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Abstract

The development of intelligent systems based on structured representation of knowledge
that are capable of exhibiting human-like reasoning is a key goal of artificial intelligence
in general and the field of knowledge representation research in particular. Advances
in the latter have given rise to various formalisms motivated by different application
domains. The most prominent families of such formalisms are ontologies in Description
Logics (DLs) and nonmonotonic logic rules. While ontologies are well-suited for termi-
nological modelling especially in the Semantic Web context, rules are widely accepted for
common-sense reasoning and solving difficult search problems using declarative means.
Many multi-purpose and task-specific applications, however, require a combination of
ontologies and rules.

The need for such a combination has led to the development of different approaches
within Hybrid Knowledge Bases (KBs). Among several others, loose coupling has
emerged as a prominent approach, in which an ontology and rules are treated sepa-
rately, although, a level of interaction between them is permitted via a well-defined
interface. Description Logic (DL)-programs are a representative of loosely coupled hy-
brid KBs. The bidirectional information exchange between rules and ontology realized
in DL-programs makes them powerful systems that can be effectively used for solving
advanced reasoning tasks on top of ontologies.

However, this sophisticated information flow can also be a reason for inconsistencies
which, as practice shows, occur in DL-programs. An inconsistent system does not yield
any useful information, and as such is viewed as broken and in need of repair. Due to
a possibly complex interaction between the rules and ontology, the repair problem is
far from trivial and represents a significant challenge. Unfortunately, currently available
engines for evaluation of DL-programs (e.g. dlvhex, DReW) suffer from the inability to
handle inconsistencies with ease. This forms a major obstacle to wider acceptance of
such systems.

Therefore, the aim of this thesis is the development of a sophisticated framework
for handling inconsistencies in DL-programs. The main results of the effort are briefly
summarized below:

• We offer a novel general repair semantics for DL-programs, and facilitate its prac-
tical applicability by applying formal methods in computer science to analyze com-
putational complexity.
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• We develop algorithms for repairing inconsistent DL-programs over lightweight
DLs as well as techniques for their optimization.
• Our repair approach is implemented within the dlvhex system and evaluated on a
set of benchmarks. The conducted experiments have revealed the effectiveness of
our algorithms both in terms of the performance and quality of computed repairs.



Kurzfassung

Die Entwicklung von intelligenten Systemen auf Basis strukturierter Darstellung von
Wissen, welche in der Lage sind, menschenähnlich zu schlussfolgern ist das wichtigste
Ziel der Künstlichen Intelligenz im Allgemeinen und des Forschungsgebiets der Wissens-
repräsentation und -verarbeitung im Besonderen. Fortschritte in diesem Bereich haben
zu unterschiedlichen Formalismen geführt, die durch verschiedene Anwendungsgebiete
motiviert sind. Die prominentesten Familien von solchen Formalismen sind Ontologien
basierend auf Beschreibungslogiken (engl. Description Logics, DLs) und nicht-monotone
logische Regeln. Während sich Ontologien sehr gut zur Modellierung von Terminologien
insbesonders im Semantic Web Kontext eignen, werden Regeln häufig für Schließen mit
Hausverstand (engl. common-sense reasoning) verwendet sowie zur Lösung schwieriger
Suchprobleme mit deklarativen Mitteln. Zahlreiche Mehrzweck- und aufgabenspezifische
Anwendungen erfordern jedoch eine Kombination aus Ontologien und Regeln.

Der Bedarf für eine solche Kombination hat zur Entwicklung verschiedener Ansät-
ze zu sogenannten hybriden Wissensbasen (engl. hybrid knowledge bases, hybrid KBs)
geführt. Neben mehreren anderen Ansätzen ist die lose Kopplung als prominenter An-
satz entstanden, in dem eine Ontologie und Regeln getrennt behandelt werden jedoch
eine Interaktionsebene dazwischen über eine gut definierte Schnittstelle erlaubt ist. Be-
schreibungslogik (DL) Programme sind für lose gekoppelte hybrid KBs repräsentativ.
Der in DL-Programmen realisierte bidirektionale Informationsaustausch zwischen den
Regeln und der Ontologie macht diese zu leistungsfähige Systemen, die effektiv zur Lö-
sung von anspruchsvollen Schlussfolgerungsproblemen über einer Ontologie verwendet
werden können.

Allerdings kann der beidseitige Informationsfluss auch ein Grund für Inkonsistenzen
(Widersprüche) sein, die, wie die Praxis zeigt, bei DL-Programmen durchaus auftreten.
Eine inkonsistentes System liefert keine nützliche Information; es wird als defekt und
reparaturbedürftig angesehen. Aufgrund des komplexen Zusammenspiels zwischen den
Regeln und der Ontologie, ist das Reparaturproblem alles andere als trivial und stellt eine
bedeutende Herausforderung dar. Unglücklicherweise sind die gegenwärtig verfügbaren
Softwaresysteme für die Evaluierung von DL-Programmen (z.B. dlvhex, DReW) unfähig,
Unstimmigkeiten mit Leichtigkeit zu behandeln. Dies stellt ein großes Hindernis für eine
breitere Akzeptanz von DL-Programmen dar.

Das Ziel dieser Arbeit ist daher die Entwicklung eines ausgefeilten Rahmens für
den Umgang mit Inkonsistenzen in DL-Programmen. Die wichtigsten Ergebnisse unserer
Bemühungen dazu sind nachstehend kurz zusammengefasst:
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• Wir bieten eine neue, allgemeine Reparatur-Semantik für DL-Programme, und
wir ermöglichen ihre praktische Anwendbarkeit durch die Anwendung formaler
Methoden in der Informatik zur Analyse ihrer Berechnungskomplexität um den
Entwurf zu unterstützen.
• Wir entwickeln Algorithmen für die Reparatur von inkonsistenten DL-Programmen
mit Ontologien, die in Schmalspur-Beschreibungslogiken (sogenannten „Lightweight
DLs”) formuliert sind, sowie Verfahren zu deren Optimierung.
• Unsere Reparatur-Ansatz ist im dlvhex System implementiert und wird auf ei-

ner Reihe Teställen evaluiert. Die durchgeführten Experimente zeigen, dass unsere
Algorithmen sowohl in Bezug auf die Leistung als auch auf die Qualität der be-
rechneten Reparaturen effektiv sind.
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CHAPTER 1
Introduction

This thesis is primarily concerned with the development of methods and algorithms for
repairing inconsistent loosely-coupled hybrid Knowledge Bases (KBs). We focus our
attention on a prominent example of hybrid KBs, the so-called DL-programs.

