a repair A′ must not contain A(b), and by D1 adding either (i) Ui or (ii) V j to A′ causes inconsistency. By 
(i) A′ must contain at least one ¬ X̄ j(b) (resp. ¬X j(b)) such that x j ∈ χi (¬x j ∈ χi ), and by (ii) at least one of X j(b), X̄ j(b)

must be in A′ . Furthermore, D2 forbids both X j(b), ¬X j(b) (resp. X̄ j(b), ¬ X̄ j(b)) to be in A′ . Thus A′ encodes a consistent 
choice of literals that satisfies φ. �
Proof of Theorem 37. The guess of the repair A′ ⊆ A out of 2n candidates, where n = |A|, is verifiable in polynomial time. 
The NP-hardness for the cases (i) and (ii) is proved separately.

(i) NP-hardness for (i) is shown by a reduction from SAT instances φ = χ1 ∧ · · · ∧ χm over atoms x1, . . . , xn . We construct 
the ORP R = 〈〈T , ∅〉, D1, D2〉, where all U k

i are empty for k ∈ {1, 2}. We use concepts X j, X̄ j, X ′
j for the x j , Ci for the 

χi as follows:
– T = {X j � Ci, X̄ j′ � Ci, | x j ∈ χi, ¬x j′ ∈ χi, 1 ≤ i ≤ m} ∪ { X̄k � ¬X ′

k | 1 ≤ k ≤ n}
– A = {X j(b), X̄ j(b) | 1 ≤ j ≤ n}
– D1 = {〈∅, Ci(b)〉 | 1 ≤ i ≤ m},
– D2 = {〈∅, ¬(X j � X ′

j)〉 | 1 ≤ j ≤ n}.

Intuitively, the queries in D1 ensure that at least one X j(b) (resp. X̄ j(b)) is present in the ontology ABox, such that x j
(resp. ¬x j) is a disjunct in χi . The queries in D2 forbid both X j(b) and X̄ j(b) to be in the ABox, which is expressed by 
the non-containment query ¬(X j � X ′

j) and TBox axioms of the form X̄ j � ¬X ′
j . Therefore, the solution to R encodes 

a satisfying assignment of φ.
We now formally prove that φ is satisfied iff σdel solution for R exists.
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(⇒) Let φ be satisfiable, and let ν be a satisfying assignment of φ. From this we construct a solution A′ to R as follows: 
if ν(x j) = true, then X j(b) ∈A′ , otherwise, X̄ j(b) ∈A′ . The ontology O′ = 〈T , A′〉 is clearly consistent. Assume towards 
a contradiction that A′ is not a solution to R. That is, either (1) D1 contains a tuple 〈∅, Q 1

i 〉, such that O′ �|= Q 1
i or 

(2) some 〈∅, Q 2
j 〉 exists in D2, such that O′ |= Q 2

j . If (1) holds then Ci(b) is not entailed for some i from O′ . That means 
that there is a conjunct χi ∈ φ, such that for none of its disjuncts x j (resp. ¬x j) we have the corresponding assertion 
X j(b) (resp. X̄ j(b)) in A′ . Hence by construction none of the literals in χi is true under ν , meaning that ν(χi) = false
and thus ν(φ) = false, i.e. contradiction. If (2) holds then for some j we have that X j(b) and ¬X ′

j(b) are entailed by O′ . 
As by construction of A′ it holds that A′ ⊆ A, both X j(b) and ¬X ′

j(b) are entailed only if X j(b), X̄ j(b) ∈ A′ . This can 
not happen, as A′ is built from a satisfying assignment ν of φ, and thus it represents a consistent set of values for x j . 
Hence we arrived at a contradiction.

(⇐) Let A′ be a σdel solution to R. From this we construct a satisfying assignment ν for φ as follows:

ν(x j) =
{

true, if X j(b) ∈ A′ or X j(b), X̄ j(b) /∈ A′

false, if X̄ j(b) ∈ A′.

We show that ν(φ) = true. Observe that for every Ci there must exist X j (resp. X̄ j ), such that X j � Ci (resp. X̄ j � Ci ) 
due to the tuples 〈∅, Ci(b)〉 in D1 and the fact that A′ ⊆ A. Thus by construction of ν in each clause χi some disjunct 
is true. It is left to show that ν is well defined, i.e. it is not the case that (i) either ν(x j) = true or ν(x j) = true is defined 
for every j, and (ii) it is not the case that ν(x j) = true and ν(x j) = false for some j. In other words we need to show 
that ν(x j) �= ν(¬x j). Towards a contradiction suppose that this is not the case. Then for some i it holds that ν(x j) and 
ν(¬x j) have the same value. Then X j(b) and X̄ j(b) are entailed from O for some j, and therefore X ′

j(b) is also entailed 
from O due to X̄ j � X ′

j ∈ T . However, this means that O′ |= ¬(X j � X ′
j), which is forbidden by the respective tuple 

〈, ¬(X j � X ′
j)〉 in D2. The latter means that A′ is not a solution to R, leading to a contradiction. Thus ν is a satisfying 

assignment of φ.
(ii) NP-hardness for (ii) is shown by a reduction from monotone not-all-equal SAT (NAE-SAT) instances φ = χ1 ∧ · · · ∧ χm

over atoms x1, . . . , xn [44]. In monotone NAE-SAT, all occurrences of literals in clauses are positive, but a formula is 
“satisfied” only if there is an assignment under which both a literal assigned to true and a literal assigned to false occur 
in each clause. We construct ORP R = 〈〈∅, ∅〉, D1, D2〉, using concepts X j, X̄ j for the x j , Ci for the χi as follows:
– A = {X j(b), X̄ j(b) | 1 ≤ j ≤ n},
– D1 = {〈{¬X j(b) | x j ∈ χi}, Ci(b)〉, 〈{¬ X̄ j′ (b) | x j′ ∈ χi}, Ci(b)〉 | 1 ≤ i ≤ m},
– D2 = {〈∅, ¬(X j � ¬ X̄ j)〉, 〈∅, Ci(b)〉 | 1 ≤ j ≤ n, 1 ≤ i ≤ m}.
Intuitively, the queries Q 1

