
Universität des Saarlandes
Max-Planck-Institut für Informatik

AG5

Towards Nonmonotonic Relational

Learning from Knowledge Graphs

Masterarbeit im Fach Informatik

Master’s Thesis in Computer Science

von / by

Hai Dang Tran

angefertigt unter der Leitung von / supervised by

Dr. Daria Stepanova

begutachtet von / reviewers

Dr. Daria Stepanova

Prof. Dr. Gerhard Weikum

Saarbrücken, June 2017

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any

other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die

Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public

by having them added to the library of the Computer Science Department.

Saarbrücken, June 2017 Hai Dang Tran

Abstract

These days witness the development of information extraction, which leads to the

birth of knowledge graphs (KGs), i.e., large collections of relational facts. Since these

KGs are automatically built, it is not guaranteed that they are precise and complete.

Hence, Open World Assumption (OWA) should be applied to them, that is, facts which

are not present in the KG can be treated as true or as false. Rule mining approaches can

be applied to tackle the problem of KG completion. However, the existing approaches

focus on positive rules, which do not take exceptions or negated atoms into consideration

and may therefore infer wrong facts. Recently, a rule-based technique that bridges this

gap has been proposed, but it only works on a flattened presentation of a KG, that

is, a collection of unary facts. This work extends the previous results and presents an

approach for mining nonmonotonic rules (i.e., rules with exceptions in the body) from

KGs in the relational format. The contributions of this thesis are:

• We have introduced a theory revision framework for learning nonmonotonic rela-

tional rules from KGs.

• We have proposed a method for finding exception candidates for positive rules,

assessing their quality and ranking them based on several measures with a novel

concept of partial materialization.

• We have developed a system prototype RUMIS and conducted experiments to test

our methodology. The obtained results are promising and they demonstrate the

effectiveness of our approach.

Acknowledgements

First and foremost, I want to give my special thanks to Dr. Daria Stepanova for her

enthusiastic advisory during my master thesis and ILP paper. I feel indebted to Daria

for her guidance about Logic Programming and scientific writing skills. She always fully

supports me to pursue my dream and I will not forget it.

I also want to say thanks to Prof. Gerhard Weikum for giving a chance to work in

the Database and Information System Group. The group is a good environment for me

to foster my research skills.

It is my pleasure to work with Dr. Francesca A. Lisi and Mohamed H. Gad-Elrab in

the ILP paper, I really appreciate their support for the success of the publication.

A sincere thanks to Thinh and Marko for helping me to develop my career path.

Besides, I will remember the time that I train with Ralf and play for FC Saarbrücken

Table Tennis Team III. Thanks to the team for helping me to find a new passion along

with programming.

Last but not the least, I am grateful to my parents and my brother who are always

besides me with an unconditional love. They are the reason why I try my best in studying

and working day by day.

vii

Contents

Abstract v

Acknowledgements vii

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 State of the Art and Its Limitations . 2

1.3 Goals . 3

1.4 Contributions . 3

1.5 Structure . 4

2 Related Work 5

2.1 Semantic Web . 5

2.2 Statistics-based Approaches for Relational Learning 6

2.3 Logic-based Approaches for Relational Learning 7

2.3.1 Inductive Logic Programming Systems 7

2.3.2 Relational Learning Systems . 9

2.3.3 Nonmonotonic Rule Mining Systems 10

2.4 Text-based Approaches for Relational Learning 11

3 Background 13

3.1 Nonmonotonic Logic Program . 13

3.2 Knowledge Graph Completion . 14

3.3 Association Rule Mining in Relational Setting 15

xi

xii CONTENTS

4 A Theory Revision Framework for Rule-based KG Completion 17

4.1 Problem Statement . 17

4.2 Methodology . 20

5 RUMIS - Nonmonotonic Rule Mining System 23

5.1 System Overview . 23

5.2 Implementation . 24

5.2.1 Data Indexing . 24

5.2.2 Positive Rule Mining . 25

5.2.3 Normal and Abnormal Set Mining 26

5.2.4 Exception Witness Set Mining . 26

5.2.5 Measure Plugin . 27

5.2.6 Exception Ranking . 28

5.3 Optimization . 29

5.4 Usage . 31

6 Evaluation 33

6.1 Setting . 33

6.2 Ruleset Quality . 34

6.3 Prediction Quality . 37

6.4 Running Times . 39

7 Conclusions and Future Work 41

7.1 Conclusions . 41

7.2 Future Directions . 41

Bibliography 45

List of Figures

1.1 A visualization of a knowledge graph . 2

2.1 The Semantic Web technologies . 6

5.1 Components of RUMIS . 23

5.2 RUMIS Data Indexer . 24

5.3 (Ordered) Partial Materialization Ranking 28

6.1 The Ideal, Available and Extended KGs. 34

6.2 The average conviction improvement rate (%) of rules revised using our
methods for the IMDB dataset. 36

6.3 The average conviction improvement rate (%) of rules revised using our
methods for the YAGO dataset. 36

6.4 The average conviction improvement rate (%) of rules revised using our
methods for the Wikidata Football dataset. 37

6.5 Examples of the Revised Rules . 39

xiii

List of Tables

2.1 List of typical knowledge graphs . 6

2.2 Transaction table as flattened knowledge graph data. 11

6.1 The average quality of the Top Positive and Nonmonotonic Rules for
YAGO, IMDB. 35

6.2 The average quality of the Top Positive and Nonmonotonic Rules for
Wikidata Football. 35

6.3 New facts predicted by the rulesets for IMDB (I), YAGO (Y) and Wikidata
Football (W). 38

6.4 Running times for each step of the three datasets 39

xv

Chapter 1

Introduction

1.1 Motivation

These days witness the development of information extraction methods, which are

fruitfully exploited for automatic construction of Knowledge Graphs (KGs). These

are large collections of relational facts in the 〈subject predicate object〉 format. Such

triples reflect facts about the real world, which can be converted to facts over unary and

binary relations in predicate calculus. Every such triple can be represented as a binary

fact predicate(subject, object) if predicate is not a type and a unary fact object(subject)

otherwise. For example, 〈Brad livesIn Berlin〉 can be rewritten as livesIn(Brad,Berlin)

while 〈Mat type artist〉 can be converted to artist(Mat). Examples of KGs include

YAGO [45], Wikidata 1, Freebase 2, etc (see Chapter 2 for details).

Unfortunately, KGs are normally incomplete due to their automatic construction.

Hence, they are processed under the Open World Assumption (OWA) where missing

facts can be true or false. Therefore, the knowledge completion problem (also known as

link prediction) plays an important role in improving the quality of KGs. To achieve this,

rule learning approaches [8, 17] are used to create rules which can infer new potentially

missing facts. However, the existing methods only pay attention to positive rules, which

do not take exceptions (negated atoms) into consideration and may therefore make wrong

predictions. For instance, a rule:

r1 : livesIn(X,Z)← isMarriedTo(X,Y), livesIn(Y, Z) (1.1)

1https://www.wikidata.org
2https://developers.google.com/freebase/

1

https://www.wikidata.org
https://developers.google.com/freebase/

2 Chapter 1 Introduction

Figure 1.1: A visualization of a knowledge graph

can be discovered from the graph in Figure 1.1 and exploited to predict new facts

livesIn(Alice,Berlin), livesIn(Dave,Chicago) and livesIn(Lucy,Amsterdam). How-

ever, in reality the first two facts might be incorrect, since Alice and Dave are researchers

and the rule r1 might have researcher as an exception. Exceptions should be taken

into account in rule learning to improve both the rule quality and the quality of facts it

produces.

1.2 State of the Art and Its Limitations

Nonmonotonic rule learning [40, 21, 43, 9, 26] focuses on discovering a set of rules with

exceptions (negated atoms) in their bodies (see Chapter 3 for details). However, the

state-of-the-art nonmonotonic ILP algorithms cannot be directly applied to our problem

due to the following reasons:

• The target relations cannot be explicitly defined because we do not know which

parts of the graph need to be extended. A naive solution to this issue is to mine

all possible rules for the available predicates in the KG. However, this solution is

computationally expensive due to the large number of facts in the original KGs.

• Second, ILP systems usually exploit positive and negative examples. While positive

examples are available in our work, negative ones are not given. Besides, the latter

are difficult to collect because we cannot differentiate between wrong and unseen

Chapter 1 Introduction 3

triples. Thus, a simple approach to overcome this is to discover rules from solely

positive facts.

• Finally, the language bias is not easy to define since the schema of the original data

is not given.

To overcome the above obstacles, casting our problem into an exploratory data

analysis is a suitable solution. The authors in [16] propose association rule mining

methods to explore positive (Horn) rules, and then revise them by inserting exceptions or

negated atoms into their bodies to improve the predictive quality of the rules. However,

this approach only works on a flattened presentation of a KG, i.e., a collection of unary

facts.

1.3 Goals

The aim of this thesis is to:

• Propose a theory to explore interesting and informative nonmonotonic rules.

• Build a scalable system in terms of run time to generate rules with exceptions from

a large collections of facts.

• Extensively evaluate the developed system by performing experiments on the real

world KGs.

1.4 Contributions

This thesis is an extension of the work [16] to handle KGs in their original form. More

specifically, we want to mine rules with exceptions from a set of relational facts in KGs

treated under the OWA. We transform the knowledge completion problem into theory

revision task, where given a KG and a set of previously learned Horn rules, the goal

is to revise Horn rules to nonmonotonic ones by introducing exceptions. The positive

rules can be found by using off-the-shell tools for association rule learning. The revision

should be done with the purpose of improving the quality of the revised rules compared

to their original versions. To estimate the quality, we exploit the conviction measure [6].

Our approach consists of four steps. First, for each positive rule, we try to find

normal and abnormal sets, that is, set of instances that follow and do not follow given

rule, respectively. Second, we mine exception witness sets, that is, sets of unary or binary

4 Chapter 1 Introduction

predicates that can explain abnormal instances. For example, Researcher is a possible

exception for the rule r1 based on the KG in Figure 1.1. Third, we add exceptions to

the Horn rules in the form of a single negated atom and define a measure to assess the

quality of the obtained revisions. Importantly, the interaction between revised rules is

taken into consideration in our approach by a novel concept of partial materialization.

Finally, exceptions are ranked based on the proposed measures, and the best revision

is selected as the final solution. The contributions of this thesis can be summarized as

follows:

• We introduce a framework to revise positive rules and improve their quality by

incorporating negated atoms into their bodies.

• We propose a method for finding exception candidates, assessing their quality and

ranking them based on the defined measures. With the novel concept of partial

materialization, the cross-talk between the rules is taken into account during the

revision process.

• We develop a system RUMIS that mines Horn rules from a KG and enriches them

with exceptions.

• We construct benchmarks and conduct experiments with YAGO3, IMDB and a

fragment of Wikidata to test the above-mentioned methodology and the partial

materialization concept.

1.5 Structure

The outline of this thesis is as follows. Chapter 2 describes related work and presents the

literature review. Chapter 3 provides background and preliminaries for nonmonotonic

logic programs and relational association rule learning. Chapter 4 presents the rule

learning problem that we are tackling and describes our methodology. Chapter 5 contains

the system overview, implementation details and optimization strategies. Chapter 6

describes the benchmark construction process, experimental results, their analysis and

interpretation. Finally, Chapter 7 concludes the thesis and outlines further directions.

Chapter 2

Related Work

The area of relational learning in the context of Semantic Web has recently attracted

interest from many researchers. The approaches that aim at tackling this problem can

be mainly classified into three groups: statistics-based, text-based and logic-based. In

this chapter we review Semantic Web and the relevant works from these groups.