Roughly put, in this work we develop a framework for repairing inconsistencies in
DL-programs, analyze its complexity as well as provide its implementation and thorough
evaluation.

After motivating this work in the next section, we formulate the goals of this thesis in
Section 1.2, and conclude by summarizing our main results in Section 1.3 and structure
of this document in Section 1.4.

1.1 Motivation and Background
Artificial Intelligence (AI) is a wide and intensively growing field of research, that aims
at creating intelligent machines [RN10]. These should be capable of rational thought and
purposeful action to effectively interact with the surrounding environment. The tasks
the intelligent systems are expected to solve require a considerable amount of complex
background knowledge about the world. Knowledge representation (KR) is a subfield of
AI which is primarily concerned with the study of formalisms for representing different
types of knowledge as well as reasoning algorithms for such formalisms [Lev84].

The development of various logical formalisms for KR has received tremendous at-
tention in the recent years. Here, Description Logics (DLs) [BCM+07] is applied as
a widely accepted and mature formalism, based on decidable fragments of First-Order
Logic (FOL) and closely related to semantic networks [BMPS+91]. DLs are relevant for
constructing ontologies, which are conceptualizations of an application domain shared by
various task-specific applications. Ontologies describe a given subject domain in terms
of concepts, corresponding to sets of domain objects, and roles, depicting relationships
among these sets. Ontologies have been remarkably successful in a number of areas,
including health care, life science and Semantic Web.
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In health care ontologies are extensively used for managing large terminologies e.g.
SNOMED [JS08], GALEN [RGG+94], International Classification of Diseases1. In Bi-
ology and Chemistry they are applied for description of experimental results and other
types of data, e.g. Gene Ontology, Sequence Ontology, Protein Ontology, etc. (see the
BioPortal2). Ontologies play an important role in the Semantic Web [BF00], which is
the next generation of the World Wide Web, where information stored on web pages is
machine processable and can be accessed by automatic agents. In this context, ontologies
are aimed at describing and structuring complex Web resources and enabling automated
reasoning over them. Evident success of ontologies in a range of disciplines motivated the
World Wide Web Consortium (W3C) to propose the Web Ontology Languages (OWL)
as a standard for constructing ontologies.

However, DLs and consequently OWL languages, are insufficiently expressive for the
requirements of certain practical problems. For instance, they cannot model closed-world
reasoning, nor can they express nonmonotonicity. These features are often essential in
various application scenarios. To bridge this gap, knowledge representation approaches
which rely on rules in the sense of logic programming (LP) have been developed to
the extent that now they are of great importance in different fields. In databases rule
languages and their implementations are accepted as efficient and also sufficiently ex-
pressive means for querying data repositories. Moreover, rule languages play a vital role
in AI in general, where they are effectively used as tools for declarative problem solving.
Computationally hard problems can be represented in terms of nonmonotonic logic rules
in such a way that the solutions of the former correspond to the models of the latter.
This idea is based on the so-called Answer Set Programming (ASP) paradigm [GL91a].

While DLs are focused on specifying and reasoning about conceptual knowledge,
logic rules serve well for reasoning about individuals; furthermore they target issues
associated with nonmonotonic inference as well as non-determinism. Many applications,
however, require both the features of DLs and rules. Thus, the natural solution of
bringing the representatives of the two together has given rise to Hybrid Knowledge
Bases [LNS96], which are referred to as a combination of rules and ontologies. There are
two main approaches for the depicted combination: tight-coupling and loose-coupling.
The tight-coupling approach is based on the idea of combining the components through
a unified encoding, i.e. it aims at using a single formalism to represent the information;
the examples include SWRL [HPSB+04], r-hybrid KBs [Ros05] and ELP [KRH08]. The
tight-coupling approach works in some cases; however if the pieces of information encoded
in the ontology and rules have (completely) different structures, this method might be
very costly to implement. A better approach, in such a setting is termed loose-coupling.
Although it treats ontology and rules separately, it still permits a level of interaction
between them via a well-defined interface. The list of loosely-coupled KBs contains
F-Logic KBs [HKE+10], which serve well for reasoning both about classes as well as
individuals and DL-programs [EIL+08].

In this work we concentrate on Description Logic (DL-)programs, which is a promi-

1http://www.who.int/classification/icd/en
2http://bioportal.bioontology.org
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Rules Ontology

DL-atom 1

DL-atom 2

Figure 1.1: Bidirectional information flow in DL-programs

nent realization of the loosely-coupled hybrid KBS. Roughly speaking, a DL-program Π
consists of a pair Π = 〈O,P〉 of an ontology O and a rule set P, where in the bodies of
the rules in P so-called DL-atoms of the form DL[λ; Q](~t) may occur. Informally, Q(~t) is
a query to O (also known as DL-query), and λ is a list of update operations S op p which
specify assertions S(~c) resp. ¬S(~c) for O depending on the rules predicate p. These
assertions are calculated from the valuations of p and temporally added to O before the
query Q(~t) is evaluated. Similarly as in logic programs, the semantics of DL-programs is
given in terms of their models (answer sets), which are certain interpretations over the
signature of P [EIL+08]. DL-programs are a powerful framework for knowledge repre-
sentation. One of the main reasons behind the increasing popularity of DL-programs is
the availability of sophisticated solvers (e.g. dlvhex, DReW).

The bidirectional information flow arranged between the ontology and the rules in
DL-programs through DL-atoms (see Figure 1.1) makes them highly powerful systems,
capable of effectively solving advanced reasoning problems on top of ontologies. How-
ever, there is a high possibility of recurring inconsistencies in such hybrid systems. As
practice shows, conflicting information might easily arise in DL-programs, even if the
ontology and rules are perfectly consistent when considered separately. An inconsistent
DL-program is one that does not have any answer sets, i.e. it yields no information.
Therefore, it can be viewed as broken and thus unusable.