i can only be satisfied if the repair ABox A′ is inconsistent with the updates U 1
i , as T = ∅ and 

explicit presence of Ci(b) in A′ is forbidden by tuples 〈∅, Ci(b)〉 ∈ D2. Therefore, for every χi some X j(b) ∈ A′ must 
exist such that x j is a conjunct in χi , which is ensured by 〈{X j | x j ∈ χi}, Ci〉 ∈ D1. However, also some X̄ j′ (b) must be 
in A′ , such that x j′ ∈ χi , which is ensured by 〈{X j′ | x j′ ∈ χi}, Ci〉 ∈ D1. By 〈∅, ¬(X j � X̄ j)〉, the indices j and j′ must 
be different, thus the repair ABox encodes a consistent choice of truth values for variables in φ, corresponding to a 
satisfying assignment of φ.

We now formally show that φ is a positive instance of monotone NAE-SAT iff the R has some solution.

(⇒) Let φ be a positive instance of monotone NAE-SAT, and let ν be the witnessing assignment. From this we construct 
the solution A′ to R as follows. Xi(b) ∈ A′ , if ν(x j) = true, and X̄ j(b) ∈ A′ , if ν(x j) = false. Since for every clause χi
some x j ∈ χi must be set to true, we have that some X j(b) ∈A′ , and hence the query of 〈{¬X j(b) | x j ∈ χi}, Ci(b)〉 ∈ D1
is satisfied by inconsistency. Similarly, queries of tuples 〈{¬ X̄ j(b) | x j ∈ χi}, Ci(b)〉 ∈ D1 are satisfied, as at least one x j
in χi is set to false, and by construction the respective X̄ j(b) is in A′ . The queries in D2 are satisfied, since ν represents 
a consistent choice of values for x j , and thus both X j(b) and X̄ j(b) can not be present in A′ .
(⇐) Let A′ be a solution to the R. From this we construct the assignment of φ as follows.

ν(x j) =
{

true, if X j(b) ∈ A′,
false, if X̄ j(b) ∈ A′.

Since Ci can not be in A′ by 〈∅, Ci〉 ∈ D2 and T = ∅, we have that all queries in D1 are entailed by inconsistency 
introduced by the updates, and hence in every clause at least one of x j must be true and at least one x j′ must be false. 
Furthermore, the assignment ν represents a consistent set of values for x j by construction, since for all j not both X j(b)

and X̄ j(b) can be in A′ due to 〈∅, ¬(X j � X̄ j)〉 ∈ D2. �
Proof of Lemma 35. By Proposition 5 inconsistency is introduced in a DL-LiteA ontology with at most 2 ABox assertions, i.e. 
for every inconsistent A ∪ T , an ABox A′ ⊆ A exists, such that |A′| ≤ 2, A′ ∪ T |= α and A′ ∪ T |= ¬α for some assertion 
α. We have, either |A′| = 1, in which case the result is obtained, or there are consistent ABoxes A′′ ⊂A and A′′′ ⊂A, such 
that A′′ ∪ T |= α and A′′′ ∪ T |= ¬α. Again we have |A′′| = |A′′′| = 1. �
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Proof of Theorem 36. The proof exploits the property of �� DL-queries established in Lemma 35, which states that at most 
one assertion α from A is sufficient to derive the query.

Now if T ∪ U i
j |= Q i

j , we can drop 〈U i
j, Q

i
j〉 from R if i=1, and stop if i = 2 as no repair exists. Otherwise, we let the 

set Suppi
j of Q i

j contain all assertions α such that T ∪ {α} ∪ U i
j |= Q i

j . Then, any repair A′ must fulfill A′ ∩ Supp1
j �= ∅ for 

each j (i.e., be a hitting set), and must be disjoint with each Supp2
j′ . Let then S j := (Supp1

j ∩A) \ ⋃
j′ Supp2

j′ . A σdel-repair A′
exists iff each S j is nonempty; the hitting sets of the S j are all the σdel-repairs. The construction of the S j and the check 
can be done in polynomial time, thus the overall problem is tractable. Note that, furthermore, the (possibly exponentially 
many) σdel-repairs can be output in total polynomial time. �
Proof of Theorem 39. We prove the statement for the case when few negative assertions are added to the ABox, i.e. |A′ − \
A| ≤ k. The case when few positive assertion are added to the ABox, i.e. |A′ + \ A| ≤ k is completely symmetric, and our 
proof can be easily adapted to treat is it as well.

We provide an extension of the method for deletion repairs. Assuming that 〈T , A〉 is consistent (otherwise no σbop -repair 
exists), we proceed as follows:

1. Like for deletion repairs, we compute the sets Suppi
j . We simplify O�suppP , resp. quit if no repair can exist, checking 

also whether Suppi
j ∩A �= ∅ (as then Q i

j is entailed). More specifically, whenever U i
j ∪A ∪ T |= Q i

j or Suppi
j ∩A �= ∅,

• we drop 〈U i
j, Q

i
j〉 from Di , if i = 1, and

• we quit, if i = 2.
2. We then let S j = Supp1

j \ (A ∪ ⋃
j′ Supp2

j′ ). Similar as in the proof of Theorem 36, the σbop-repairs are then of the form 
A′ = A ∪ H where H is a hitting set of the S j , but we must ensure that 〈T , A′〉 is consistent as H consists of new 
assertions.

3. We choose a set H− ⊆ ⋃
j S j of at most k negative assertions, which is a partial hitting set, and check that 〈T , A ∪H−〉

is consistent. If yes, we remove S j if it intersects with H− and remove otherwise from S j each positive assertion α
such that ¬α is entailed by 〈T , A ∪H−〉, and all negative assertions.