2.1 Semantic Web

The Semantic Web [4] is a paradigm that enables computers to interpret the meaning of

the data from the Internet. Alternatively, it is defined as “a web of data that can be

processed directly and indirectly by machines”.

The World Wide Web Consortium (W3C) defines the Semantic Web and the Resource

Description Framework (RDF) as a platform for Linked Data [4]. The W3C proposes

other technologies such as SPARQL and OWL for data manipulation. Architecture of

the W3C is presented as a stack in Figure 2.1 1.

The RDF is widely used for representing KGs and this is the fundamental format for

many KGs such as YAGO [45], Freebase 2, Wikidata3, etc. Several prominent examples

of KGs and their sizes are reported in Table 2.1 [36]. Google’s Knowledge Graph is the

largest among all the KGs mentioned in the table with 18 billions facts.

Though having different number of predicates, entities and facts, these graphs share

the following common properties [36]:

1https://www.w3.org/DesignIssues/diagrams/sweb-stack/2006a.png
2https://developers.google.com/freebase/
3https://www.wikidata.org

5

https://www.w3.org/DesignIssues/diagrams/sweb-stack/2006a.png
https://developers.google.com/freebase/
https://www.wikidata.org

6 Chapter 2 Related Work

Figure 2.1: The Semantic Web technologies

Name Instances Facts Types Relations

DBpedia (English) 4,806,150 176,043,129 735 2,813

YAGO 4,595,906 25,946,870 488,469 77

Freebase 49,947,845 3,041,722,635 26,507 37,781

Wikidata 15,602,060 65,993,797 23,157 1,673

NELL 2,006,896 432,845 285 425

OpenCyc 118,499 2,413,894 45,153 18,526

Google’s Knowledge Graph 570,000,000 18,000,000,000 1,500 35,000

Google’s Knowledge Vault 45,000,000 271,000,000 1,100 4,469

Yahoo! Knowledge Graph 3,443,743 1,391,054,990 250 800

IMDB 117,551 134,639 17,049 39

Table 2.1: List of typical knowledge graphs

• KGs reflect facts about the real world.

• KGs cover different domains, for example, YAGO is a general purpose KG while

IMDB focuses on the movie domain.

2.2 Statistics-based Approaches for Relational Learning

Relational Learning is a research field that focuses on “representing, reasoning and

learning in domains with complex relational structure” [19]. Many frameworks in this

Chapter 2 Related Work 7

field can be fruitfully applied in the Semantic Web context. In this section, we discuss

Relational Learning from statistics point of view. The statistics-based approaches focus

on building models with latent features which are not directly observable from the original

data [33]. The core idea is to infer correlation between objects based on selected hidden

features.

RESCAL is one of the principal algorithms in this direction where relations of all

hidden feature pairs are taken into consideration to measure likelihood of true facts [34, 35].

This method is extended to classical tensor decomposition algorithm [25] and neural

tensor network [44].

While many tensor factorization methods use subject, predicate and object as three

dimensions to model a KG as a cube, some algorithms transform this cube into two

dimensional data in a preprocessing step. For instance, in [22, 41] subject and object in

every triple are merged into a single element representing a pair of entities.

Distance-based models use the intuition that entities have high chance to be related

to each other if their hidden representation features are close to each other. The closeness

can be checked based on some predefined distance measures. This approach is expanded

to structure embedding models in [5].

2.3 Logic-based Approaches for Relational Learning

The logic-based approaches aim at finding observable patterns in order to infer new links

in the KG [33]. Since the patterns can be directly seen in the data, these algorithms

are more interpretable than the ones based on statistical approaches. For instance, a

pattern extracted from the graph in Figure 1.1 can be represented as rule 1.1 (r1). This

rule reflects a triangular pattern in the KG, and since the rules are extracted from the

graph, the predicates correspond to the edge labels. Since this pattern is frequently

observed, it can be extracted to predict new links in the KG. For instance, if we apply

the rule r1 to the KG in Figure 1.1, we can deduce the facts livesIn(Lucy, Amsterdam)

and livesIn(Dave, Chicago).

In the rest of this section, we review some of the most prominent logic-based relational

learning systems in details and illustrate them with typical tools.

2.3.1 Inductive Logic Programming Systems

Inductive Logic Programming [32] (ILP) is a combination of Machine Learning and Logic

Programming fields whose goal is to generate hypothesis from background knowledge

8 Chapter 2 Related Work

and specific examples, which are normally classified into positive and negative ones. The

aim is to find a hypothesis that covers all positive examples and none of the negative

ones.

Rule mining is a core problem in ILP, however, applying ILP algorithms to Semantic

Web data is problematic for the following reasons. First, ILP tools are not scalable for

large knowlege graphs such as YAGO, Freebase, Wikidata [17]. In some experiments

conducted in [17], it has been shown that the cutting edge ILP tools, for example,

ALEPH [31, 17], QuickFoil [50, 17] require several days to process the YAGO KG.

Second, ILP methods use closed world assumption (CWA), under which a given KG is

assumed to be complete and missing facts are treated as false rather than unknown. ILP

methods require both positive and negative examples like traditional machine learning

algorithms. One cannot rely on CWA in our problem since in the KGs the positive

examples are incomplete and negative ones are unknown [17].

Third, most ILP algorithms generate Horn rules without exceptions [40]. These rules

often have low precision. One of the possible ways to improve the quality of the facts

the rules predict is to add their appropriate exceptions. Therefore, mining exceptions

for rules is an important task which we study in this work. In the following paragraphs,

some popular ILP systems are described in details.

ALEPH. This name stands for A Learning Engine for Proposing Hypotheses which

is one of the typical systems in ILP. The tool is developed and extended from P-Progol 4.

Like many other ILP systems, as input ALEPH receives the background knowledge

and sets of positive and negative examples. After that, it generates a set of rules as a

hypothesis set. More specifically, the tool processes data in the following steps:

• ALEPH picks an example to hypothesize and terminates if no such example is

found.

• Then the most specific rule that infers the example is computed.

• Among all subsets, i.e., combinations of atoms in the most specific rule, the one

with the highest score is added to the hypothesis set.

• All examples inferred by the chosen hypothesis are removed from the data and the

process starts again from the first step.

Though this algorithm is among the most popular ones in ILP, experiments in [17]

show that its runtime is extremely slow. This demonstrates the unsuitability of ALEPH

for large datasets.

4http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

Chapter 2 Related Work 9

QuickFOIL. To address the scalability issues of ILP systems, an optimized version

of FOIL [38], i.e., the system QuickFOIL [51] has been developed, which performs the

following steps:

• First, QuickFOIL produces a new Horn rule that maximizes the difference between

the number of covered positive and negative examples in the training data. This

criteria is different from traditional ILP where among the rules that do not infer

negative examples, the one covering the highest number of positive examples is

chosen.

• Second, whenever the chosen rule covers an example, the latter is removed from the

set of positive ones [17]. Intuitively, the collection of found rules at each step can

be used to summarize original dataset. QuickFOIL uses pruning techniques where

duplicates (i.e., rules that are equivalent to those generated before) are removed to

process large-scale input with millions of facts.

2.3.2 Relational Learning Systems

Relational Learning systems do not require negative examples in the data, and they also

work well under the Open World Assumption (OWA). This makes them attractive for

our setting. In the following paragraphs, some Relational Learning tools are described in

details.

WARMR. The WARMR [13, 14] system represents a combination of traditional

ILP and Relational Learning approaches. It extends APRIORI algorithm [2] to the

relational setting and exploits a pruning technique in level-wise search to mine patterns.

More specifically, at each level, infrequent queries are removed and the remaining frequent

ones are expanded using the above operation. New queries are deleted if they can be

expanded from an infrequent pattern in the previous level. This step is repeated until

we cannot generate new queries. To check the runtime performance of WARMR, the

authors of AMIE+ [17] test it on the YAGO dataset. The tool processes more than a

day with YAGO2. WARMR is developed with ProLog, which not particularly scalable

for large datasets [17].

AMIE(+). The scalability issues as well as CWA assumption issues of ILP are

tackled in the AMIE(+) [17] system. This tool receives a large KG as input and generates

top positive Horn rules ranked based on a certain association rule score. Initially, AMIE

begins with a list of rules with empty body and a binary head predicate. After that, the

rules are expanded with additional relations and variables using three mining operators.

These operators are executed by query manipulation to explore new predicates and

10 Chapter 2 Related Work

instances. As regards the implementation, AMIE uses in-memory database with fact

indexes to run select and existence queries.

AMIE+ is an optimized version of AMIE. The authors introduce three main pruning

strategies: maximum length constraint, quality condition and simplifying query. More

specifically, in the first strategy, a rule is not expanded if its length reaches a threshold.

In the second strategy, if confidence of a rule is already 100%, the rule cannot be better

and does not need to be extended. In the final strategy, approximation techniques are

applied to assess the confidence of a given rule. Experimental work in [17] shows that

this platform can process millions of triples in RDF graph and it surpasses other methods

in terms of the run time.

RDF2Rules. The RDF2Rules [46] focuses on mining cyclic patterns from KGs,

which are postprocessed and cast into rules. This tool improves rule quality by inserting

entity types to their bodies, for example, diedIn(X,Y) ← wasBornIn(X,Y), people(X),

country(Y) is expected to be more accurate than diedIn(X,Y) ← wasBornIn(X,Y).

Furthermore, they introduce a new confidence measure that exploits types of entities

to verify rule quality. Experiments show that this tool is effective, especially with rules

containing entity types, and it often outperforms AMIE+. However, the form of the

mined rule is restricted to cycles, which makes the system more restrictive than the

AMIE+ system.

Like other ILP platforms, Relational Learning tools only focus on positive (Horn)

rules and they do not learn nonmonotonic rules, i.e., rules with exceptions. In this work,

we aim at bridging this gap and develop method to learn the latter types of rules.

2.3.3 Nonmonotonic Rule Mining Systems

Rules with exceptions are traditionally learned by nonmonotonic rule learning systems.

The research work in [9] is devoted to the problem of learning nonmonotonic rules. The

idea behind it is to convert an ILP task into an ALP [24] instance, and then, the way

the ALP instance is solved can be mapped to the ILP one ’s solutions. However, this

system adopts CWA, and therefore cannot be applied in our work. There is another

nonmonotonic rule learning method that accounts for incomplete data [23] where a

coordination of Semantic Web ontology and positive/negative rules is exploited to explore

patterns. The work [23] pays attention to complicated communication between different

reasoning components. This is different from the current work where we focus on the

quality of the predicted data.

Chapter 2 Related Work 11

bornInUS livesInUS immigratesToUS livesInUK

s1 1 1 0 0

s2 1 0 1 1

s3 1 1 0 1

s4 0 0 1 0

s5 1 0 0 1

s6 0 0 1 1

s7 0 0 1 1

s8 1 0 0 0

s9 1 1 1 1

s10 0 1 0 1

Table 2.2: Transaction table as flattened knowledge graph data.