Even in tightly-coupled hybrid KBs, which are normally built by designated pro-
grammers, and whose encoded knowledge can be coordinated to some extent, handling
inconsistencies is nontrivial [HLH13]. Resolving inconsistencies in loosely-coupled hybrid
KBs becomes an even more challenging task, since in the latter the components of the
system are separate and they might be independently designed by different engineers.

Unfortunately, currently available systems for evaluating DL-programs suffer from
the inability to solve inconsistencies with ease. This forms a major obstacle for wider
acceptance of DL-programs, as it is critically important to analyze the reasons behind the
faulty elements in the system as well as provide a user friendly procedure for reasoning
based on such a system.

Although a large number of “inconsistency-tolerant” approaches exist (see [FGC+11]
for overview), most of them are applicable only to formalisms that are based on a single
underlying logic. Conversely, DL-programs represent a hybrid formalism; therefore,
the straightforward application of existing approaches is not suitable in the considered
setting, and new methods for inconsistency handling are urgently needed. Research on
inconsistencies in loosely coupled hybrid KBs was mentioned in [PHE10], but a more
in-depth investigation is required, to which this thesis is devoted.

3



1.2 Goals

In addressing the needs of DL-programs pointed out above, the main goal of this project
is to develop a powerful framework for handling inconsistencies in the considered formal-
ism. We strive to formulate theoretical approaches for handling inconsistencies as well
as to develop concrete tools which help to materialize the developed techniques. Our
research initiative involves both theoretical as well as implementation work.

The key objective of our theoretical work covers the approach for inconsistency han-
dling by repairing DL-programs, and more specifically comprises the following goals:

• Repair Semantics for Inconsistent DL-programs
The first goal of this thesis is to perform a thorough analysis of reasons for incon-
sistencies in DL-programs, and develop a methodology for repairing inconsistent
loosely coupled hybrid KBs using DL-programs as a prominent example.

• Complexity Analysis
In real-world environment, we face certain constraints such as limited computation
time, or the amount of the available working memory. Thus, the total cost of
inconsistency handling process may be unjustifiably high. This demonstrates the
need for the accurate evaluation of computational capabilities required for the
repair approaches developed in our setting. To ensure the practical applicability,
we focus on lightweight ontologies, e.g. DL-LiteA and EL. We aim at analyzing
the complexity of repairing inconsistent DL-programs over these lightweight DLs.

• Development of Algorithms
The third goal of this thesis is to develop comprehensive algorithms for repairing
DL-programs as well as to provide suitable optimization techniques.

At the practical level, our research work focuses on bringing together the advanced re-
sults, methodologies and algorithms developed within the project into a coherent system
architecture. More specifically, we concentrate on the following practical issues:

• Implementation
As a proof-of-concept, one of our major goals is the implementation of the new
algorithms emerging from our research as well as the incorporation of those into the
dlvhex system3 [EIST06]. The practical techniques required a lot of investigation,
since no comparable plug-in for handling inconsistency in DL-programs existed
before.

• Evaluation
Finally, our last goal is the evaluation of the developed approaches for inconsistency
repair. This includes generation of benchmarks, which represents a significant
challenge by itself.

3http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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1.3 Development of this Work and Main Results
We now briefly summarize our main results and contributions.

In this thesis, we assume that the ontology and the rules of the DL-program are
consistent when considered separately and the inconsistencies arise as a result of their
combination. The reasons for inconsistencies therefore lie in the wrong values of some
DL-atoms occurring in the DL-program.

1. We started our research work by identifying DL-atoms which have always the same
value regardless of the ontology and interpretation of the DL-program at hand.
Knowledge about such DL-atoms helps to decide whether a DL-program repair
exists, and it can also be used for optimization purposes. We call such DL-atoms
independent and developed a sound and complete calculus for their derivation.
More specifically, independent DL-atoms fall into two categories: tautologic and
contradictory DL-atoms. We show that checking whether a given DL-atom is
independent can be done efficiently.

2. Moreover, on the theoretical level we formalize the problem of repairing DL-
programs and introduce the notions of repair and repair answer set. Since the
ontology repair is better studied then the rules repair, and as the rules are on top
of the ontology (such that their plausibility can be separately assessed) we assume
that the reasons for inconsistencies lie in the ontology, and in particular in it’s
ABox (TBox is usually well-developed). The novel notions of repair and repair
answer set are, therefore, based on changes of the ontology data part that enable
answer sets.

3. We show that repair answer sets do not have higher complexity than ordinary
ones (more specifically, weak and FLP answer sets) in case if queries in DL-atoms
can be evaluated in polynomial time. To ensure this property, we concentrate on
the Description Logic DL-LiteA [CLLR07], which is a prominent DL particularly
useful for ontology based data access. Our complexity results are also extended to
EL DL, as for the latter query evaluation is also tractable [BBL05].

4. As clearly not all repairs are equally attractive for a given scenario, in order to
discriminate among the repairs, we introduce preference realized by a selection
function σ, which selects preferred repairs from a set of candidates.
Special attractive selection functions, and ones we focus on in this work, are called
independent; they allow one to decide whether a given repair is preferred without
looking at other repairs. These functions do not introduce additional complexity
for computing preferred repair answer sets, e.g. bounded δ±-change, deletion,
addition under bounded opposite polarity and others.

5. We show how an algorithm for evaluating DL-programs [EIST05] can be gracefully
extended to compute repairs resp. repair answer sets, with possibly integrated
selection criteria. In the context of this extension, we introduce a novel interesting
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generalized ontology repair problem (ORP). The latter is based on an answer set
candidate and DL-atoms of the program. The solution to an ORP is an ABox
which ensures simultaneous entailment and non-entailment of sets of queries under
possible updates.

6. The naive implementation of the repair answer set computation turns out to be
ineffective in practice, since the search space of repair ABoxes is too large in general.
Therefore, we propose an alternative improved approach for repair computation
which is based on the notion of support sets. Intuitively, a support set for a ground
DL-atom is a part of its input which together with the ontology TBox is sufficient
to derive the DL-query. We faithfully lift support sets to the nonground level,
enabling scalability of exploitation.