4. Then, for every hitting set H+ of S ′
j , the ABox A′ =A ∪H− ∪H+ is a σbop-repair. On the other hand, some σbop -repair 

with few negative additions exists only if some choice for H− succeeds.

The crucial point for the correctness of this method is that, if T has no disjointness axioms, by adding to A ∪ H− positive 
assertions H+ we can not infer new negative assertions, unless inconsistency emerges; this is exploited in Step 3, which 
limits the candidate space for positive hitting sets a priori.

We now show the correctness of the proposed algorithm formally. Suppose that given the Ontology Repair Problem 
R = 〈O, D1, D2〉 as an input to the algorithm from above, the ABox A′ was produced as the output after execution of the 
Steps 1-3. We prove that the ABox A′ is indeed a σbop -repair for R, i.e. we prove that the conditions that a σbop -repair 
needs to satisfy are indeed satisfied by A′ .

(i) T ∪ A′ ∪ U 1
j |= Q 1

j for all 〈U 1
j , Q

1
j 〉 ∈ D1. Towards a contradiction, suppose that there is some 〈U 1

ji
, Q 1

ji
〉 ∈ D1, such 

that A′ ∪ T ∪ U 1
ji

�|= Q 1
ji

. We know that by construction, it either holds that (1) U 1
ji

∪ T |= Q 1
ji

; (2) A ∩ Supp1
ji

, i.e. 
A ∪ T |= Q 1

ji
; (3) H− ⊆ A′ hits S ji or (4) H+ ⊆ A′ hits S ji . For (1) and (2) we immediately get a contradiction. For 

(3) it holds that H− ∩ Supp1
ji

�= ∅. Therefore, there is α ∈A′ , such that {α} ∪ U 1
j ∪ T |= Q 1

ji
.

(ii) T ∪A′ ∪ U 2
j′ �|= Q ′ 2

j for all 〈U 2
j′ , Q

2
j′ 〉 ∈ D2. To the contrary, assume that there exists some j′i , such that T ∪A′ ∪ U 2

j′i
|=

Q 2
j′i

. There are several possibilities: (1) U 2
j′i

∪ T |= Q 2
j′i

; (2) there is α ∈ A, such that {α} ∪ U 2
j′i

∪ T |= Q 2
j′i

; (3) there 

is α ∈ H− , such that {α} ∪ T ∪ U 2
j′i

|= Q 2
j′i

; (4) there is α ∈ H+ , such that {α} ∪ T ∪ U 2
j′i

|= Q 2
j′i

. Observe that if (1) 
or (2) were the case, then the algorithm would terminate at Step 1, and no repair A′ would be in the output. For 
the case (3) we have that H− ∩ Supp2

j′i
�= ∅. However, according to the Step 3 of our algorithm, it holds that H− ⊆⋃

j(Supp1
j \(A ∪ ⋃

j′ Supp2
j′ )), meaning that H− ∩ Supp2

j′i
= ∅, which leads to a contradiction.

(iii) A′ ⊇A | |A′−\A|≤k, i.e. there are at most k negative assertions in the ABox A′ .
Finally, we show that the number of negative assertions in A′\A is indeed bounded by k. Towards a contradiction, 
suppose that there are more then k negative assertions in A′\A =H+ ∪H− . According to the Step 3 of our algorithm, 
it holds that H− contains at most k negative assertions. Therefore, the rest of the negative assertions must be in H+ . 
The set H+ is constructed at Step 4 as a hitting set of sets S j , which due to the Step 3 contain only positive assertions. 
Therefore, there are no negative assertions in the set H+ , moreover T ∪ H+ ∪ H− infers only at most k negative 
assertions, since T contains only positive inclusions and A ∪H+ ∪H− ∪ T is guaranteed to be consistent at Step 3.

This shows that the output A′ is indeed a σbop -repair for the R with at most k negative assertions. The case when few 
positive assertions are allowed for addition is symmetric.
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Finally, we show that if a given R has σbop repairs, then after executing the Steps 1–3 some σbop repair is found, i.e. 
A′ = A ∪H+ ∪H− , such that |H−| ≤ k. Assume towards a contradiction that this is not the case. We distinguish the cases 
based on stages of the algorithm at which the computation could have terminated.

• Suppose that the computation terminated at (1). Then there is some 〈U 2
j , Q

2
j 〉 ∈ D2, such that either (i) U 2

j ∪ T |= Q 2
j

or (ii) A ∩ Supp2
j �= ∅. If (i) holds then by monotonicity we have that for any A′ the condition (iii) of Definition 26 is 

not satisfied, i.e. R does not have any solutions, which contradicts our assumption. If (ii) is the case, then there is some 
α ∈A, such that α ∪T |= Q 2

j . Again due to monotonicity, for any ABox A′ ⊇A it is true that A′ |= Q 2
j . Thus all repairs 

A′ for R are such that A′ �A. Therefore, no σbop repair exists for R, contradicting our assumption.
• Assume that we have reached (2), and constructed the sets S j . Suppose that the computation stopped at (2), i.e. no 

hitting set H of S j was found. This means that some j1 exists, such that S j1 = ∅. Therefore, by construction of S j1 it 
holds that Supp j1 \ (A ∪⋃

j′ Supp2
j′ ) = ∅. Since all 〈U 1

j , Q
1
j 〉, such that Supp1

j ∩A �= ∅ were removed from D1 at (1), we 
have that for all α ∈ Supp1

j1
, it holds that α ∈ Supp2

k for some k. Hence, for all ABoxes A′ =A ∪ α some 〈U 2
k , Q 2

k 〉 ∈ D2

exists, such that 〈T , A′〉 |= Q 2
k , meaning that R does not have any solutions, which leads to a contradiction.