Nonmonotonic Rule Mining under OWA over the flattened data. The

work [16] made some steps towards learning nonmonotonic programs from incomplete

KGs. However, the developed methods work only on flattened KGs, i.e., the graphs

in which all RDF triples are converted to unary facts by concatenating predicates and

objects. More specifically, a binary fact such as bornIn(s1, US) is transformed to a fact

in the unary form bornInUS(s1). This way, a KG is converted to a binary transaction

table (for example, see Table 2.2) where 1 (respectively, 0) appears in the intersection

of a column c and a row r if the fact c(r) is present (respectively, not present) in the

KG. For instance, Table 2.2 reflects that bornInUS(s1) is included in the KG while

livesInUS(s6) is not. This representation allows one to apply highly optimized Item Set

Mining algorithms [49] to extract data patterns which can then be used to create positive

association rules [20].

In the next step, the exceptions for each rule are found and ranked based on several

score measures and innovative concept of Partial Materialization (PM) [16]. The idea

behind this is to enable the interaction between the rules. A difference between this thesis

and [16] stems from the format of the data. While in [16] binary facts are translated into

unary ones, in this thesis we keep the facts in their natural relational format.

2.4 Text-based Approaches for Relational Learning

Both statistics-based and logic-based approaches are internal methods, i.e., only data

inside the graph is used to infer new relations. We now discuss other approaches that

require data outside the KG, i.e., web pages linking to objects or big collection of

documents.

12 Chapter 2 Related Work

Wikipedia pages can be used to identify relations between entities [48]. On a larger

scale, an algorithm in [47] is developed to learn lexical predicate patterns, for example,

isMarriedTo predicate in Figure 1.1 can be expressed as “married to”, “engaged with”,

etc in some documents. Then these patterns are being searched for all over the Internet

to find subject-object pairs corresponding to them. These new pairs can be added to the

original graph. For example, in [47] a big text corpus is used to learn relations.

In [30] the authors refine KGs by exploiting the assumption that entities appearing

in the same table should have the same relations. Similarly, [37] and [42] exploit page

lists and HTML tables, respectively.

Instead of documents, interlinks between the same entities in different KGs can be

used to add new facts [1, 7]. More specifically, relations of two entities in Freebase can be

inserted into YAGO if they also appear in the latter KG. In [15] this approach has been

extended to a probabilistic setting, where for every deduced relation a corresponding

probabilistic weight is computed.

Chapter 3

Background

In this chapter, we introduce some preliminary knowledge for the rest of the thesis

with the following organization. First, nonmonotonic logic programs under answer set

semantics and KG completion problem are presented. Second, we address some definitions

of relational association rule mining such as head support, absolute support, confidence

and conviction. These definitions are exploited in the main part of this work (Chapter 4

and 5).

3.1 Nonmonotonic Logic Program

In the current work, we rely on the standard definitions of logic programs [28]. Formally,

nonmonotonic logic program P is a ruleset where each rule has the form:

r : H ← B,not E (3.1)

In details, H stands for head(r) which is the head of the rule r, i.e., a first-order atom

in the format a(X). Besides, B, not E is a conjunction: b1(Y1), b2(Y2), ..., bk(Yk) and

not bk+1(Yk+1), not bk+2(Yk+2), ..., not bn(Yn), respectively. B and not E are used

as a short form of body+(r) and body−(r), respectively. The not operator is called the

negation as failure (NAF) or default negation. If body−(r) = ∅ then r is a positive (Horn)

rule. X, Y1, Y2, ..., Yn are tuples of arguments, i.e., variables and/or constants and

their sizes are the arity of a, b1, b2, ..., bn, respectively. The signature of the program

P is denoted as ΣP = 〈P, C〉 where P, C are the sets of predicates and constants in P ,

respectively.

13

14 Chapter 3 Background

A logic program P is ground if it does not contain any variables, i.e., only constants

and predicates can appear in each rule r. For a non ground program P , Gr(P) is a

ground instantiation of P which is obtained by replacing variables with constants in all

possible ways. The Herbrand Universe HU(P) of P is the set of constants C appearing in

the program P and Herbrand Base HB(P) contains all possible ground atoms constructed

by predicates in P and constants in C, respectively. Any subset of HB(P) is a Herbrand

Interpretation of a program P . An interpretation I is a model of a rule r if for every

possible substitution of variables with constants for which body+(r), body−(r) are true,

head(r) is also true w.r.t. I. I is defined as a model of a program P if it satisfies all rules

in P . In addition, MM(P) denotes a set of a subset-inclusion minimal models of P .

An answer set I of P is a Herbrand interpretation of P s.t. I ∈ MM(P I). Here,

P I denotes the Gelfond-Lifschitz (GL) reduct [18] of P which is generated by deleting

any rule r s.t. body−(r) intersects with I and then removing all NAFs in the rest of the

rules. AS(P) stands for the set of all answer sets of P .

Example 3.1. Consider the following nonmonotonic program as an example:

P =

 (1) livesIn(brad , berlin); (2) isMarriedTo(brad , ann);

(3) livesIn(Y ,Z)← isMarriedTo(X ,Y), livesIn(X ,Z),not researcher(Y)

We obtain the ground instantiation Gr(P) of P by replacing X,Y, Z with brad , ann and

berlin, respectively. Consider the interpretation I = {isMarriedTo(brad,ann), livesIn(ann,berlin),

livesIn(brad,berlin)}. Based on the above definition, the GL-reduct P I of P consists of a rule

livesIn(ann,berlin) ← livesIn(brad,berlin), isMarriedTo(brad,ann) and the ground terms

(1), (2). Since I is a minimal model of P I , by definition, we have that I ∈ AS(P).

3.2 Knowledge Graph Completion

In this section, we provide a definition of a KG completion problem based on the above

concept of Answer Set Programming. The factual representation of a KG G is the set of

ground atoms over the signature ΣG = 〈C,R, C〉, in which C, R and C denote the sets of

unary predicates, binary predicates and constants, respectively. By Gi, we denote a KG

that contains all correct facts with predicates and constants from ΣGa that are true in

the real world. Based on [10], the gap between the available graph Ga and Gi is defined

as follows.

Definition 3.1 (Incomplete data source). A pair G = (Ga,Gi) of two KGs is an incom-

plete data source, where Ga ⊆ Gi and ΣGa = ΣGi .

We aim at learning a nonmonotonic ruleset R from Ga s.t. application of R to

Ga results in a good approximation of Gi. Application of R to Ga corresponds to the

Chapter 3 Background 15

calculation of I ∈ AS(R∪ G). More specifically, we define the rule based KG completion

as follows:

Definition 3.2 (Rule-based KG completion). Given a factual representation of a KG G
over the signature ΣG = 〈C,R, C〉 and a set of rules R mined from G. The completion of

G w.r.t. R is a graph GR constructed from any answer set in AS(R∪ G).

3.3 Association Rule Mining in Relational Setting

Association rule mining concerns the extraction of frequent patterns from the data and

their subsequent casting into rules. Originally, association rules were studied in the

market basket context, where interesting relations between products from a transaction

database of customer purchases were extracted, e.g., {onions, potatoes} => {burger} [52].

Recently, association rule learning methods were extended to relational settings, which

attracts research interests of both ILP [11] and KG [17] scientists. In the following

description, we present typical rule measures for association rules in the relational

setting.

A conjunctive query Q w.r.t G is the expression of the form Q(~X) : − p1(~X1),

. . . , pm(~Xm). The body (i.e., right part) of the query is a list of positive or negative

atoms over G. The head (i.e., left part) is a tuple of variables appearing in the right part.

The answer of Q w.r.t G is defined as a set Q(G) := {substitutions θ of ~X: pi(~Xiθ) ∈ G
with i ∈ [1..m]}. Based on [12], the (absolute) support of a conjunctive query Q w.r.t

the KG G is the cardinality of the set Q(G). For instance, the query

Q(X ,Y ,Z) : − isMarriedTo(X ,Y), livesIn(Y ,Z) (3.2)

has the absolute support 6 w.r.t G in Figure 1.1, since there are 6 substitutions for the

triple 〈X,Y, Z〉 that satisfy isMarriedTo(X,Y), livesIn(Y,Z) w.r.t G.

An association rule is of the format Q1 => Q2, where Q1 and Q2 are conjunctive

queries and all atoms in the body of Q1 also appear in that of Q2. For instance, from

Q(X,Y, Z) in the above example and

Q′(X,Y, Z) : − isMarriedTo(X ,Y), livesIn(X ,Z), livesIn(Y ,Z) (3.3)

the association rule Q => Q′ can be built.

In the current work, association rules are exploited with the aim to predict new facts,

hence, they should be translated into logical format. More specifically, we convert the

association rule Q1 => Q2 to the logical one Q2\Q1 ← Q1, where Q2\Q1 is the set of

16 Chapter 3 Background

atoms which are in Q2 but not in Q1. For example, it can be seen that the above rule

Q => Q′ can be transformed to r1 in Section 1.

In this work, the conviction measure [6] is exploited for estimating the rule quality,

since it is guaranteed to have high predictive power [3]. Hence, this measure is useful

for KG completion introduced in Chapter 4. With the rule r : H ← B ,not E , where

H = h(X ,Y) and B,E contain a set of variables ~Z ⊇ X,Y , we can find the conviction

by the following formula:

conv(r ,G) =
1 − supp(h(X ,Y),G)

1 − conf (r ,G)
(3.4)

in which supp(h(X ,Y),G) stands for relative support of the head h(X ,Y), defined as:

supp(h(X,Y),G) =
#(X,Y) : h(X,Y) ∈ G

(#X : ∃Y h(X,Y) ∈ G) ∗ (#Y : ∃X h(X,Y) ∈ G)
(3.5)

besides, conf denotes the confidence of r, given as:

conf(r,G) =
#(X,Y) : H ∈ G,∃~Z B ∈ G, E 6∈ G

#(X,Y) : ∃~Z B ∈ G, E 6∈ G
(3.6)

Example 3.2. Applying these definitions to the KG in Figure 1.1, we obtain the fol-

lowing results. Given a KG G in Figure 1.1 and a rule r1 in the form 1.1, there are

three ways to substitute variables in r1 based on G. Thus, the absolute support of r1

w.r.t. G is 3. Besides, the relative head support of predicates livesIn and hasFriend are

supp(livesIn(X ,Z),G)=
9

8× 4
≈0.3 and supp(hasFriend(X ,Z),G)=

1

1× 1
=1.0, respectively.

The confidence of the rule r1 is conf(r1 ,G)=
2

5
=0.4, thus, the conviction measure is as

follows conv(r1 ,G)=
1− 0.3

1− 0.4
=

7

6
=1.17

Chapter 4

A Theory Revision Framework for

Rule-based KG Completion

This chapter discusses the theoretical framework for learning nonmonotonic rules from

KGs. First, the problem statement is formally defined with the introduction of theory

revision and KG completion concepts. Second, we propose our methodology for tackling

this problem. The theoretical developments that we present are realized within the

RUMIS system described in Chapter 5.

4.1 Problem Statement

This section formally presents the problem statement and the main goal of the thesis.

Assume that Gi is an ideal completion of the available KG G, i.e., a KG that contains

every true fact over the signature ΣG . As input, we are given an available incomplete

KG G and a set RH of positive rules mined from G. Our aim is to insert NAF atoms

(exceptions) into the positive rules to obtain a nonmonotonic ruleset RNM s.t. the

difference between GRNM
and Gi is minimized. The RNM is a good choice for the rule

revision of RH if it deletes many incorrectly predicted facts from RH , and still retains

many true ones from RH .

Obviously, Gi is unavailable, hence the truthfulness of predictions cannot be estimated.