7. Our optimized algorithm uses complete support families, i.e. stocks of support sets
such that the value of each DL-atom under every interpretation of the logic program
can be decided without ontology access. Fortunately, for DL-LiteA ontologies
complete support families are small and easy to compute. Thus the idea is to
precompute small support sets for all DL-atoms on a nonground level by exploiting
TBox classification, and then for each candidate interpretation obtain the ground
instantiations of support sets effectively. These help to prune the search space of
the model candidates and also to construct the ABox repair.

8. We generalize the repair approach based on support sets for ontologies in EL. Due
to range restrictions and concept conjunctions on the left-hand side of inclusion
axioms in EL, a DL-atom accessing an EL ontology can have arbitrarily large
and infinitely many support sets in general. Therefore, we extend repair answer
set computation to deal with incomplete (partial) support families, such that EL
ontologies can be handled. We formally define both ground and nonground support
sets for EL ontologies and present techniques for their computation.

9. We present a declarative realization of algorithms dealing with both complete
and partial support families for determining repair answer set within the dlvhex
system4.

10. We provide a set of benchmarks (inconsistent DL-programs) for evaluating our al-
gorithms. On these benchmark scenarios, we estimate scalability and effectiveness
of our approach; the conducted experiments reveal a promising potential of the
developed repair semantics for practical settings.

1.4 Thesis Organization

The rest of the work is organized as follows.
4http://www.kr.tuwien.ac.at/research/systems/dlvhex/

6

http://www.kr.tuwien.ac.at/research/systems/dlvhex/


• In Chapter 2, we present some preliminaries on Description Logics and the On-
tology Web Language. We, moreover, give an introduction to declarative logic
programming, and in particular to the Answer Set Programming paradigm. This
chapter also contains a general note on hybrid Knowledge Bases and formally in-
troduces DL-programs. Finally, we recall some notions from the complexity theory
and provide relevant complexity results from the fields of Description Logics, ASP
and DL-programs.

• Chapter 3 is on inconsistency management. We discuss the main available ap-
proaches for dealing with inconsistencies in databases, ontologies, rules and hybrid
formalisms.

• Chapter 4 deals with the repair semantics and repair answer sets that we in-
troduce. It contains complexity analysis, and repair preferences based selection
functions.

• In Chapter 5, the algorithms developed in this thesis are presented. This chapter
comprises both a naive algorithm description and more sophisticated algorithms
designed for DL-programs over DL-LiteA and EL ontologies. We formally show
the correctness of the proposed algorithms.

• InChapter 6, we propose an approach for optimizing the rule part of DL-programs
by eliminating independent DL-atoms, i.e. DL-atoms that always have the same
value regardless of the underlying ontology. We present a calculus for identifying
such independent DL-atoms and a complexity analysis of their computation.

• Chapter 7 describes the architecture of a prototype implemented as part of the
dlvhex system, as well as benchmarks that we constructed for evaluating the de-
veloped approaches. We also provide the results of our experiments, their analysis
and interpretation.

• Finally, in Chapter 8 we give a general summary of our work, present concluding
remarks and give the future work outline.

1.4.1 Relevant Publications

Most of the presented results in this thesis have been published in refereed articles in the
proceedings of international conferences and workshops. We introduced the independent
DL-atoms and calculus for their derivation in the proceedings of the “6th International
Conference on Web Reasoning and Rule Systems (RR 2012)” [EFS12a]. The repair se-
mantics was presented in the proceedings of the “23rd International Joint Conference on
Artificial Intelligence (IJCAI 2013)” [EFS13a]. The general description of the problem
of inconsistency handling in DL-programs was given in the proceedings of the “6th Inter-
national Conference on Web Reasoning and Rule Systems (RR 2013)” [EFS13b] and the
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thesis proposal in the proceedings of the “14th Doctoral Consortium on Knowledge Rep-
resentation (DC of KR 2014)” [Ste14]. We provided the notion of support sets as opti-
mization means for evaluating HEX-programs, which are generalizations of DL-programs
accessing arbitrary external sources, in the proceedings of the “28th Conference on Arti-
ficial Intelligence (AAAI 2014)” [EFRS14]. The algorithms for repairing DL-programs
over DL-LiteA ontologies based on support sets were published in the proceedings of
the “21st European Conference on Artificial Intelligence (ECAI 2014)” [EFS14b] and
the “7th International Workshop on Description Logics (DL workshop 2014)” [EFS14c].
Finally, the algorithms for repairing DL-programs over EL ontologies were presented in
the proceedings of the “14th European Conference on Logics in Artificial Intelligence
(JELIA 2014)” [EFS14a].
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CHAPTER 2
Preliminaries

In this chapter we introduce the background knowledge needed for this thesis. Section 2.1
deals with the introduction and formal details of Description Logics (DLs). We briefly
present declarative logic programming approach in Section 2.2, and consider logic pro-
grams under answer set semantics (ASP) as its prominent representative in Section 2.3.
The ASP and DL knowledge representation formalisms are compared, and existing ap-
proaches for their combination are reviewed in Section 2.4. A special focus is put on
DL-programs in Section 2.5. We briefly introduce HEX-programs and establish their
relation to DL-programs in Section 2.6. Finally, we recall the concepts of the Computa-
tional Complexity Theory, and summarize the main existing complexity results for ASP,
DLs and DL-programs in Section 2.7.

2.1 Description Logics and OWL

Description Logics (DLs) belong to a family of Knowledge Representation (KR) for-
malisms, which can be regarded as decidable fragments of First Order Logic (FOL).
Before outlining technical details, let us first look at the history and motivation behind
the development of this formalism.

In 1970’s-80’s the subject of knowledge representation gained an increasing momen-
tum, with two main approaches corresponding to logic-based formalisms and non-logic
based ones. The former approach is focused on the idea that predicate logic has the
right intuitive underpinning and thus can be used as a knowledge representation formal-
ism. Conversely, non-logic based approaches follow a more cognitive way of recording
information, and they have been more widely studied in the natural language processing
community.