• Suppose that the state (3) has been reached, i.e. some repair candidate A′ = A ∪ H was identified at (2), where H
is a hitting set of S j . At (3) we picked some set H− and updated every S j by removing appropriate assertions from 
S j . Computation could not have stopped at (3), therefore, we are guaranteed to reach (4). Assume that the algorithm 
terminated at (4). Then it must be the case that no hitting set H+ of updated S j has been found at (4); that is for 
all choices of H− at (3) some j1 exists, such that S j1 = ∅ at (4). Consider some particular H− ⊆ ⋃

j S j of at most k
assertions computed at (3), such that 〈T , A ∪H−〉 is consistent. We have that S j1 ∩H− = ∅ at (3), since otherwise S j1

would have been removed and would have not been considered in the computation of a hitting set H+ at (4). We have 
that for all positive α ∈ S j1 , the ontology 〈T , A ∪H− ∪ {α}〉 is inconsistent. As 〈U 1

j1
, Q 1

j1
〉 was not dropped at (1), we 

have that 〈T , U 1
j1

∪ A〉 �|= Q 1
j1

. Therefore, it follows by Lemma 35 that no σbop -repair exists, such that |A′ − \ A| ≤ k, 
leading to a contradiction.

We have shown that if R has solutions with at most k negative assertions, then some such solution will be found by our 
algorithm. The argument can be accordingly adjusted to prove the statement for few positive assertions are allowed for 
addition. �
Appendix C. Proofs for Section 4

Proof of Lemma 13. We prove each “if” direction of the statement separately.

• We first show that if I |=O d then I |=O I
d DL[ε; Q ](�t). Let I |=O d. That means that O ∪ λI (d) |= Q (�t). By definition, 

we have that λI (d) = {P (�t) | p(�t) ∈ I and P � p ∈ λ} ∪ {¬P (�t) | p(�t) ∈ I and P −∪ p ∈ λ}. Therefore, T ∪ {P p � P | P � p ∈
λ} ∪ {P p � ¬P | P −∪ p ∈ λ} ∪A ∪ {P p(�t) ∈Ad | p(�t) ∈ I} |= λI (d), i.e. O I

d |= λI (d), and hence O I
d |= Q (�t). Therefore, we get 

that I |=O I
d DL[ε; Q ](�t).

• We now prove the opposite direction, i.e. if I |=O I
d DL[ε; Q ](�t) then I |=O d, where d = DL[λ; Q ](�t). Let I |=O I

d

DL[ε; Q ](�t). Then we have that Td ∪ A ∪ {P p(�t) ∈ Ad | p(�t) ∈ I} |= Q (�t). By construction of O I
d , λ must be as fol-

lows: P � p ∈ λ iff P p � P ∈ Td; P −∪ p ∈ λ iff P p � ¬P ∈ Td . Therefore, for all P ′ ∈ sig(A ∩ (Ad\A)), we have that if 
Td ∪ A ∪ {P p(�t) | p(�t) ∈ I} |= P ′(�t′) then T ∪ A ∪ λI (d) |= P ′(�t′). As Q /∈ sig(Ad\A), we obtain that O ∪ λI (d) |= Q (�t), 
and hence I |=O d.

• The last implications, i.e. I |=O I
d DL[ε; Q ](�t) iff I |=O I

d Q (�t) are immediate from the definition of a DL-atom’s satisfaction 
by an interpretation. �

Proof of Theorem 54. (Soundness of RepAns) Let A′ be an output of RepAns. Towards a contradiction, suppose A′ /∈
rep Î|�

(σ ,x)(�). Then Î|� /∈ AS(�′), where �′ = 〈T , A′, P 〉 and A′ is σ -selected. Clearly, A′ is σ -selected, since otherwise 
A′ /∈ ORP( Î, �, σ) and A′ is not in the output. As it holds that Î ∈ AS(�̂), it must hold that either Î is not a compatible set 
of �′ or it is not x-founded. If either of these cases is true, then the corresponding procedure CMP or xFND returns false 
and A′ is not in the output, which leads to contradiction.

(Completeness of RepAns) Let rep Î|�
(σ ,x)(�) be the set of all σ -selected repairs for � that turn Î|� into an x-repair answer set. 

Towards a contradiction, assume that there exists some A′ ∈ rep Î|�
(σ ,x)(�) which is not an output of the algorithm RepAns. 

Then either (1) A′ /∈ ORP( Î, �, σ); (2) CMP( Î, 〈T , A′, P 〉) = false or (3) xFND( Î, 〈T , A′, P 〉) = false. If (1) holds, then A′ is 
not a solution of the ORP instance. Thus either 〈T , A′〉 is unsatisfiable (contradiction to A′ ∈ rep Î|�

(σ ,x)(�) by the definition 
of repair) or the actual values of the DL-atoms do not coincide with the replacement atoms in �̂ (contradiction due to the 
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failure of the compatibility check). Finally, if either (2) or (3) holds then we obtain a contradiction, since A′ ∈ rep Î|�
(σ ,x)(�)

implies Î|� should be compatible and x-founded.
Soundness and Completeness of RepAnsSet follow immediately from the soundness and completeness of RepAns, respec-

tively, and Proposition 51. �
Proof of Theorem 55. (i) NP-completeness result for x = weak.

(Membership) Given a candidate interpretation I = Î|� for some Î ∈ AS(�̂), we guess a repair A′ and then check whether I
satisfies all rules of the reduct P I,O

weak . Both the construction of the reduct P I,O
weak and the check whether I satisfies all rules 

of P I,O
weak is polynomial, from which the membership in NP is obtained.

(Hardness) To prove NP-hardness, we reduce 3SAT to deciding whether a given interpretation I obtained from answer set 
Î ∈ AS(�̂) is a weak repair answer set of � as follows.

Let φ = C1 ∧ · · · ∧ Cm be 3SAT instance, where each C j , 1 ≤ j ≤ m, is a disjunction of three atoms over the variables 
x1, . . . , xn . From this we construct a DL-program � = 〈T , A, P〉.