Consequently, standard ILP measures that rely on CWA cannot be exploited in our

work to assess how good a rule revision is. To tackle this issue, we propose to use

measures from association rule mining introduced in the previous chapter. Based on our

theory revision framework, a ruleset revision is good if its total rule measure is as high

17

18 Chapter 4 A Theory Revision Framework for Rule-based KG Completion

as possible, and the inserted NAFs are not over-fitting the KG, i.e., they are relevant

exceptions rather than noise.

To fulfill these constraints, we introduce two functions for assessing the quality, qrm

and qconflict, that take a set of rules R and a KG G and generate a value which leverages

the quality of R. More specifically, qrm is defined as follows:

qrm(R,G) =

∑
r∈R rm(r,G)

|R|
, (4.1)

where rm is a standard association rule measure, while qconflict calculates the quantity

of conflicting facts predicted by applying the rules in R to G. To find qconflict, the given

ruleset in extended with additional auxiliary rules Raux constructed for every revised rule

r ∈ R by removing not from body−(r), and subsequently substituting the head predicate

h of r by a dummy predicate not h. The newly created predicate not h intuitively

corresponds to the negation of h. The formula of qconflict is then defined as follows.

qconflict(R,G) =
∑

p∈pred(R)

|{~c | p(~c), not p(~c) ∈ GRaux }|
|{~c |not p(~c) ∈ GRaux }|

, (4.2)

where pred(R) is the set of relations occurring in R, and ~c contains at most two constants

in C. Intuitively, qconflict is created to differentiate actual exceptions from noise, by taking

the interaction between the rules from R into consideration. The following example

demonstrates this core idea.

Example 4.1. The occurrence of the unary relation researcher is necessary to improve

the quality of r1 mined from the KG in Figure 1.1 based on standard association rule

measures. Indeed, thanks to this, the revision may explain why livesIn(Dave,Chicago)

and livesIn(Alice,Berlin) do not appear in the figure. However, the addition of a new

nonmonotonic rule to the ruleset may spoil this. For instance, after livesIn(Alice,Berlin)

is predicted by r2: livesIn(X,Y)← workIn(X,Y), not artist(X), the impact of the exception

researcher in r1 is weakened.

Now we are ready to present our revision framework based on the above quality

functions.

Definition 4.1 (Quality-based Horn theory revision (QHTR)). Let G be a KG over the

signature ΣG , RH is a set of positive rules mined from G. Besides, let qrm , qconflict be

the quality functions in 4.1 and 4.2 respectively. The quality-based Horn theory revision

problem is to find a revision set RNM over ΣG obtained by inserting exceptions to bodies

of rules in RH , s.t. qrm(RNM ,G) is maximized and qconflict(RNM ,G) is minimized.

Chapter 4 A Theory Revision Framework for Rule-based KG Completion 19

In the rest of this section we introduce the concepts of r-(ab)normal substitutions

and Exception Witness Sets (EWSs).

Definition 4.2 (r-(ab)normal substitutions). Given a KG G, let r and V be a positive

rule learned from G and a variable set appearing in r, respectively. For the substitutions

θ, θ′ : V → C, we have:

• The r -normal set of substitutions is NS (r ,G) = {θ | head(r)θ, body(r)θ ⊆ G}.

• The r -abnormal set of substitutions is ABS (r ,G)={θ′ | body(r)θ′⊆G , head(r)θ′ 6∈G}.

Example 4.2. In Figure 1.1 the blue and red triangles indicate the NS (r1 ,G) and

ABS (r1 ,G), respectively. More specifically, the normal set is given as NS (r1 ,G) =

{θ1 , θ2 , θ3} with θ1, θ2, θ3 being {X /Brad ,Y /Ann,Z/Berlin}, {X /John,Y /Kate,Z/Chicago}
and {X /Sue,Y /Li ,Z/Beijin}, respectively. Similarly, we have three substitutions for the

abnormal set ABS (r1 ,G): {X /Alice,Y /Bob,Z/Berlin}, {X /Dave,Y /Clara,Z/Chicago}
and {X /Lucy ,Y /Mat ,Z/Amsterdam}.

The intuition is that given the ideal KG Gi, the r-(ab)normal substitutions correspond

to the ground rules which are satisfied (respectively not satisfied) in Gi. Observe that,

due to the incompleteness of the data under the OWA, r-abnormal substitutions are not

guaranteed to be such in the ideal graph. To differentiate the “incorrectly” and “correctly”

detected substitutions in the r-abnormal set, we exploit the notions of exception witness

sets (EWS) defined as follows.

Definition 4.3 (Exception witness set). Given a KG G and a rule r extracted from

it, let V be a set of all variables appearing in r . Let ~X be a variable subset of V
and, let EWS+(r,G, ~X), EWS−(r,G, ~X) be sets of predicates EWS+(r,G, ~X) = {e :

∃θ ∈ ABS (r ,G) : e(~Xθ) ∈ G} and EWS−(r,G, ~X) = {e : ∃θ ∈ NS (r ,G) : e(~Xθ) ∈
G}. Exception witness set of r w.r.t. G and ~X is a set difference EWS(r,G, ~X) =

EWS+(r,G, ~X) \EWS−(r,G, ~X). In other words, it is a set of predicates covering some

substitutions in ABS(r,G) but none in NS(r,G).

Example 4.3. Consider the rule r1 , the KG G in Figure 1.1 and V = {X}. Based on

the Definition 4.3, we have EWS+(r1 ,G,X) = {Researcher} and EWS−(r1 ,G, X) = {},
then EWS (r1 ,G,X) = {Researcher}. Besides, we have no exception candidates for

V = {Z} since EWS+(r1 ,G,Z) = EWS−(r1 ,G,Z) = {Metropolitan}.

Since the binary exceptions might appear in the rules, generally the cardinality of

EWSs can be large. Indeed, for a rule with n distinct variables, there can be up to n2

elements in EWSs. In addition, a good rule revision may have many exceptions in its

20 Chapter 4 A Theory Revision Framework for Rule-based KG Completion

body, thus our QHTR problem can have exponentially many solutions. To avoid the

explosion of the revision search space, in the current work, we consider only rules with a

single negated atom. Handling exception combinations is left for future work.

Definition 4.4 (Safely predicted facts). Given a KG G, a positive rule r extracted from

it and all exception candidates, the safely predicted facts of r w.r.t. G are all facts from

Gr′ \ G, where r′ is constructed from r by adding all exception candidates of r to its body

at once.

Example 4.4. Consider the rule r1 and the KG G in Figure 1.1, applying r1 we

obtain the following set {livesIn(Alice, Berlin), livesIn(Dave, Chicago), livesIn(Lucy,

Amstersam)}. The rule r1 revised with exceptions results in {livesIn(Lucy, Amstersam)}.
Thus, based on Definition 4.4, the fact safely predicted by r1 w.r.t. G is {livesIn(Lucy,

Amstersam)}.

4.2 Methodology

Since the number of facts in the KG is large, there can be many candidates in the EWSs

to process. Hence, finding the globally best solution for QHTR problem is not feasible.

Therefore, in this work we are aiming at finding an approximately best revision. The core

idea of our solution is to search for the locally best exception for each rule iteratively,

while still taking into account other rules in a set. Our methodology for finding such

approximate solutions comprises the following four steps.

Step 1. Given a KG G, first, top Horn rules RH are mined from G based on the absolute

support measure introduced in Chapter 3. To execute this step, any top notch relational

association rule learning tool can be exploited (e.g., AMIE(+), WARMR, etc). After

that, the r-(ab)normal substitutions for all rules r ∈ RH are computed.

Step 2 and 3. For each r ∈ RH with the head h(X ,Y), the candidates in EWS (r ,G,X),

EWS (r ,G,Y) and EWS (r ,G, 〈X ,Y 〉) are found. First, E+ = {not h(a, b) : ∃θ =

{X/a, Y/b, ...} ∈ ABS(r,G)} and E− = {not h(a, b) : ∃θ = {X/c, Y/d, ...} ∈ NS(r,G)}
are computed. Second, we exploit a typical ILP function learn(E+, E−,G) (e.g.,

from [39]), which finds hypothesis containing the head not h(X,Y) and an atomic

predicate in the format p(X), p′(Y) or p′′(X,Y) as the body. We want to find hypothesis

that does not infer any elements in E−, while inferring some element in E+. The EWS

is the collection of relations appearing in the body of the resulting hypothesis.

Second, potential revisions of each rule r in RH are constructed by alternatively

inserting one exception from EWS(r) to the rule body. In total, with every rule r, we

have |EWS (r ,G,X)|+ |EWS (r ,G,Y)|+ |EWS (r ,G, 〈X ,Y 〉)| exceptions to consider.

Chapter 4 A Theory Revision Framework for Rule-based KG Completion 21

Steps 4. For each rule, its revision candidates are ranked and the best one is added to

the final result RNM . Since the KG G and EWS s can be very large, the search space for

RNM is huge, and subsequently, searching for the globally optimal result is not feasible in

practice. Hence, we propose to gradually construct RNM by finding the locally optimal

revision rji for each rule ri ∈ RH . To this end, we propose three ranking strategies Naive,

PM, OPM. While the first one processes the rules independently, the other two exploit a

novel concept of partial materialization. More specifically, the core idea of this concept is

to assess potential revisions of the rule ri not w.r.t. G, but w.r.t. GR′ where R′ is a set

of some rules different from ri. This approach enables communication among the rules

which differs from the Naive ranking. We now describe each ranking in details.

The Naive (N) ranking strategy does not take the cross-talk between the rules into

consideration. For each rule ri in RH , it selects the optimal revised rule r j
i only based

on the chosen measure rm, i.e., the revision should have the highest rm(r j
i ,G) value to

be in the solution set. Hence, the revision RNM obtained by applying the Naive ranking

satisfies only (i) of Definition 4.1. However, it does not take the criteria (ii) into account

at all, and hence may produce noisy revisions that overfit the data.

The Partial Materialization (PM) ranking strategy selects the optimal revision

r j
i based on the largest value of

score(rji ,G) =
rm(r j

i ,GR′) + rm(r j
i

aux
,GR′)

2
(4.3)

where R′ contains rules r′l generated from each rl in RH\ri by inserting all exceptions

of rl into body(rl) at once. In other words, for every ri, GR′ contains facts from G and

safe predictions of all rules from R\ri. By injecting all exceptions into every rule, we

decrease the possibility of wrong predictions.

Example 4.5. Consider the following KG G and a revised set R where each Horn rule

has one exception candidate:

G =

 (1) livesIn(ann, berlin); (2) isMarriedTo(brad , ann)

(3) artist(ann); (4) bornIn(ann, berlin)

R =

 r1 : livesIn(X ,Z)← isMarriedTo(X ,Y), livesIn(Y ,Z),not researcher(X)

r2 : bornIn(X ,Y)← livesIn(X ,Y),not artist(X)

Consider the rule r2 and a set of other rules R′ = R \ {r2} = {r1}. Based on

the definition, we have GR′ = G ∪ {livesIn(brad, berlin)}, conf(r2,GR′) =
0

1
= 0 and

conv(r2,GR′) =
1− 0

1− 0
= 1. Similarly, we have conv(raux2 ,GR′) =

1− 1

1− 0
= 0, hence,

score(r2,GR′) is the average of two above conviction values and equals to 0.5.

22 Chapter 4 A Theory Revision Framework for Rule-based KG Completion

The Ordered Partial Materialization (OPM) ranking strategy is analogous to

PM, but here the word “Ordered” means that the chosen ruleset R′ consists of merely

rules r′l where the corresponding rl is revised before the current rule ri. In other words,

in this strategy the rule order in RH matters, and it is determined by some positive rule

measure such as confidence or conviction.