The most prominent formalisms among non-logic ones are Semantic Networks [Qui67]
and Frame-based systems [Min85]. Semantic networks dating back to 1970’s represented
one of the first attempts of characterizing knowledge and reasoning of a system by means
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of network-shaped structures. The nodes of these networks naturally model classes or
sets of objects while edges convey information about the relationships among them. The
frame-based systems stand for a similar formalism that first appeared in late 1970’s. A
frame can be viewed as a concept with potential attributes, which in turn correspond to
properties of the instances pertaining to the specified concept. The main problem with
these formalisms is the lack of formal semantics. This deficiency does not allow the rea-
soning process to be sufficiently precise and effective for practical applications, which was
quickly realized by the research community. To overcome this shortcoming, characteri-
zation of the semantics of frames by FOL was promptly proposed by Hayes [Hay80]. The
researcher also professed that the semantics of semantic networks can be mapped to FOL
as well. Inspired by this result, further studies in Knowledge Representation aimed at
overcoming the weakness of earlier formalisms by mapping them to various fragments of
FOL. It is at this stage that the logic based and non-logic based approaches converged,
giving rise to Description Logics (or terminological systems and concept languages as
they were also known as).

DLs were extensively studied in the last decades, and now they are widely accepted as
a prominent KR formalism with applications in ontologies and Semantic Web research.
The main three building blocks of DLs are concepts, corresponding to sets of individu-
als, roles standing for (binary) relationships between individuals, and individual names,
which represent single individuals in the domain.1 For instance, Child, Person, Animal
are concepts, intuitively denoting the sets of children, persons and animals respectively.
On the other hand, hasParent, hasPet are roles, which specify the relationships between
children and their parents, persons and their pets. Moreover, individual names john, pat
refer to the individuals John and Pat respectively.

Starting from atomic concepts and roles, using various logical constructors one can
build complex concept expressions. The most common concept constructors include ones
that correspond to the boolean connectives (e.g. u standing for the set intersection or
logical ∧, t referring to the set union or logical ∨), and constructors that allow one to
quantify over all domain elements connected through a certain role. For instance, ∃R.C ,
denotes all objects that are connected through the role R to only those objects that are
in C .

Example 2.1. The concept expression Child uMale denotes the set of male children,
i.e. boys. The expression Female u ∃hasParent.(∃hasSister .(Athlet u Singer)) describes
all female individuals whose aunts are athletes and singers.

A DL ontology normally comprises two reasoning components: a TBox, describing
the conceptual knowledge about a domain of interest, and an ABox, specifying the
factual data. More specifically, the TBox stores axioms, encoding the subsumption (or
subset inclusion) and disjointness between possibly complex concepts and roles. For
example, Male t Female v Person is a TBox axiom, stating that all individuals known
to be either male or female are persons. The ABox contains facts in the form of ground
predicates, e.g. Male(john), meaning that John is male. The formal semantics of DLs

1In FOL these can be viewed as unary predicate, binary predicate, and constant symbols.
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makes it possible to infer new implicit knowledge from the information that is explicitly
stated. For instance, given the TBox and ABox axioms from above we can derive the
membership of john in the class Person. The process of obtaining new inferences from
the given information is called reasoning. The possibility of reasoning distinguishes DLs
from other modern modeling languages like UML.

It is important to mention that a DL ontology does not fully describe a particular
situation or state of the world, but it rather captures partial knowledge about the situa-
tion, and there may exist different states of the world that satisfy the given knowledge.
In other words, not knowing that a statement is explicitly true does not imply the falsity
of the statement. For example, if the only information regarding John that can be in-
ferred from an ontology says that John is a citizen of the UK, then we can not conclude
that he is not a citizen of Northern Ireland. More formally, in contrast to databases,
DLs adhere to the so-called Open World Assumption:

Definition 2.2. Open World Assumption (OWA) is the assumption, under which the
truth-value of a statement is independent of whether or not it is known.

Another specific feature of DL ontologies concerns the possibility of using different
individual names when referring to the same object. For illustrating this feature, let us
recall the famous children puzzle.

Two fathers (f1, f2) and two sons (s1, s2) went to a restaurant and bought three
pizzas. When they came back, everyone had a whole pizza. How could this happen?

What confuses the reader in the problem statement is the natural habit of matching
different object names (two sons and two fathers) to different objects. The solution to
the puzzle reveals that there were in fact a grandfather, his son and his grandson going
to the restaurant, meaning that in the problem description the constants f2 and s1 in
fact referred to the same real world object. The Unique Name Assumption forbids such
confusions in the formal knowledge description.

Definition 2.3. The Unique Name Assumption (UNA) is the assumption in a DL on-
tology that ensures that different names always refer to different entities in the world.

From the theoretical perspective, clearly, the more constructors are allowed in a DL,
the more expressive it becomes, and consequently the harder it is to perform reasoning
tasks in it. The search for the right balance between expressiveness and availability of
effective reasoning has become one of the main scientific ambitions and overarching aims
in the DL field. The progress in this direction led to an increasing popularity of ontologies
in data-intensive applications, in particular, in the context of intelligent systems and data
integration. Driven by this potential applicability of DLs, the idea of Ontology Based
Data Access (OBDA) [CGL98,CLLR07,CGP12] was introduced. The latter deals with
query answering over an incomplete database under the open world semantics, taking
into account knowledge provided by an ontology. The DL-Lite [CLLR07] family of DLs
was specifically designed to serve the OBDA setting. These DLs have very fruitful
computational properties, and they are specifically tailored towards effective reasoning
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on the one hand, and the ability to represent conceptual modeling formalism on the other
hand. The basic core of the family is the DL-Litecore DL, in which simple constructs
are allowed. Among more expressive extensions there are DL-LiteR and DL-LiteA,
which captures all basic constructs of UML Class Diagram and the Entity Relationship
(ER) model. The DL-Lite family also contains many other DLs including DL-Litehorn,
DL-Litekrom, DL-Litebool, and so on, but going further into the details here is out of the
scope of this thesis. We refer the interested reader to [ACKZ09] for more information
on the DL-Lite family. The EL family [SPS09] is another well-studied lightweight DL
family, which possesses good computational properties.