• As for the TBox T , we introduce concept names Xi and X̄i , for each variable xi occurring in φ. Moreover, we introduce 
a concept name C j for each clause C j in φ. Then T contains the following axioms:
– Xi � C j iff xi is a disjunct in C j ;
– X̄i � C j iff ¬xi is a disjunct in C j ;
– Xi � ¬ X̄i and X̄i � ¬Xi for all pairs Xi , X̄i ;

• the ABox is A = {D(b)}, where D and b are a fresh concept and a fresh constant respectively.
• As for P , we introduce fresh ground atoms pi(b) (resp. p̄i(b)) for each xi occurring positively (resp. negatively) in φ. 

The rules of P are as follows:

P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1) ⊥ ← DL[; D](b);
(2) ⊥ ← not DL[; C j](b), 1 ≤ j ≤ m;
(3) ⊥ ← not DL[λ j; ¬C j](b), 1 ≤ j ≤ m;
(4) pi(b). | pi occurs in λ j,1 ≤ i ≤ n,1 ≤ j ≤ m;
(5) p̄i(b), | p̄i occurs in λ j,1 ≤ i ≤ n,1 ≤ j ≤ m

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

where for each xi , we have that Xi � pi (resp. X̄i � p̄i ) occurs in λ j if ¬xi (resp. xi ) is a disjunct in C j of φ. In addition, 
P contains the facts pi(b) (resp. p̄i(b)) iff xi (resp. x̄i ) occurs in some λ j .

• I consists of the atoms that occur as facts in P .

For illustration, let φ = x1 ∨ ¬x2 ∨ x3 with n = 3 and m = 1. Then the DL-program � = 〈T ∪ A, P〉 is such that T =
{X1 � C1; X̄2 � C1; X3 � C1}, A = {D(b)} and

P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⊥ ← DL[; D](b);
⊥ ← not DL[; C1](b);
⊥ ← not DL[ X̄1 � p̄1, X2 � p2, X̄3 � p̄3; ¬C1](b);
p̄1(b); p2(b); p̄3(b)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

The interpretation I contains the facts of P , i.e. I = {p̄1(b), p2(b), p̄3(b)}. Note that I = Î|� for some answer set Î of �. The 
assignment ν(φ) such that ν(x1) = ν(x2) = true, and ν(x3) = false satisfies of φ; according to our construction, from ν(φ)

the repair A′ = {X1(b), X2(b), X̄3(b)} of � is obtained.
Note that for every � constructed, all answer sets of �̂ coincide on the predicates of �, i.e., Î|� = Ĵ |� for every 

Î, Ĵ ∈ AS(�̂).
We claim that φ is satisfiable iff I ∈ R A Sweak(�), i.e. there exists an ABox A′ such that I is a weak answer set of 

�′ = 〈T , A′, P〉.
(⇒) Suppose that φ is satisfiable and ν(φ) is a satisfying assignment. From this we construct a repair ABox A′ , such 

that Xi(b) ∈A′ (resp. X̄i(b) ∈A′), if xi is true (resp. false) under the assignment ν(φ).
Now we show that I is a weak answer set of �′ = 〈T , A′, P〉, and thus a weak repair answer set of �. Observe that the 

body of the rule (1) is not satisfied, as D(b) /∈ A′ . Furthermore, the DL-atoms DL[; C1](b), . . . , DL[; Cm](b) evaluate to true 
under O′ = 〈T , A′〉, since O′ |= C j(b) for all 1 ≤ j ≤ m by construction. Moreover, each d j = DL[λ j; ¬C j](b) evaluates to 
true under I , because the ontology O′ ∪ λI (d j) is unsatisfiable (by construction Xi(b) ∈ A′ or X̄i(b) ∈ A′ for some Xi � C j
resp. X̄i � C j ), and thus each ¬C j(b) is trivially entailed. Therefore, none of the constraints of P is present in the program 
reduct P I,O′

weak . The reduct P I,O
weak contains only facts of the program, from which we get that I is a weak repair answer set 

of �.
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(⇐) Let I be a weak repair answer set of � and let A′ be its respective repair. Then all DL-atoms of � apart from 
DL[; D](b) are true. This means that for all C j it holds that O′ |= C j(b). The ontology O′ = 〈T , A′〉 is satisfiable, therefore 
Xi(b) and X̄i(b) simultaneously can not be in A′ . Therefore, either

(i) C j(b) ∈A′ or
(ii) X(b) ∈A′ , such that X � C j is in T .

If (i) was true, then the bodies of the constraints (4) would be satisfied, which contradicts I being a repair answer set. Thus, 
it holds that some X(b) ∈ A′ such that X � C j ∈ T . Hence, from the repair ABox A′ a satisfying assignment ν(φ) can be 
constructed as follows: ν(φ) such that ν(xi) = true (resp. ν(ai) = false) if Xi(b) ∈A′ (resp. X̄i(b) ∈A′). The assignment ν(φ)

witnesses satisfiability of φ.

(ii) � P
2 -completeness result for x = flp.

(Membership) We can guess a repair A′ and then check whether I is an flp-repair answer set of �′ = 〈O′, P〉, where 
O′ = 〈T , A′〉. Constructing the reduct P I,O′

flp is polynomial, as we only need to pick those rules of � whose body is satisfied 
by I , and all DL-atoms can be evaluated in polynomial time. As shown in the proof of Theorem 18 the check (i) is polynomial 
and the check (ii) is in co-NP, from which membership in � P

2 follows.

(Hardness) The hardness is shown by the construction in the proof of Theorem 18 (iii). We set I = {w(a), y1(a), . . . , ym(a)}
and consider deciding whether I ∈ RAS(�), i.e. whether some ABox A′ exists such that I ∈ AS(�′), where �′ = 〈T , A′P〉. 
Note that every answer set of �̂ resp. repair answer set of � must contain w(a), and that I = Î|� for some Î ∈ AS(�̂) and 
�

I,O′
flp = {(5), (6)} for every O′ = T ∪A′ . Furthermore, Î|� = Ĵ |� for every answer sets Î, Ĵ ∈ AS(�̂).