Chapter 5

RUMIS - Nonmonotonic Rule

Mining System

RUMIS stands for Nonmonotonic Rule Mining System which is a tool developed within

the current thesis. The RUMIS system aims at revising Horn rules to nonmonotonic ones

under the OWA. This chapter describes in details the practical implementation of the

theory framework presented in Chapter 4 and uses background definitions in Chapter 3.

First, we present the system overview. Second, the implementations of main components

of the system are described. Finally, we discuss the system usage.

5.1 System Overview

Figure 5.1: Components of RUMIS

There are six components in RUMIS as presented in Figure 5.1 with arrows indicating

the data flow from input to output. RUMIS mines the nonmonotonic rules from the

original graph in the following steps:

23

24 Chapter 5 RUMIS - Nonmonotonic Rule Mining System

• In (1), a KG G is passed to RUMIS as input. It is then stored and indexed by

Component 1 which is exploited to speed up the computation in the next steps.

• In (2), Horn rules are mined by Component 2 from facts indexed into RUMIS.

• In (3), normal and abnormal instance sets are found by Component 3 based on the

KG G and the Horn rules mined in the previous step.

• Given normal and abnormal sets known for each Horn rule, (4) represents the step

of finding exception witness sets in Component 4.

• In (5) and (6), exception candidates are ranked in Component 6 using a measure

provided by Component 5. RUMIS allocates a separate component for measure

plugin to enable flexibility of ranking criteria.

• In (7), RUMIS returns the best revision for the Horn ruleset as output.

5.2 Implementation

In this section, the main components mentioned in Section 5.1 are described in details.

5.2.1 Data Indexing

Figure 5.2: RUMIS Data Indexer

Since the KG G can be large, computation of (ab)normal instances as well as exception

witness sets is time-consuming. To overcome this issue, data indexing is exploited. In

a traditional search engine setting, terms such as words, n-grams are indexed into the

system and their corresponding posting lists [29] are a collection of documents containing

them. We exploit the same intuition in our work. More specifically, RUMIS treats every

fact as a document and the terms are subjects, predicates, objects or combinations of

them.

For example, Figure 5.2 presents the data indexed from part of a KG in Figure 1.1.

Hence, given the predicate isMarriedTo, one can determine a set of subject-object pairs

Chapter 5 RUMIS - Nonmonotonic Rule Mining System 25

corresponding to it, i.e., <Brad, Ann> and <John, Kate>. Similarly, given a subject

and a relation, the set of objects can be retrieved. For example, we can get “Berlin” from

the question “Where does Ann live” based on the data indexing model in Figure 5.2.

In this example, we index the combination of subject and predicate <Ann, livesIn>

to efficiently retrieve the result Berlin. More formally, the Data Indexing provides the

following functions that are exploited in the rest of the components:

• getPredicateSubjectSet(G, object) returns a set of predicate-subject pairs corre-

sponding to a given object in the KG G.

• getPredicateSet(G, subject, object) returns a set of predicates corresponding to the

input subject, object entities.

• getSubjectSet(G, predicate, object) retrieves a set of subjects for a given predicate

and an object.

• getSubjectObjectSet(G, predicate) outputs a set of subject-object pairs for a given

predicate.

5.2.2 Positive Rule Mining

Algorithm 1: Positive Rule Mining

Input : KG G
Output : Set of positive rules of the form h(X, Z) ← p(X, Y), q(Y, Z)

1 absSupp← {}
2 foreach Triple Y qZ in G do

3 pXSet← getPredicateSubjectSet(G, Y)
4 foreach pX in pXSet do
5 hSet← getPredicateSet(G, X, Z)
6 foreach h in hSet do
7 absSupp[hpq] + +
8 end

9 end

10 end

11 Sort hpq in a decreasing order of absSupp[hpq]
12 return absSupp

Positive Rule Mining component computes a set of rules of the form h(X, Z) ← p(X,

Y), q(Y, Z), whose absolute support exceeds a given threshold. Existing tools from the

literature can be exploited for this component, however, due to technical issues we have

re-implemented the Horn rule learning based on Algorithm 1. The steps of this algorithm

are described as follows. First, absSupp defined in line 1 is initialized for storing the

26 Chapter 5 RUMIS - Nonmonotonic Rule Mining System

absolute support of patterns. In the loop (2), for each triple <Y q Z> from the KG G,

using the getPredicateSubjectSet function in the Data Indexing component, a set of pairs

X, p is found in (3) such that <X p Y> is in G. Then, from line 5 to 6, with X, Z found

in the previous step, RUMIS searches for every relation h s.t. <X h Z> is in G. At this

point, it is guaranteed that h(X, Z), p(X, Y), q(Y, Z) holds. After that, in line 7, the

absolute support of the considered rule is increased by 1. Finally, all rules are sorted in

decreasing order of their absolute support (line 11).

5.2.3 Normal and Abnormal Set Mining

Algorithm 2: Normal and Abnormal Set Mining

Input : KG G, h, p, q predicates in the rule h(X, Z) ← p(X, Y), q(Y, Z)
Output : Normal and abnormal sets of the rule h(X, Z) ← p(X, Y), q(Y, Z)

1 NS ← {}
2 ABS ← {}
3 Y ZSet← getSubjectObjectSet(G, q)
4 foreach Pair Y Z in Y ZSet do

5 XSet← getSubjectSet(G, p, Y)
6 foreach X in XSet do
7 if XhZ is in G then
8 Add XZ to NS
9 else

10 Add XZ to ABS

11 end

12 end

13 return NS and ABS

This component computes normal and abnormal instance sets for a given rule and a

KG as described in Algorithm 2. First, in lines 1 and 2, variables for (ab)normal sets are

initialized. Second, for each pair Y, Z s.t. <Y q Z> is in G, a set of X for which <X p

Y> is in the KG is found based on the Data Indexing component (line 3 to 5). At this

point, it is guaranteed that X, Y, Z satisfy the body of the given rule. Finally, for every

X found in the previous step, we verify whether <X h Z> is in the KG or not. If it is in

G, then <X Z> is added to the normal set, otherwise it is added to the abnormal set.

5.2.4 Exception Witness Set Mining

We now describe the algorithm for exception witness set construction (Algorithm 3).

Given a KG and a positive rule, this component computes all unary and binary exception

candidates. To simplify the presentation, Algorithm 3 focuses only on computing binary

Chapter 5 RUMIS - Nonmonotonic Rule Mining System 27

Algorithm 3: Exception Witness Set Mining

Input : KG G, h, p, q predicates of the rule h(X, Z) ← p(X, Y), q(Y, Z)
Output : Exception witness set of the rule h(X, Z) ← p(X, Y), q(Y, Z)

1 NS ← getNormalSet(G, h, p, q)
2 ABS ← getAbnormalSet(G, h, p, q)
3 EWS+ ← {}
4 EWS− ← {}
5 foreach Pair XZ in ABS do
6 pSet← getPredicateSet(G, X, Z)
7 EWS+ ← EWS+ ∪ pSet
8 end
9 foreach Pair XZ in NS do

10 pSet← getPredicateSet(G, X, Z)
11 EWS− ← EWS− ∪ pSet
12 end
13 EWS ← EWS+ \ EWS−

14 return EWS

exceptions, analogously, unary ones can be mined. More specifically, our goal is to find

exceptions of the form e(X, Z) which are then inserted into the body of h(X, Z) :- p(X,

Y), q(Y, Z) to get its revised rule h(X, Z) :- p(X, Y), q(Y, Z), not e(X, Z). Algorithm 3

proceeds as follows. First, normal and abnormal instance sets are found in line 1 and 2

by exploiting Algorithm 2. Second, the variables EWS+ and EWS− which store a set

of relations between <X Z> in the abnormal and normal sets respectively are created

(line 3 and 4). Third, for every pair <X Z> in the abnormal set, all relations between X

and Z are added to the EWS+ (line 5 to 8). After that, a similar procedure is applied

to EWS− in lines 9 to 12. Finally, exception witness set EWS is constructed as the

difference between EWS+ and EWS− (line 13), which forms the output of the algorithm

in line 14.

5.2.5 Measure Plugin

The RUMIS system is supplied with the measure plugin which allows the user to conve-

niently specify various rule quality criteria. In the current implementation, confidence

and conviction are supported. While the former is well-suited for descriptive purposes,

the latter is accepted as a possible measure for estimating rule’s predictive capabilities [3].

Since the main concern of this thesis is the Horn rule revision and subsequent application

of the revised set for predicting possibly missing facts in the original KG, the conviction is

the most suitable measure, which has thus been implemented within the RUMIS system.

28 Chapter 5 RUMIS - Nonmonotonic Rule Mining System

Figure 5.3: (Ordered) Partial Materialization Ranking

5.2.6 Exception Ranking

We now describe the exception ranking procedure in details which is illustrated in

Figure 5.3 on the PM ranker.

• From a given KG G and a set of Horn rules, EWS mining (Algorithm 3) is executed

to find exception candidates for each Horn rule in (1). As shown in Figure 5.3, a

Horn rule may have several exceptions.

• (2) shows that revisions with exceptions (rules r3, r4, r5, ...) are used to infer new

facts from the original KG.

• G′, i.e., the original KG G with new predicted facts, is exploited to rank exceptions

for each Horn rule in (3). The combination of steps (2) and (3) describes the

Chapter 5 RUMIS - Nonmonotonic Rule Mining System 29

Algorithm 4: PM Ranking

Input : KG G, set of positive rules RH

Output : Set of best revisions RNM for the given positive rules RH

1 RNM ← {}
2 foreach Rule r in RH do
3 G′ ← G
4 foreach Rule r′′ in RH , r′′ is different from r do
5 Generate safely predicted facts of r′′ w.r.t. G then index these facts to G′
6 end
7 Rank exceptions of r based on G′, choose r′ as the best revision of r
8 Add r′ to RNM

9 end
10 return RNM

interaction of different rules, i.e, facts generated by other revisions are taken into

account to measure quality of a particular nonmonotonic rule.

• (4) reflects the process in which exceptions are ranked by Component 5 according

to G′ from (3), and the best exception is chosen for the addition to the final revision

set.

PM ranking. Algorithm 4 describes PM ranking procedure, which takes as input

a KG and a set of positive rules RH and outputs a set RNM of their revisions. In line

1, a set of revised rules is initialized as an empty set. After that, for each positive rule

r in RH , we clone the original KG G to a new KG G′. Then all other rules in RH are

exploited to generate their safely predicted facts which are subsequently added to G′

(line 2 to 6) by Data Indexing component. Next, in lines 7 and 8, based on the new KG

G′, exceptions of r are ranked and the best revision is added to RNM . Finally, we return

RNM as an output of the algorithm.

OPM ranking. This function is similar to PM ranking. The major difference is

the way how the rules are selected for KG expansion. At the initial step, Horn rules are

sorted in decreasing order of conviction measure. After that, only safely predicted facts

from previous rules are exploited to assess the quality of a given rule r. In the OPM

ranking, the order of Horn rules matters, i.e., the higher is the conviction of a Horn rule,

the more prominent is its impact on other rules.