From the practical perspective a crucial research issue is the actual implementa-
tion of inferencing engines. Among the pre-DL reasoners, one can mention Kryp-
ton [BGL85], Nikl [KBR86], Loom [MB87], Classic [BBMR89], Back [Pel91], and Kris
[BH91]. Unfortunately, many of these first systems were incomplete, meaning that for
some ontologies the reasoners did not manage to find all logical inferences. These
systems were followed by more effective implementations, which used tableaux algo-
rithms. Among most prominent ones there are fact++2, pellet3 and RacerPro4. There
are also resolution-based algorithms, which are realized in such systems as KAON25

[MS06] and HermiT [MSH07,MSH14]. Furthermore, lately the “consequence-based” ap-
proaches were implemented in the ELK6 system [KKS13]. Due to the integration of
various advanced optimization techniques, these systems work pretty well on practical
instances, despite employing algorithms of high worst-case complexity. This observa-
tion allowed for the development of various real-world ontology applications, encoding
domain knowledge from disciplines such as geoscience [Goo05, RP05, FMC+09], bioin-
formatics [The00, SAR+07, SGB00], medicine [SMK+14, SCC97, SGM95] or electrical
engineering [UD07].

In our work we focus on two lightweight DLs: DL-LiteA and EL, for which common
inference tasks can be solved in polynomial time. The first reason for such a choice
obviously stems from their benign computational properties. The second reason is their
wide practical applicability: as mentioned DL-LiteA is actively used in the OBDA set-
ting, and EL proved to be particularly useful for many application domains like biology,
medicine, chemistry, policy, etc.

Now we move to the formal syntactic and semantical descriptions of the DLs relevant
for this thesis. We consider Description Logic (DL) knowledge bases (KBs) over a
signature ΣO = 〈I,C,R〉 with a set I of individuals (constants), a set C of concept
names (unary predicates), and a set R of role names (binary predicates). The sets I, C
and R are countable.

Definition 2.4. A DL knowledge base (or ontology) is a pair O = 〈T ,A〉 of a TBox
T and an ABox A, which are finite sets of formulas capturing taxonomic resp. factual

2https://code.google.com/p/factplusplus
3http://clarkparsia.com/pellet/
4http://racer.sts.tuhh.de
5http://kaon2.semanticweb.org/
6https://code.google.com/p/elk-reasoner/
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knowledge, whose form depends on the underlying DL.

We denote by sig(E) the signature of E, where E can be any set of axioms from
a given ontology. Throughout the work, we assume that ontologies are under UNA,
i.e. different names always denote different individuals. In what follows we describe the
formal syntax and semantics of DL-LiteA and EL DLs. For overview of other DLs, we
refer the reader to [BCM+07].

2.1.1 DL-LiteA: Syntax and Semantics

Syntax. In DL-LiteA, concepts C, and roles R are formed according to the following
syntax:

C → A | ∃R B → C | ¬C R→ U | U− S → R | ¬R
where A ∈ C is an atomic concept, U ∈ R an atomic role and U− denotes the inverse
of the atomic role U . DL-LiteA TBox axioms are then of the form:

C v B R v S (func R)

Axioms involving only positive concepts (resp. roles) are called positive inclusions, while
those with a negated concept (resp. role) on the right-hand side are called disjointness
axioms. Finally, the axiom in the third column (func R) is a functionality axiom.

An assertion is a formula A(c) or U(c, d) where A ∈ C, U ∈ R, and c, d ∈ I (called
positive) or its negation, i.e., ¬A(c) resp. ¬U(c, d) (negative).7 The ontology ABox
contains a set of assertions over the ontology signature ΣO.

Example 2.5. An example of a DL-LiteA ontology O is given below.

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)


The axioms (1)-(3) form the ontology TBox, while the assertions (4)-(6) represent

the ABox part of O. Intuitively, the TBox states that every child has a parent, every
adopted child is a child, and male and female are disjoint classes.

Semantics. We now turn to the semantics of DL-LiteA DL. The semantics of DL
ontologies O is based on first-order interpretations [BCM+07], [CLLR07].

Definition 2.6. An interpretation I is a pair 〈∆I , ·I〉, where ∆I is a non-empty inter-
pretation domain, and ·I is an interpretation function from I to ∆I which assigns to
each concept C a subset CI of ∆I , and to each role R a binary relation RI over ∆I .
The constructs allowed in DL-LiteA are interpreted as shown in Table 2.1:

The satisfiability of an axiom α w.r.t. an interpretation I is defined as follows:
7Negative assertions ¬F (~t) are easily compiled to positive ones using a fresh concept resp. role name

F¬ and F¬(~t), F¬ v ¬F .
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Construct Syntax Semantics

Individual a aI

Atomic concept A AI ⊆ ∆I

Atomic role U UI ⊆ ∆I ×∆I

Inverse role R− {(o, o′) | (o′, o) ∈ RI}
Unqualified exist. restriction ∃R {o | ∃o′.((o, o′) ∈ RI)}
Concept negation ¬C ∆I\CI

Role negation ¬U ∆I ×∆I\UI

Table 2.1: DL DL-LiteA concept and role constructors

• I |= C(a), if aI ∈ CI ;
• I |= R(a, b), if (aI , bI) ∈ RI ;
• I |= C v D, if CI ⊆ DI ;
• I |= ¬C(a), if aI ∈ ∆\CI ;
• I |= funct(R), if the binary relation R is a function such that (o1, o2) ∈ RI and

(o1, o3) ∈ RI implies that o2 = o3.

An axiom (resp. TBox, ABox or ontology) is satisfiable (or consistent) if it is satisfiable
w.r.t. some interpretation I.

We call an ABox A consistent with a TBox T , if 〈T ,A〉 is consistent, otherwise A is
inconsistent with a TBox. An ontology O is inconsistent, if A is inconsistent with T .

In DL-LiteA ontologies, inconsistency arises by few assertions.

Proposition 2.7 (cf. [CLLR07]). In DL DL-LiteA, given an arbitrary TBox T , every
⊆-minimal ABox A such that T ∪ A is inconsistent fulfills |A| ≤ 2.

2.1.2 EL: Syntax and Semantics

The DL EL is another DL highly relevant for representing lightweight ontologies.

Syntax. In EL [SPS09] concepts C and roles R obey the following syntax, where
A ∈ C is an atomic concept and R ∈ R is an atomic role:

C → A B → C | C uD | ∃R.C R→ U

TBox axioms are of the form B1 v B2 (inclusion axiom); ABox assertions are of the
form A(a) and U(a, b), where A ∈ C, U ∈ R and a, b ∈ I.
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Example 2.8. As an example let us consider the following ontology from the policy
domain [BFS10], whose taxonomy (TBox) T is given by (1)-(3), while (4)-(9) is a sample
data part (ABox) A.