Due to (1)–(3), a repair A′ must be a maximal consistent subset of {Xi(a), ¬Xi(a) | 1 ≤ i ≤n} and thus encode a truth 
assignment ν to x1, . . . , xn . Now I ∈ RAS f lp(�) implies that some A′ exists s.t. by minimality of I , for each I ′ ⊆ I\{w(a)}
some index k exists such that all f (lk1 ), f (lk2 ), f (lk3 ) are true, hence χk is true; therefore, φ is true. Conversely, every 
assignment ν to x1, . . . , xn witnessing that φ is true induces some maximal consistent subset A′ ⊆ {Xi(a), ¬Xi(a) | 1 ≤ i ≤n}. 
By a slight adaptation of the argument in the proof of Theorem 18, it can be shown that A′ ∈ repI

f lp(�); this proves 
�

p
2 -hardness under the asserted restriction. �

Proof of Proposition 61. (⇒) Suppose d = DL[λ; Q ](�t) evaluates w.r.t. O and I to true, i.e., λI(d) ∪ O |= Q (�t). Towards a 
contradiction, assume no S ∈ SuppO(d) is coherent with I . There are two cases:

(1) λI (d) ∪ O is consistent. Proposition 5 implies that an assertion α ∈ λI (d) ∪ A must exist such that T ∪ {α} |= Q (t). 
If α ∈ A then SuppO(d) contains {α} by (i) of Proposition 58, which trivially is coherent with I and thus contradicts the 
assumption. If α ∈ λI (d), then α is an input assertion for d. For αd ∈ Ad , we then obtain that {αd} ∈ SuppO(d) according to 
(i) of Proposition 58, again a contradiction due to coherence with I .

(2) λI (d) ∪ O is inconsistent. From Proposition 5 and consistency of O, it follows that some δ ∈ λI (d) exists such that 
either (a) T ∪ {δ} is inconsistent, or (b) some γ ∈A ∪ λI (d) exists such that T ∪ {δ, γ } is inconsistent. In case a), we obtain 
{δd} ∈ SuppO(d), for the corresponding input assertion δd ∈ Ad . by (i) of Proposition 58; this is a contradiction, as {δd}
is coherent with I . In case b), we similarly conclude that either {δd, γ } ∈ SuppO(d) or {δd, γd} ∈ SuppO(d), depending on 
whether γ ∈ λI (d), according to (ii) of Proposition 58. Again this is a support set coherent with I , contradiction.

(⇐) Suppose some S ∈ SuppO(d) is coherent with I . Assume towards a contradiction that I �|=O d. Again we consider 
two cases:

(1) Td ∪ S is consistent. Then, Td ∪ S |= Q (�t) by item (i) of Proposition 58. Since S is coherent with I , we conclude that 
O I

d |= Q (�t) which implies I |=O d by Proposition 13. Contradiction.
(2) Td ∪ S is inconsistent. Then, due to coherence with I , so is O I

d , and trivially O I
d |= Q (�t); again we arrive at a 

contradiction by concluding that I |=O d from Proposition 13. �
Proof of Proposition 63. By Proposition 58 there are two possibilities: either (i) S is unary or (ii) it is binary. In case of (i) 
we have that S is either a concept or a role assertion, and therefore, it involves at most two constants. For the case (ii) it 
holds that S ∪ Td is inconsistent. Hence S represents a binary conflict set. It has been shown in [55] that S can be a binary 
conflict set only due to one of the following reasons:

• T |= C � ¬D , and S = {C(a), D(a)}, in which case S involves only 1 constant;
• T |= R � ¬R ′ , and S = {R(a, b), R ′(a, b)}, thus S involves at most 2 constants;
• T |= C � ¬∃R or C � ¬∃R− , and S = {C(a), R(a, b)} resp. S = {C(a), R(b, a)}, i.e. S involves at most 2 constants;
• T |= ∃R � ¬C or ∃R− � ¬C , and S = {R(a, b), C(a)} resp. S = {R(b, a), C(a)}, in which case S involves 2 constants 

maximum;
• T |= ∃R � ¬∃R ′ , and S = {R(a, b), R ′(a, c)}, thus there are 3 constants occurring in S (similarly for the cases T |= ∃R− �

¬∃R ′− , T |= ∃R � ¬∃R ′− , T |= ∃R− � ¬∃R ′−);
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• f unct(R) ∈ T , and S = {R(a, b), R(a, c)} with b �= c, in which case again at most 3 constants appear in S (the case when 
f unct(R−) ∈ T is analogous).

As we have considered all possibilities for binary conflict sets, the statement is proved. �
Proof of Proposition 71. Assume that I is an answer set of � = 〈O, P〉, where O = 〈T , A〉 and that Î is a compatible 
set for �′ = 〈O′, P〉 where O′ = 〈T , A′〉 and A′ ⊃ A. Towards contradiction, suppose I is not an answer set of �. Hence, 
I = Î|� is not a minimal model of �′I,O

flp = 〈T , A′, P I,O
flp 〉. That is, some I ′ ⊂ I exists such that I ′ |=O′ P I,O

flp . We then obtain 

that also I ′ |=O P I,O
flp ; this contradicts I ∈ AS(�). Indeed, suppose that I ′ �|=O P I,O

flp . Then some rule r ∈ P I,O
flp of form (1)

is violated wrt. I ′ and O, i.e., (i) I ′ |=O bi for each 1 ≤ i ≤ k, (ii) I ′ �|=O b j for each k < j ≤ m, and (iii) I ′ �|=O ah for each 
1 ≤ h ≤ n. By monotonicity of I |=O a w.r.t. I and O, we conclude I ′ |=O′

bi , I ′ �|=O′
b j (as Î is a compatible set for both �̂

and �̂′), and I �|=O b j , and I ′ �|=O′
ah . But then I ′ �|=O′ P I,O

flp , which is a contradiction. Hence, I ′ does not exist and I is an 
answer set of �′ . �
Proof of Theorem 72.
(Soundness) Suppose SupRAnsSet outputs I = Î|� . We can get to (h) only if Î is an answer set of �̂; furthermore, by setting 
S Î

gr to Gr(S, ̂I, A) in (b) and by the further modifications, it is ensured at (h) that each DL-atom a ∈ D p has some coherent 
support set that matches with A′ (i.e., Gr(S, ̂I, A′)(a) �= ∅), while no DL-atom a′ ∈ Dn has such a support set. Thus from 
Proposition 61, it follows that Î is a compatible set for �′ = 〈T ∪A′, P 〉; hence I |= �′ . Furthermore, as flpFND( Î, T ∪A′, P )

succeeds, I is a minimal model of �′I,O
flp . Hence I is an answer set of �′ , and thus a deletion repair answer set of �.