5.3 Optimization

In Algorithm 4, the KG G cloning and indexing procedures of the safely predicted facts

are executed |RH | and |RH |2 times, respectively. Since the number of facts in G and

30 Chapter 5 RUMIS - Nonmonotonic Rule Mining System

Algorithm 5: PM Ranking

Input : KG G, set of positive rules RH

Output : Set of best revisions RNM for the given positive rules RH

1 G′ ← G
2 RNM ← {}
3 foreach Rule r in RH do
4 Generate safely predicted facts of r w.r.t. G then index these facts to G′
5 end

6 foreach Rule r in RH do
7 Generate safely predicted facts of r w.r.t. G then remove these facts’ indexes

from G′
8 Rank exceptions of r based on G′, choose r′ as the best revision of r
9 Add r′ to RNM

10 Generate safely predicted facts of r w.r.t. G then index these facts to G′
(reverses step in line 7)

11 end
12 return RNM

positive rules can be large, these operations are time-consuming. We now discuss possible

optimizations of Algorithm 4, which concern the KG cloning and data indexing operations.

In Algorithm 5, we present possible refinements of Algorithm 4 for the PM ranking.

In lines 1 and 2 of the Algorithm 5, we clone the original graph G to G′ and create

an empty nonmonotonic ruleset RNM . After that, from line 3 to 5, for every Horn rule r

in RH , its safely predicted facts are added to G′ using the Data Indexing component.

Now RUMIS is ready to refine PM ranking. In line 7, for each Horn rule r, indexes

of its safely predicted facts are removed from G′. This step is needed in order to make

sure that safely predicted facts of all other rules apart from r are exploited to determine

the quality of r (line 8). This witnesses that the interaction between nonmonotonic rules

is taken into consideration during the ranking. After that, the best revision of r is added

to the final result in line 9. Line 10 shows a step that reverses what is done in line 7, i.e.,

safely predicted facts of the rule r based on G are added to G′ again. This guarantees

that the same state in the next iteration can be processed with a new rule.

With the optimized algorithm, we only need O(|RH |) operations for indexing new

predicted facts and one operation for cloning the KG. This is a significant improvement

compared to the original version of the algorithm. The difference is visible in practice if

the KG is large and many rules are considered.

Chapter 5 RUMIS - Nonmonotonic Rule Mining System 31

5.4 Usage

RUMIS 1 is developed and currently tested in Linux, we may extend it to Windows in

the future. The system requires the installation of Java 8 as well as the DLV 2 tool.

RUMIS supports the following main tasks:

• Training data generation: Given the ideal KG, the training KG is constructed

automatically by removing 20% of facts from G for every binary predicate.

• Horn rule mining: With the training KG, a list of Horn rules of the form h(X, Z)

← p(X, Y), q(Y, Z) can be learned exploiting Algorithm 1.

• Nonmonotonic rule mining: Based on the training KG, exceptions for each positive

rule are ranked and the best one is chosen to generate the revision.

• Automatic experiment: With the KGs G and Gi, the experiment can be executed to

measure the quality of revision sets and predict new facts from the training data.

In the rest of this section, we list the command line options of RUMIS and explain

them in details.

Command line options. The RUMIS system supports the following options:

• -d: This flag enables DLV in order to extend the KG.

• -e=[execution function]: This option requires a string as a function for execution.

Here new, pos, neg, exp correspond to creating a new learning KG, positve and

nonmonotonic rule mining and conducting the experiment, respectively.

• -f=[working folder path]: With this option, experiment folder path can be specified.

• -h: Option used to retrieve the help menu of the system.

• -l=[KG file path]: This requires a file path to the graph in the SPO format, which

enables users to choose the learning data.

• -o=[predicate ratio]: With this option, one can fix the percentage of facts to be

removed for the creation of a learning KG.

• -p=[Horn rule file path]: This requires a string as an Horn rule file path. Each line

in this file is a positive rule in the form h(X, Z) ← p(X, Y), q(Y, Z).

1https://github.com/htran010589/nonmonotonic-rule-mining
2http://www.dlvsystem.com/html/DLV_User_Manual.html

https://github.com/htran010589/nonmonotonic-rule-mining
http://www.dlvsystem.com/html/DLV_User_Manual.html

32 Chapter 5 RUMIS - Nonmonotonic Rule Mining System

• -r=[ranking]: Option allows one to specify the ranking type, i.e., 0, 1, 2 standing

for Naive, PM, OPM ranking, respectively.

• -s: This flag is used to enable sampling of the positive rules.

• -t=[number of top Horn rules]: This requires an integer as a number of positive

rules with the top absolute support that will be considered for revision.

Command examples. First of all, please download the repository3, and then

uncompress data/sample.imdb.txt.zip to get sample.imdb.txt file. In the next step, the

repository root folder should be located: $ cd nonmonotonic-rule-mining. Now we are

ready to present some command examples for using the RUMIS system.

Training data generation. A learning KG of the IMDB sample dataset can be

generated with predicate ratio of 80%: $ java -jar rumis-1.0.jar -e=new -l=data/sample.

imdb.txt -o=0.8 1>training.sample.imdb.txt. The generated file training.sample.imdb.txt

stores the learning KG.

Horn rule mining. The following command is used for executing IMDB Horn rule

mining: $ java -jar rumis-1.0.jar -e=pos -l=data/sample.imdb.txt. The horn-rules.txt

should be then stored in the same folder as the RUMIS jar file.

Nonmonotonic rule mining. The following command for executing IMDB nonmono-

tonic rule mining with OPM ranking can be run: $ java -jar rumis-1.0.jar -e=neg

-p=horn-rules.txt -l=data/sample.imdb.txt -r=2. One may just want to revise top 10

Horn rules with the -t option: $ java -jar rumis-1.0.jar -e=neg -p=horn-rules.txt -

l=data/sample.imdb.txt -r=2 -t=10. After these commands, revised-rules.txt in the root

folder is produced, which stores the computed nonmonotonic rules.

Automatic experiment. The working folder can be built as a directory data/exper-

iment/IMDB that contains all of the following files. First, sample.imdb.txt should be

renamed to ideal.data.txt in the directory. Second, the learning data of the ideal KG

should be sampled to training.data.txt. Third, one should generate horn-rules.txt as

an output of positive rule mining function applied to the learning data. If only some

positive rules need to be revised, one can list them in selected.horn-rules.txt. Finally,

DLV binary file should be downloaded to the working directory and renamed as dlv.bin.

The command that executes the experiment with OPM ranking and top 10 positive

rules (with DLV) is: java -jar rumis-1.0.jar -e=exp -f=data/experiment/IMDB/ -r=2

-t=10 -d 1>experiment.txt 2>log.

3https://github.com/htran010589/nonmonotonic-rule-mining

https://github.com/htran010589/nonmonotonic-rule-mining

Chapter 6

Evaluation

In this chapter, we present the evaluation results of the RUMIS system. We focus

on testing the quality of rule revisions in terms of the conviction measure, as well

the prediction quality. The chapter is organized as follows. First, the setting of the

experiment is discussed. Second, the quality of rulesets and the facts they predict are

assessed. Finally, we present the runtime performance of the system RUMIS on different

real-world datasets.

6.1 Setting

Dataset. To measure the quality of rules and their predictions, the ideal graph Gi, i.e.

the KG containing all true facts about the real world, is required. However, constructing

Gi is obviously not possible. Hence, instead we treat the given graph as an approximation

of the ideal KG Giappr . To obtain the available (training) KG Ga we remove from Giappr

20% of the facts for every binary relation, and retain all unary facts in Giappr . It is

guaranteed that there is no isolated vertex in Ga, i.e the node which is not connected to

any other nodes in the graph. In our experiment, YAGO3 [45], Wikidata Football and

IMDB 1 datasets are used as the ideal KGs. YAGO3 covers a variety of domains and

contains roughly 1.8 million entities, 38 predicates, and 20.7 million triples. Meanwhile,

IMDB only focuses on movie content collected from the IMDB website 2; there are 112K

entities, 38 predicates and 583K triples in this KG. To construct the Wikidata Football

for our experiments, we sample 1M facts with 238K entities and 443 predicates from the

football domain of the original Wikidata KG 3.

1http://people.mpi-inf.mpg.de/~gadelrab/downloads/ILP2016
2http://imdb.com
3https://www.wikidata.org

33

http://people.mpi-inf.mpg.de/~gadelrab/downloads/ILP2016
http://imdb.com
https://www.wikidata.org

34 Chapter 6 Evaluation

Figure 6.1 depicts the ideal, approximated and available KGs as well the extended

KGs GRH
, GRNM

obtained by respectively. applying RH and its revision RNM to Ga.

The RUMIS system aims to tackle the KG completion problem by reducing the difference

between the GRNM
and Gi.

Figure 6.1: The Ideal, Available and Extended KGs.

Experimental Setup. In our experiments, RUMIS is executed on a server which

has Linux OS, 40 cores and 400GB RAM memory. As the data preparation, positive rules

in the format h(X, Z) ← p(X, Y), q(Y, Z) are extracted from Ga and ranked according

to the absolute support measure. The positive rule mining function of RUMIS (see

Chapter 5) is exploited in this step. After that, the positive rules are revised following

the approach presented in Chapter 4. The conviction measure is used as the rm rule

measure. Various earlier described exception ranking strategies are then executed in

RUMIS. The resulting rule revisions are stored in RN , RPM and ROPM , respectively.

6.2 Ruleset Quality

We present the evaluation results of the rule quality assessment in Table 6.1 and 6.2 for

YAGO, IMDB and Wikidata Football, respectively. For every row in the tables, we fix

the top-k (k = 5, 30, ... 100) positive rules RH that will be subsequently revised. Then

the average conviction of the rules and their revisions are found for YAGO, IMDB and

Wikidata Football using RUMIS. Naturally, the quality of the revised rules is better than

that of their positive versions w.r.t. conviction. Besides, in general while the average

quality of every column has a decreasing trend with the appearance of rules having lower

precision, the enhancement ratio between positive rules and their revisions increases and

reaches the peak of 7.8% and 10.3% for top-100 IMDB and top-30 Wikidata Football

rules, respectively. The results show that the introduction of negated atoms significantly

boosts up the rules’ precision.

Chapter 6 Evaluation 35

topk
YAGO IMDB

RH RN RPM ROPM RH RN RPM ROPM

5 1.3784 1.3821 1.3821 1.3821 2.2670 2.3014 2.3008 2.3014

30 1.1207 1.1253 1.1236 1.1237 1.5453 1.5644 1.5543 1.5640

50 1.0884 1.0923 1.0909 1.0913 1.3571 1.3749 1.3666 1.3746

60 1.0797 1.0837 1.0823 1.0829 1.3063 1.3221 1.3143 1.3219

70 1.0714 1.0755 1.0736 1.0744 1.2675 1.2817 1.2746 1.2814

80 1.0685 1.0731 1.0710 1.0720 1.2368 1.2499 1.2431 1.2497

100 1.0618 1.0668 1.0648 1.0659 1.3074 1.4100 1.3987 1.4098

Table 6.1: The average quality of the Top Positive and Nonmonotonic Rules for YAGO,
IMDB.

topk
Wikidata Football

RH RN RPM ROPM

5 3.2282 3.2342 3.2340 3.2342

30 3.1118 3.4315 3.4194 3.4271

50 2.7115 2.9193 2.9070 2.9135

60 2.4930 2.7101 2.6986 2.7046

70 2.3395 2.5272 2.3931 2.5219

80 2.4071 2.5781 2.4597 2.5734

100 2.3258 2.4847 2.3859 2.4806

Table 6.2: The average quality of the Top Positive and Nonmonotonic Rules for
Wikidata Football.

The enhancement ratio between revisions of the three ranking methods and the top

positive rules is shown in Figure 6.2, 6.3 and 6.4 for IMDB, YAGO and Wikidata

Football, respectively. In these figures, the height and the width are corresponding to the

number k of top-k rules considered and the improvement rate of the average conviction.