O =



(1) Blacklisted v Staff
(2) StaffRequest ≡ ∃hasAction.Action u ∃hasSubject.Staff u ∃hasTarget.Project
(3) BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject.Blacklisted
(4) StaffRequest(r1 ) (5) hasSubject(r1 , john) (6) Blacklisted(john)
(7) hasTarget(r1 , p1 ) (8) hasAction(r1 , read) (9) Action(read)


.

Intuitively, (1) states that every blacklisted staff is staff, while (2) and (3) provide def-
inition of the classes StaffRequest and BlacklistedStaffRequest. For instance, StaffRequest
must have an action, a member of staff as a subject, and a project as a target.

In this work we will need the notion of a normalized TBox, which is its restricted
syntactic form, defined in the following way.

Definition 2.9. A TBox is normalized, if all of its axioms have one of the following
forms:

A1 v A2 A1 uA2 v A3 ∃R.A1 v A2 A1 v ∃R.A2,

where A1, A2, A3 are atomic concepts.

For instance, the axioms (1) and (2) in Example 2.8 are in normal form, while axiom
(3) is not.

The following result is instrumental:

Proposition 2.10 (cf. [SPS09]). For any EL TBox, an equivalent TBox in normal form
is constructible in linear time (over an extended signature).

Example 2.11. The normalized form of the TBox from Example 2.8 looks as follows:

Tnorm =



(1∗) StaffRequest v ∃hasAction.Action
(2∗) StaffRequest v ∃hasSubject.Staff
(3∗) StaffRequest v ∃hasTarget.Project
(4∗) ∃hasAction.Action v C∃hasA.A
(5∗) ∃hasSubject.Staff v C∃hasS.St
(6∗) ∃hasTarget.Project v C∃hasT.P
(7∗) C∃hasA.A u C∃hasS.St v C∃hasA.Au∃hasS.St
(8∗) C∃hasA.Au∃hasS.St u C∃hasT.P v StaffRequest


,

where C with subscripts are fresh concept names.

Semantics. The semantics for the DL EL as for all other DLs is based on first-
order interpretations [BCM+07], the interpretation of the constructors allowed in EL is
depicted in Table 2.2.
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Construct Syntax Semantics

Individual a aI

Atomic concept A AI ⊆ ∆I

Atomic role U UI ⊆ ∆I ×∆I

Conjunction C uD CI ∩DI

Qualified exist. restriction ∃R.C {o | ∃o′.((o, o′) ∈ RI ∧ o′ ∈ CI)}

Table 2.2: DL EL concept constructors

Construct Syntax Semantics

Atomic concept A AI ⊆ ∆I

Atomic role R RI ⊆ ∆I ×∆I

Full negation ¬C ∆I\CI

Conjunction C uD CI ∩DI

Unqualified exist. restriction ∃R {o | ∃o′.((o, o′) ∈ RI)}
Bottom ⊥ ∅

Table 2.3: DL ALC concept constructors

2.1.3 Beyond Lightweight DLs

Apart from lightweight DLs there are more expressive DLs, The DL known as ALC is
considered the “basic” expressive description logic because it is the minimal one that
supports unrestricted use of the basic concept constructors: conjunction, disjunction,
negation, and existential and universal restrictions. The term expressive Description
Logics usually refers to ALC and its extensions. Table 2.3.

In various expressive DLs different constructors are allowed, e.g. ALCFI is ALC in
which additionally functional and inverse roles are allowed. Other expressive DLs that
we mention in this thesis include SHIF , SHOIN , SHOIQ.

Apart from letters explained in Table 2.4,

• S stands for ALC extended with transitive roles,

• H stands for role hierarchies,

• F stands for functionality of roles,

• O stands for nominals, which means the possibility of using individuals in the
TBox.
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Construct ALC Syntax Semantics

Disjunction U C tD CI ∪DI

Qualified exist. restriction E ∃R.C {o | ∃o′.((o, o′) ∈ RI ∧ o′ ∈ CI)}

Unqualified number restrictions N ≥ k R {o | #{o′ | (o, o′) ∈ RI} ≥ k}
≤ k R {o | #{o′ | (o, o′) ∈ RI} ≤ k}

Qualified number restrictions Q ≥ k R.C {o | #{o′ | (o, o′) ∈ RI ∧ o′ ∈ CI} ≥ k}
≤ k R.C {o | #{o′ | (o, o′) ∈ RI ∧ o′ ∈ CI} ≤ k}

Inverse role I R− {(o, o′) | (o, o′) ∈ RI}
Top > ∆I

Table 2.4: Additional concept and role constructors

2.1.4 Ontology Main Reasoning Tasks

The typical reasoning tasks that are associated with DLs include [CLLR07]:

• Ontology satisfiability – given an ontology O, verify whether O admits at least one
model;

• Logical implication of KB assertions, which consists of the following sub- problems:

– Instance checking – given an ontology O, a concept C and a constant a (resp.,
a role E and a pair of constants a and b ), verify whether O |= C(a) (resp.,
O |= R(a, b));

– Subsumption of concepts or roles – given a TBox T and two general concepts
C2 and C2 (resp., two general roles R1 and R2 ), check whether T |= C1 v C2
(resp., T |= R1 v R2);

– T -classification – given a TBox T compute all subsumption relations followed
from T ;

– Checking functionality – given a TBox T and a basic role R, decide whether
T |= funct(R);

• Query answering – given an ontology O and a query q (either a conjunctive query
or a union of conjunctive queries) over O, compute the set of answers to q.