(Completeness) Suppose I is a deletion repair answer set. That is, for some A′ ⊆ A, we have that I is an answer set of 
�′ = 〈T ∪A′, P 〉. This implies Proposition 50 that Î is an answer set of �̂ and thus will be considered in (b), with D p and 
Dn reflecting the (correct) guess for I |=O′

a for each DL-atom a, where O′ = T ∪A′ . From Proposition 61 and completeness 
of S, we obtain that each a ∈ D p has Gr(S, ̂I, A′)(a) �= ∅ and each a ∈ Dn has Gr(S, ̂I, A′)(a) = ∅. The initial S Î

gr is such 
that Gr(S, ̂I, A′)(a) ⊆ S Î

gr = Gr(S, ̂I, A)(a) holds for each DL-atom a; in further steps, the algorithm removes all support sets 
S ∈ Gr(S, ̂I, A)(a) for a ∈ D p from S Î

gr(a) such that such that S ∩ S ′ ∩ A �= ∅ for some support set S ′ ∈ Gr(S, ̂I, A)(a′) and 
a′ ∈ Dn , and removes all assertions in S ′ ∩A from A. Importantly no removed S is in Gr(S, ̂I, A′)(a), since by the assertion 
that T ∪A is consistent, |S ′ ∩A| = 1 must hold. Thus step (g) will be reached, and the variable A′ is assigned an ABox A′′
such that A′ ⊆A′′ ⊆A. Since Î is a compatible set for �′′ = 〈T ∪A′′, P〉 and I is an answer set of �′ , by Proposition 71 I
is also an answer set of �′′ , and thus I is a minimal model of �′′I,O

flp = 〈T ∪A′′, P I,O
flp 〉. Hence, the test flpFND( Î, T ∪A′, P)

in step (h) (where A′ has value A′′) succeeds, and Î� , i.e, I is output. �
Appendix D. Proofs for Section 5

Proof (sketch) of Proposition 73. For DL-LiteA ontologies classification can be modeled declaratively as a reachability prob-
lem, what is exactly reflected in the rules (1), (2) and (3). The conflict sets in turn are found by means of the rules (4)–(7) 
and analysis of functional roles. As a result the program ProgTclass

computes all concept and role inclusions that follow from 
the TBox as well as all unary and binary conflict sets (whose construction is sound and complete based on the results in 
[74]). All support sets of type (i) of Proposition 58 are extracted from subsumptions and unary conflict sets, while the sup-
port sets of type (ii) correspond to binary conflict sets. As according to Proposition 58 there are no other types of support 
sets from the model MTclass of ProgTclass

, a complete support family for a given DL-atom can be extracted. �
Proof of Proposition 75. We separately prove AS(�̂ ∪ �supp ∪ f acts(A))|� ⊆ RASweak(�) and AS(�̂ ∪ �supp ∪ f acts(A))|� ⊇
RASweak(�), i.e., correctness and completeness of the provided implementation.

(⊆) Assume towards a contradiction that AS(�̂ ∪ �supp ∪ f acts(A))|� � RASweak(�). Then there exists an element I ∈
AS(�̂ ∪ �supp ∪ f acts(A)), such that I|� /∈ RASweak(�). This means that for all A′ ⊆ A, it holds that I|� /∈ A Sweak(�

′) with 
�′ = 〈T , A′, P〉. Consider the ABox A′′ = {P (�c) | p P (�c) ∈ I| f acts(A), p̄ P (�c) /∈ I},20 which is a particular subset of A. We have 
that I|� /∈ A Sweak(�

′′) with �′′ = 〈T , A′′, P〉. Thus one of the following must be true: (i) no extension of I|� with guessed 
values of replacement atoms is a model of �̂′′ , (ii) no model of �̂′′ is a compatible set for �′′ or (iii) there exists I ′ ⊂ I|� , 
which is a model of P I|�,O′′

weak .

The case (i) is irrelevant, as I|
�̂

satisfies all rules of �̂ due to I ∈ AS(�̂ ∪ �supp ∪ f acts(A)) and �̂′′ = �̂. We next show 
that (ii) can not hold by deriving a contradiction. Indeed, assume that (ii) holds, then as I|

�̂
is a model of �̂, it is not a 

compatible set for �. Therefore there exists a DL-atom ai in �′′ , such that its real value is different from the guessed value 

20 p̄ P corresponds to the respective S̄A
a .
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in I|
�̂

. Suppose first that I|� |= ai , but neai ∈ I|
�̂

. By Proposition 61 there must exist a support set S ∈ Si , such that S is 
coherent with I|� and its ABox part SA is in A′′ . If SA is nonempty, then due to the rule of the form (r4) of �supp we 
get that S̄A must be in I , but then SA is not present in A′′ . Therefore, SA must be empty, i.e. S must contain only input 
assertions. However, then the body of the constraint (r2) of �supp is satisfied, contradicting I ∈ AS(�̂ ∪ �supp ∪ f acts(A)). 
In conclusion, this shows that (ii) does not hold, and in particular that I|

�̂
is a compatible set for �.

Finally, the last possibility is that (iii) holds, meaning that there is an interpretation I ′ ⊂ I|� which is a model of P I|�,O′′
weak . 