One can observe that the rate has an uptrend. In general, the addition of the lower

quality Horn rules to the top ruleset, leads to the increase in the improvement rate. The

Naive ranking shows the best results w.r.t. the rule quality, which is obviously expected.

For the IMDB dataset, the results of Naive and OPM rankings are roughly the same

and slightly better than those of PM ranking. For the top-100 rules, the best average

improvement of 7.8% is achieved. It can be seen that the quality of positive rules around

top-100 are much worse than the rest, resulting in the sharp increase of enhancement

ratio between top-80 and top-100 in Figure 6.2.

Figure 6.3 shows that in general the improvement rates for the average conviction in

YAGO increase. However, the contrast between the highest and the lowest conviction in

this figure is not as large as in the IMDB dataset, since the quality of the top-100 Horn

rules in YAGO does not vary much.

As regards the Wikidata Football, Figure 6.4 witnesses an interesting pattern where

the improvement rate significantly grows from top-5 to top-30. It can be seen that

36 Chapter 6 Evaluation

Figure 6.2: The average conviction improvement rate (%) of rules revised using our
methods for the IMDB dataset.

Figure 6.3: The average conviction improvement rate (%) of rules revised using our
methods for the YAGO dataset.

RUMIS mines very good exceptions for positive rules around top-30, resulting in a peak

of more than 10% enhancement ratio for this dataset.

Chapter 6 Evaluation 37

Figure 6.4: The average conviction improvement rate (%) of rules revised using our
methods for the Wikidata Football dataset.

6.3 Prediction Quality

We now describe the evaluation procedure for estimating the predictive quality of the

revised rules. Among top-50 (for IMDB, YAGO3) and top-300 (for Wikidata Football)

positive rules mined from the KG, 5 are sampled as RH . Then the revision procedure

is applied for these rules. After that, the predictions of the rules from RH and their

revisions are analyzed to evaluate our approaches.

To this end, these rulesets are applied to the learning KG Ga and the corresponding

predicted facts are generated by DLV tool [27]. Subsequently, we obtain GRH
, GRN

,

GRPM
and GROPM

for RH and revisions of RH , respectively. The statistics is shown in

Table 6.3, where the first three columns indicate the head relations of the rules in RH ,

the number of new predictions, i.e. predicted facts not included in Ga and the part of

these predictions which are outside of Giappr , respectively. The statistics in the second

and third columns is available for positive rules and all of their revisions.

One can see that not many predicted facts are included in Giappr (≈9% for IMDB

and ≈2% for YAGO ideal KGs). This can be explained by the fact that YAGO is a

highly incomplete general purpose KG. Moreover, it is crucial to note that the sampled

Horn rules and their revisions generate approximately the same number of correctly

predicted facts which are present in Giappr . More specifically, in all three datasets we

have GRH
\GRPM

∩ Giappr = ∅ meaning that the grey region in Figure 6.1 is disjoint with

38 Chapter 6 Evaluation

predicate
predictions outside approx. ideal KG corr. removed %

RH RN RPM ROPM RH RN RPM ROPM RN RPM ROPM

I :actedIn 1231 1214 1230 1214 1148 1131 1147 1131 90 100 90
I :genre 629 609 618 609 493 477 482 477 50 20 50
I :hasLang 173 102 125 102 163 92 115 92 60 100 60
I :prodIn 2489 2256 2327 2327 2488 2255 2326 2326 10 10 30

52.50 45.16 57.75

Y :direct 41079 39174 39174 39174 41021 39116 39116 39116 100 100 100
Y :grFrom 3519 3456 3456 3456 3363 3300 3300 3300 100 100 70
Y :citizOf 3407 2883 2883 2883 3360 2836 2836 2836 50 50 70
Y :bornIn 110283 108317 109846 108317 109572 107607 109137 107607 90 90 100

85 85 85

W :occupa 530 483 528 528 509 462 507 507 80 100 100
W :citizOf 606 580 604 603 528 503 526 525 100 100 100
W :diedIn 16483 14516 16174 16253 16395 14429 16086 16165 100 100 100
W :bornIn 3669 3625 3620 3620 3604 3561 3555 3555 100 90 90

95 97.5 97.5

Table 6.3: New facts predicted by the rulesets for IMDB (I), YAGO (Y) and Wikidata
Football (W).

the approximated ideal KG in Figure 6.1, in other words, the addition of exceptions does

not lead to the removal of correct predictions from Giappr .

To guarantee the fairness of the comparison between predictions generated by different

rulesets, it is necessary to keep the RH not totally incorrect. Indeed, provided that the

sampled positive rules always generate inaccurate facts, inserting arbitrary negated atoms

may filter out some incorrect predictions, resulting in the rule enhancement, however, the

rules themselves would still be of a poor quality. Furthermore, observe that the number

of predictions made by RH outside Giappr (third column of Table 6.3) is rather large. To

verify these predictions, unfortunately no ground truth is available. Thus, we have to

manually check the generated facts using the Internet resources. Since the number of the

facts to be checked is huge, we randomly select maximum 20 new predictions for each

head predicate in RH and verify them. For the IMDB, YAGO and Wikidata Football,

70%, 30% and 55% of predictions respectively turned out to be indeed correct. This

shows that the quality of the positive rules that we start with is acceptable.

Since the size of the set difference between predictions made by RH and extended

by applying RH and its revisions is also huge, we have to proceed further with sampling

to evaluate the predictive quality of the revisions. Here, for each head relation from the

set differences GRH
\GRN

, GRH
\GRPM

and GRH
\GROPM

, maximum 10 facts 4 have been

randomly sampled for manual check. In the last column of Table 6.3, the proportions

of incorrect facts in the difference sets are presented. These facts are called “correctly

removed”, since they correspond to false prediction made by RH but avoided by the

respective revisions (the grey region in Figure 6.1). For the IMDB dataset, among all the

revision strategies, OPM ranking always performs best with 57.75% and 97.5% correctly

4For both IMDB and YAGO, exactly 20 and 10 new predictions in respectively GRH and each difference
set are sampled to evaluate.

Chapter 6 Evaluation 39

r1 : writtenBy(X ,Z)← hasPredecessor(X ,Y),writtenBy(Y ,Z), not american film(X)

r2 : actedIn(X ,Z)← isMarriedTo(X ,Y), directed(Y ,Z), not silent film actor(X)

r3 : isPoliticianOf (X ,Z)← hasChild(X ,Y),isPoliticianOf (Y ,Z),not vicepresidentOfMexico(X)

r4 : hasCitizenship(X ,Z)← hasFather(X ,Y),hasCitizenship(Y ,Z),not countryOfTheUK (Z)

Figure 6.5: Examples of the Revised Rules

removed predictions for IMDB and Wikidata Football, respectively. Meanwhile, all the

rankers demonstrate the same results (85%) for the YAGO KG. Since the predictive

power of the positive rules in IMDB is better than those in YAGO, the revision of the

latter makes a more visible impact than the former.

6.4 Running Times

In our experiment, top-100 positive rules are mined from IMDB and YAGO, while this

number for Wikidata Football is 300. Table 6.4 provides statistics about running times

(in seconds) of three different steps in the RUMIS system. More specifically, the second

row of this table indicates how long it taks RUMIS to mine Horn rules and exception

witness sets. In addition, the third and fourth rows present the average running times

(over three ranking methods Naive, PM, OPM) of respective ranking exceptions and

extending KGs using DLV.

Steps IMDB YAGO Wikidata Football

Horn rule and EWS mining 7 68 193
Exception ranking 32 111 2940

Extension with DLV 8 310 180

Table 6.4: Running times for each step of the three datasets

It can be seen that the numbers for Wikidata Football for the first two steps are the

largest, since the quantity of positive rules mined from this dataset is much bigger than

that for IMDB or YAGO. Meanwhile, among the three datasets, YAGO has the most

number of facts, resulting in the longest time to extend the KG using DLV (310 seconds).

Example rules. Some interesting examples of the rules mined by RUMIS are

presented in the Figure 6.5. Here, the rule r1 mined from IMDB dataset indicates that

normally movies in the same series are written by the same writer except the American

movies. The rule r3 generated from YAGO reveals an interesting pattern from domain

of politics, i.e, typically fathers and sons are politicians in the same country unless the

fathers are Mexican vice-presidents. Being mined from Wikidata Football, the rule r4

shows that fathers and sons usually have the same citizenship, except for the case when

the father holds a citizenship of the United Kingdom.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Advances in Information Extraction have led to the construction of large KGs in the

form of 〈subject predicate object〉 triples. However, due to the automatic construction,

these KGs can be incomplete. Horn rule mining is a popular approach to address this

issue [17].

In this thesis we have looked at the problem of enhancing the quality of positive

rules and subsequently improving the accuracy of their predictions, by revising the mined

rules into the nonmonotonic ones. We follow the ideas from [16] where the same problem

was studied for KGs containing only unary facts. Meanwhile, RUMIS tool implemented

in our research generates nonmonotonic rules from KGs in their original format.

We have extended the results from [16] to KG revision in their original relational

form and developed the RUMIS system, for learning nonmonotonic rules in KGs under

the OWA. Subsequently, the chosen revisions are exploited to extend the original data,

and thus, they are suitable for tackling the KG completion problem. Some experiments

in the thesis are conducted for testing quality of rules generated by RUMIS and the

results demonstrate that the proposed approach outperforms the state of the art KG

rule learning systems w.r.t. to the quality of the made predictions.

7.2 Future Directions

We now discuss possible future directions.

41

42 Chapter 7 Conclusions and Future Work

• Tackle language bias challenge. In this work we have fixed the language bias

of the rules to be mined. Certainly, a promising and natural direction is to extend

our results to further rule forms and make the language bias more flexible. The

language bias can be manually specified by users, which should make the RUMIS

system less restrictive and diversify possible revisions. Another possible future

direction is to consider existential operators in the heads of the positive rules, e.g.,

∃ Y hasParent(X, Y) ← person(X).

• Enriching exception forms. Currently RUMIS only supports one exception in

the body and this exception is the relation between variables in the head or a unary

atom. To extend the form of nonmonotonic rules, we can increase the number of

exceptions in the body of the revision. E.g., an interesting rule like isCitizenOf(X,

Y) ← bornIn(X, Y), not manager(X), not isAsiaCountry(Y) could then be mined.

• Optimizations. Due to the large size of the KGs, data indexing is a time burden

step in our implementation. Thus, a natural optimization direction is to store the

facts in a database and to build a web service for finding results of conjunctive

relational queries. Thanks to this technique, we will only build the service once at

the beginning, and the data indexing step will not be necessary for every execution of

the RUMIS system. Hence, the total time of the experiment should be significantly

reduced.

• Try more rule measures. Other predictive measures and exception evaluation

methods can be tested to search for interesting nonmonotonic rules. A survey in [3]

specifies a variety of choices for predictive rule measures, where conviction is only

one of them.

• N-ary facts. In YAGO and IMDB datasets, the facts are three-dimensional, i.e.,

each of them contains a subject, a predicate and an object. The Wikidata Football

dataset exploited in the experiments has the same property, i.e., it is extracted

from simplified version of original Wikidata where all facts are projected to three-

dimensional space. One possible future extension would be to take the n-ary facts,

i.e., facts containing n-parameters, into consideration. E.g., the five-dimensional

fact <Ronaldo> <playsFor> <Manchester United> <in> <2008> may appear in

the full Wikidata KG.