The interpretations I|� and I ′ differ on the set M = I|�\I ′ , containing only ground atoms from the language of �. Let us 
now look at the interpretation I ′′ = I\M . We know that I is an answer set of �̂ ∪ �supp ∪ f acts(A), i.e. it is a minimal 
model of �̂I

gl ∪ �supp
I
gl ∪ f acts(A). Therefore, there must exist some rule r I

gl either in (1) �̂I
gl or in (2) �supp

I
gl , which I ′′

does not satisfy, i.e. I ′′ |= B(r I
gl) and I ′′ �|= H(r I

gl).

Assume that (1) holds. Then the rule r I
gl must involve some replacement atoms ea occurring positively. Otherwise I ′ �|= r I

gl , 

and since this rule is also in P I|�,O′′
weak , we have that I ′ is not a model of P I|�,O′′

weak , leading to a contradiction. Furthermore, 
we know that I|

�̂
is a compatible set. Therefore, r I,O′′

weak is the rule r I
gl without replacement atoms in its body; but then 

I ′ �|= r I,O′′
weak , and hence I ′ is not a model of P I|�,O′′

weak .
Now assume that (2) holds, i.e. there is a rule r I

gl ∈ �supp
I
gl , such that I ′′ |= B(r I

gl), but I ′′ �|= H(r I
gl). The rule r I

gl can not be 
a constraint of the forms r1, r2, since then I ⊃ I ′′ is not an answer set of �̂ ∪ �supp ∪ f acts(A), leading to a contradiction. 
Therefore, r must be of the form r3 or r4. However, the latter is not possible either, since the set of atoms M on which 
I and I ′′ differ contains only atoms from the signature of �, and H(r I

gl) does not fall into this set, meaning that I �|= r I
gl , 

which contradicts to I ∈ AS(�̂ ∪ f acts(A) ∪ �supp).
(⊇) Suppose that I ∈ RASweak(�), but there is no I ′ ⊇ I , such that I ′ ∈ AS(�̂ ∪ �supp ∪ f acts(A)). By definition of repair 

answer sets, some A′ ⊂ A exists, such that I ∈ A Sweak(�
′), where �′ = 〈T , A′, P〉. We construct the interpretation I ′ by 

extending I with

• {ea | I |=O′
a} ∪ {nea | I �|=O′

a}, i.e. facts stating the values of the replacement atoms under I and A′;
• f acts(A);
• {p̄ P (�c) | P (�c) ∈A\A′};
• Supai (�c) encoding information about support sets of ai(�c) coherent with I .

We now show that I ′ is an answer set of �̂ ∪ �supp ∪ f acts(A), i.e. it is a minimal model of (�̂ ∪ f acts(A′) ∪ �supp)I ′
gl . 

Assume towards a contradiction that this is not the case. Then either (i) I ′ does not satisfy some rules of the reduct, or 
(ii) some smaller model of the reduct exist.

First consider (i). I ′ immediately satisfies all facts as well as all rules in �̂I ′
gl . This means that there must be some rule 

r I ′
gl in �supp

I ′
gl that is not satisfied, i.e. I ′ |= B(r I ′

gl), but I ′ �|= H(r I ′
gl). By construction of I ′ and Proposition 61, if ea ∈ I ′ (resp. 

nea ∈ I ′) then Supa ∈ I ′ (resp. Supa /∈ I ′), therefore r can not be of the form (r1) or (r2). Suppose that r is of the form (r3). 
We have that some DL-atom a has a support set whose ABox part is in A′ or empty. Then by construction of I ′ the head 
of the rule r I ′

gl has to be satisfied. Therefore, the rule r must be of the form (r4). Then I �|=O′
a for some DL-atom a, such 

that there is a support set for a which is coherent with I and its ABox part is either empty or present in A. In both cases 
by Proposition 61 we get that I |=O′

a, which leads to a contradiction.
Let us now look at (ii), i.e. some interpretation I ′′ ⊂ I ′ exists such that I ′′ |= (�̂ ∪ �supp ∪ f acts(A))I ′

gl . Note that I ′′ and 
I ′ can not differ only on replacement atoms, since for each DL-atom a, either ea or nea must be in I ′′ . As I ′ already contains 
the corresponding replacement atoms, removal of any such atom will violate the satisfaction of some guessing rule ea ∨ nea

in �̂I ′
gl . Suppose that I ′′\I ′ contains some atoms from �. Consider I ′′|� , which is a subset of I . Observe that I ′′|� can not 

be a model of P I,O′
weak , because I ⊃ I ′′|� is its minimal model. Therefore, some rule r I,O′

weak must exist in the reduct P I,O′
weak

which is not satisfied by I ′′|� , i.e. I ′′|� |= B(r I,O′
weak) but I ′′|� �|= H(r I,O′

weak). By construction of the weak reduct this rule does 
not contain any DL-atoms. Let us look at the corresponding rule in the reduct �̂I ′′

gl . The rule r I ′′
gl either does not contain 

any replacement atoms or contains only positive atoms ea such that ea ∈ I ′′ (by construction of the GL-reduct). Therefore 
I ′′ |= B(r I ′

gl), but I ′′ �|= H(r I ′
gl), contradicting I ′′ |= �̂I ′

gl .

Suppose that the interpretations I ′ and I ′′ differ only on the facts over predicates in �supp . We know that the rule r I ′
gl , 

where r is of the form (r1) is not present in �supp
I ′
gl , moreover, I ′′ �|= r′I′

gl for r′ of the form (r2). If the difference I ′\I ′′ contains 
Supa , then it must contain some atoms from r(Sa) too. Moreover, these atoms must be related to the ABox facts, which are 
present in I ′ . This, however, means that some fact in f acts(A) is not satisfied, contradicting I ′′ |= (�̂ ∪ �supp ∪ f acts(A))I ′

gl . 
Finally, I ′′ \ I ′ can not contain elements S̄Aa , as then the rule r I ′

gl for r of the form (r4) is not satisfied by I ′′ . �
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