• Training KG random sampling. In our current experiment, every learning KG

is chosen from the ideal KG by removing 20% of facts for each binary predicate.

This setting is a bit restrictive, because it tries to maintain the distribution of

facts over the predicates. It is worth testing the quality of predictions generated

by RUMIS if the training data is chosen randomly by varying the percentage of

the retained facts for every relation.

Chapter 7 Conclusions and Future Work 43

• Optimize DLV. DLV running time is a burden in the current system. Indeed, for

very large KGs and 10 revised rules, it takes up to days to produce predictions.

Since completing a given KG is one of the main goals of the tool, optimizations of

the DLV tool should be studied to make sure that the total run time performance

is acceptable.

• Facts with probability. For our experiment, the facts in the given KG are always

true, which is not always the case, where some facts might be totally wrong. Indeed,

modern KGs might contain incorrect triples, since their large parts are constructed

automatically by information extraction techniques. As a possible future direction,

probability can be assigned to facts in the training KG as the weight, and taken into

account during the rule learning and revision. This will result in new predictions

with confidence weights assigned to them.

Bibliography

[1] A survey of current link discovery frameworks. Semantic Web, (Preprint):1–18, 2015.

[2] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri

Verkamo. Advances in knowledge discovery and data mining. chapter Fast Discovery of

Association Rules, pages 307–328. American Association for Artificial Intelligence, Menlo

Park, CA, USA, 1996.

[3] Paulo J. Azevedo and Aĺıpio M. Jorge. Comparing Rule Measures for Predictive Association

Rules, pages 510–517. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J. Semantic

Web Inf. Syst., 5(3):122, 2009.

[5] A. Bordes, J. Weston, R. Collobert, and Y. Bengio. Learning structured embeddings of

knowledge bases. In AAAI, 2011.

[6] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic itemset

counting and implication rules for market basket data. SIGMOD Rec., 26(2):255–264, June

1997.

[7] Volha Bryl and Christian Bizer. Learning conflict resolution strategies for cross-language

wikipedia data fusion. In Proceedings of the 23rd International Conference on World Wide

Web, WWW ’14 Companion, pages 1129–1134, New York, NY, USA, 2014. ACM.

[8] Yang Chen, Sean Goldberg, Daizy Zhe Wang, and Soumitra Siddharth Johri. Ontological

Pathfinding: Mining First-Order Knowledge from Large Knowledge Bases. In in Proc. of

SIGMOD 2016, page to appear, 2016.

[9] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive Logic Programming as

Abductive Search. In Manuel Hermenegildo and Torsten Schaub, editors, Technical Commu-

nications of the 26th International Conference on Logic Programming, volume 7 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 54–63, Dagstuhl, Germany, 2010.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[10] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski. Completeness Statements

about RDF Data Sources and Their Use for Query Answering. In Proceedings of ISWC,

pages 66–83, 2013.

45

46 BIBLIOGRAPHY

[11] Luc Dehaspe and Luc De Raedt. Mining association rules in multiple relations. In Nada

Lavrac and Saso Dzeroski, editors, Inductive Logic Programming, 7th International Workshop,

ILP-97, Prague, Czech Republic, September 17-20, 1997, Proceedings, volume 1297 of Lecture

Notes in Computer Science, pages 125–132. Springer, 1997.

[12] Luc Dehaspe and Luc De Raedt. Mining association rules in multiple relations. In Nada

Lavrac and Saso Dzeroski, editors, Inductive Logic Programming, 7th International Workshop,

ILP-97, Prague, Czech Republic, September 17-20, 1997, Proceedings, volume 1297 of Lecture

Notes in Computer Science, pages 125–132. Springer, 1997.

[13] Luc Dehaspe and Hannu Toironen. Relational data mining. chapter Discovery of Relational

Association Rules, pages 189–208. Springer-Verlag New York, Inc., New York, NY, USA,

2000.

[14] Luc Dehaspe and Hannu Toivonen. Discovery of frequent datalog patterns. Data Mining

and Knowledge Discovery, 3(1):7–36, 1999.

[15] Arnab Dutta, Christian Meilicke, and Simone Paolo Ponzetto. A Probabilistic Approach

for Integrating Heterogeneous Knowledge Sources, pages 286–301. Springer International

Publishing, Cham, 2014.

[16] Mohamed H. Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard Weikum. Exception-

Enriched Rule Learning from Knowledge Graphs, pages 234–251. Springer International

Publishing, Cham, 2016.

[17] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule mining

in ontological knowledge bases with amie $$+$$ +. The VLDB Journal, 24(6):707–730,

2015.

[18] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.

pages 1070–1080. MIT Press, 1988.

[19] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning (Adaptive

Computation and Machine Learning). The MIT Press, 2007.

[20] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without

candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge

Discovery, 8(1):53–87, 2004.

[21] Katsumi Inoue. Learning extended logic programs. In In Proceedings of the 15th International

Joint Conference on Artificial Intelligence, pages 176–181. Morgan Kaufmann, 1997.

[22] Xueyan Jiang, Volker Tresp, Yi Huang, and Maximilian Nickel. Link prediction in multi-

relational graphs using additive models. In Proceedings of the 2012 International Conference

on Semantic Technologies Meet Recommender Systems & Big Data - Volume 919,

SeRSy’12, pages 1–12, Aachen, Germany, Germany, 2012. CEUR-WS.org.

[23] Joanna Józefowska, Agnieszka Lawrynowicz, and Tomasz Lukaszewski. The role of semantics

in mining frequent patterns from knowledge bases in description logics with rules. CoRR,

abs/1003.2700, 2010.

BIBLIOGRAPHY 47

[24] A. C. KAKAS, R. A. KOWALSKI, and F. TONI. Abductive logic programming. Journal of

Logic and Computation, 2(6):719–770, 1992.

[25] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Rev.,

51(3):455–500, August 2009.

[26] Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for learning answer set

programs, 2015.

[27] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,

and Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM

Transactions on Computational Logic (TOCL), 7(3):499–562, 2006.

[28] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.

[29] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[30] Emir Muñoz, Aidan Hogan, and Alessandra Mileo. Triplifying wikipedia’s tables. In

Proceedings of the First International Conference on Linked Data for Information Extraction

- Volume 1057, LD4IE’13, pages 26–37, Aachen, Germany, Germany, 2013. CEUR-WS.org.

[31] Stephen Muggleton. Inverse entailment and progol. New Generation Computing, 13(3):245–

286, 1995.

[32] Stephen Muggleton and Luc de Raedt. Special issue: Ten years of logic programming

inductive logic programming: Theory and methods. The Journal of Logic Programming,

19:629 – 679, 1994.

[33] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of

relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33,

2016.

[34] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective

learning on multi-relational data. In Lise Getoor and Tobias Scheffer, editors, Proceedings

of the 28th International Conference on Machine Learning (ICML-11), ICML ’11, pages

809–816, New York, NY, USA, June 2011. ACM.

[35] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: scalable machine

learning for linked data. In Proceedings of the 21st international conference on World Wide

Web, WWW ’12, pages 271–280, New York, NY, USA, 2012. ACM.

[36] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation

methods. Semantic Web Journal, 2015.

[37] Heiko Paulheim and Simone Paolo Ponzetto. Extending dbpedia with wikipedia list pages.

In NLP-DBPEDIA 2013 : Proceedings of the NLP & DBpedia workshop co-located with the

12th International Semantic Web Conference (ISWC 2013), volume 1064, pages 1–6, Aachen,

2013. RWTH.

[38] J. R. Quinlan and R. M. Cameron-jones. Foil: A midterm report. In In Proceedings of the

European Conference on Machine Learning, pages 3–20. Springer-Verlag, 1993.

48 BIBLIOGRAPHY

[39] J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239–266,

1990.

[40] Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3):329 –

340, 2009. Special Issue: Abduction and Induction in Artificial Intelligence.

[41] Sebastian Riedel, Limin Yao, Benjamin M. Marlin, and Andrew McCallum. Relation

extraction with matrix factorization and universal schemas. In Joint Human Language

Technology Conference/Annual Meeting of the North American Chapter of the Association

for Computational Linguistics (HLT-NAACL ’13), June 2013.

[42] Dominique Ritze, Oliver Lehmberg, and Christian Bizer. Matching html tables to dbpedia. In

Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics,

WIMS ’15, pages 10:1–10:6, New York, NY, USA, 2015. ACM.

[43] Chiaki Sakama. Induction from answer sets in nonmonotonic logic programs. ACM Trans.

Comput. Log., 6(2):203–231, 2005.

[44] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning

With Neural Tensor Networks For Knowledge Base Completion. In Advances in Neural

Information Processing Systems 26. 2013.

[45] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic

knowledge. In Proceedings of the 16th International Conference on World Wide Web, WWW

’07, pages 697–706, New York, NY, USA, 2007. ACM.

[46] Zhichun Wang and Juan-Zi Li. Rdf2rules: Learning rules from RDF knowledge bases by

mining frequent predicate cycles. CoRR, abs/1512.07734, 2015.

[47] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang

Lin. Knowledge base completion via search-based question answering. In Proceedings of the

23rd International Conference on World Wide Web, WWW ’14, pages 515–526, New York,

NY, USA, 2014. ACM.

[48] Fei Wu, Raphael Hoffmann, and Daniel S. Weld. Information extraction from wikipedia:

Moving down the long tail. In Proceedings of the 14th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’08, pages 731–739, New York, NY,

USA, 2008. ACM.

[49] Mohammed J. Zaki and Wagner Meira Jr. Data Mining and Analysis: Fundamental Concepts

and Algorithms. Cambridge University Press, New York, NY, USA, 2014.

[50] Qiang Zeng, Jignesh M. Patel, and David Page. QuickFOIL: Scalable Inductive Logic

Programming. PVLDB, 8(3):197–208, 2014.

[51] Qiang Zeng, Jignesh M. Patel, and David Page. QuickFOIL: Scalable Inductive Logic

Programming. PVLDB, 8(3):197–208, 2014.

[52] Chengqi Zhang and Shichao Zhang. Association Rule Mining: Models and Algorithms.

Springer-Verlag, Berlin, Heidelberg, 2002.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 State of the Art and Its Limitations
	1.3 Goals
	1.4 Contributions
	1.5 Structure

	2 Related Work
	2.1 Semantic Web
	2.2 Statistics-based Approaches for Relational Learning
	2.3 Logic-based Approaches for Relational Learning
	2.3.1 Inductive Logic Programming Systems
	2.3.2 Relational Learning Systems
	2.3.3 Nonmonotonic Rule Mining Systems

	2.4 Text-based Approaches for Relational Learning

	3 Background
	3.1 Nonmonotonic Logic Program
	3.2 Knowledge Graph Completion
	3.3 Association Rule Mining in Relational Setting

	4 A Theory Revision Framework for Rule-based KG Completion
	4.1 Problem Statement
	4.2 Methodology

	5 RUMIS - Nonmonotonic Rule Mining System
	5.1 System Overview
	5.2 Implementation
	5.2.1 Data Indexing
	5.2.2 Positive Rule Mining
	5.2.3 Normal and Abnormal Set Mining
	5.2.4 Exception Witness Set Mining
	5.2.5 Measure Plugin
	5.2.6 Exception Ranking

	5.3 Optimization
	5.4 Usage

	6 Evaluation
	6.1 Setting
	6.2 Ruleset Quality
	6.3 Prediction Quality
	6.4 Running Times

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Directions

	Bibliography