2.1.5 OWL: Ontology Web Language

Since the 1990’s a number of research efforts have been pursued in terms of applying
the idea of knowledge representation from artificial intelligence to the World Wide Web
context. This led to the pioneering Semantic Web paradigm. Back then the ultimate

17



goal was to make the semantical side of the Web content more accessible to machines for
which the ontological representation of the web pages proved to be more appropriate.
The RDF language, and its schematic extension RDF schema (RDFS), were proposed
for data interchange in the Web. RDF allows to specify ground binary predicates, and
in RDFS definition of subclass relationships, property hierarchies as well as domain and
range restrictions on the corresponding properties are possible. However, for encoding
ontologies in even lightweight DLs richer constructs are necessary, e.g. class disjointness,
range restrictions which are applied only to certain classes, etc. This motivated the de-
velopment of more powerful ontology languages like Simple HTML Ontology Extensions
(SHOE) [HH00], DAML-OIL and DAML-ONT (see [HPSvH03] for earlier ontology lan-
guages). Evolution of these first languages, their extension and enhancement has led to
the modern Ontology Web Language (OWL), which still partially relies on the RDFS
fragments.

OWL can now be regarded as a well-established standard for ontology modeling, and
it is widely applied not only in the Semantic Web context, but also in various subject
domains including biology, medicine, and many others. The first version of the OWL
standard (OWL 1) was delivered in 2004; later, in 2008 its extended and revised successor
OWL 2 was released.

The theoretical background of OWL is tightly related to DLs. As we discussed in the
previous subsections, DLs have been grouped into families according to their expressive
power and computational properties. The grouping criteria is convenient, and therefore
it is also applied in OWL, creating further division into three sublanguages: OWL Lite,
OWL DL, and OWL Full. OWL Lite is suitable for representing a classification hierarchy
with simple constraints, and it is the sublanguage with lower expressive capabilities
then the other two. The second expressive sublanguage is OWL DL, which maintains
maximal expressiveness while still permitting completeness of computational reasoning
and decidability. Finally, OWL Full is the most expressive sublanguage; however, the
computational completeness in this language can no longer be guaranteed.

The OWL DL fragment is in turn split into OWL-QL, OWL-RL and OWL-EL,
which are lightweight sublanguages with restricted modeling features, but significantly
simplified reasoning algorithms. OWL-EL is popular in large biomedical ontologies,
OWL-RL is a useful language for reasoning with Web data, and OWL-QL is widely
recognized in database applications with an ontological data access layer. Crucially,
main computational tasks can be efficiently performed in these languages.

Earlier, it has already been mentioned that in our work we concentrate on ontologies
in DL-LiteA and EL, which belong to the OWL 2 QL and OWL 2 EL sublanguages
respectively. This is depicted in Figure 2.1. Furthermore, the syntax and semantics of
these sublanguages are discussed.

OWL Syntax and Semantics.
The OWL language comes in different syntaxes. The syntactic formats range from

the W3C officially required RDF/XML exchange syntax [GS14], to various optional
ones including Turtle [Bec04], OWL/ XML [MPPS12b], the Functional-Style Syntax
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Figure 2.1: OWL 2 sublanguages vs DL fragments

[MPPS12a], the Manchester Syntax [HDG+06]. We focus on the RDF-XML syntax,
as it is the most widely used one. The correlation between DL constructs and their
syntactic representation in OWL is shown in Table 2.5.

Example 2.12. The class disjointness axiom (2) of Example 2.5 in RDF/XML syntax
looks as follows:

<owl:Class rdf:about="#Male">
<owl:disjointWith rdf:resource="#Female"/>

</owl:Class>

A more involved equivalence axiom (2) from Example 2.8 is represented as:

<owl:Class rdf:about="#StaffRequest">
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAction"/>
<owl:someValuesFrom rdf:resource="#Action"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasSubject"/>
<owl:someValuesFrom rdf:resource="#Staff"/>
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RDF/XML Syntax DL Syntax

Axioms

C1 rdfs:subClassOf C2 C1 v C2
C1 owl:disjointWith C2 C1 v ¬C2
R1 rdfs:subPropertyOf R2 R1 v R2
R1 owl:propertyDisjointWith R2 R1 v ¬R2
C1 owl:equivalentclass C2 C1 ≡ C2
a rdf:type C C(a)
a R b R(a, b)
rdf:type owl:NegativePropertyAssertion
owl:sourceIndividual a
owl:assertionProperty R
owl:targetIndividual b

¬R(a, b)

R rdfs:domain C ∃R.> v C

Class expressions

owl:complementOf C ¬C
owl:intersectionOf C1 u C2
owl:Thing >
owl:Nothing ⊥
owl:restriction owl:onProperty R owl:someValuesFrom C ∃R.C

Property expressions owl:inverseOf R−

R rdf:type ref:resource=”&owl:FunctionalProperty” funct(R)

Table 2.5: Correspondence between OWL syntactic expressions and DL constructs
allowed in DL-LiteA and EL

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasTarget"/>
<owl:someValuesFrom rdf:resource="#Project"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

There are two alternative semantics for OWL ontologies with a correspondence the-
orem providing a link between them. The first is Direct Semantics [HPS12], which
assigns meaning directly to ontology structures and is compatible with the DL seman-
tics. The second is the RDF-based semantics [CHPS09], which assigns meaning to the
RDF graphs. The correspondence theorem defines a precise, close relationship between
the Direct and RDF-Based Semantics (see [Krö12] for details). This theorem states that
given an OWL 2 DL ontology, inferences drawn using the Direct Semantics will still be
valid if the ontology is mapped into an RDF graph and interpreted using the RDF-Based
Semantics.
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2.2 Nonmonotonic Logics and Declarative Logic
Programming

As discussed in previous sections Description Logics have been accepted as a suitable
technical tool for the representation of expert knowledge from various subject domains
because of their well-defined semantics and a powerful inference generating mechanism.
This tool, however, is not fully adequate for the commonsense reasoning, i.e. the ability
of simulating the human way of making deductions about everyday situations. The main
difficulty stems from the so-called “monotonicity” of the DLs. A logic is monotonic if
addition of new axioms to a theory in the logic never leads to the loss of any previ-
ously derived conclusions from that theory. In other words, whenever a sentence φ is
a logical consequence of a set of sentences T , φ is also entailed from any superset of
T . Commonsense reasoning is nonmonotonic: we are often forced to withdraw previous
conclusions when new knowledge has been obtained. Motivated by this observation,
nonmonotonic logics resp. logic-based formalisms have been developed and investigated.
The most well-known among them are circumscription [McC80,McC84, Lif85], default
logic [Rei80], and nonmonotonic modal logics [MD80,McD82,Moo85]. For an overview
of other nonmonotonic formalisms see [Gin87] and references therein.

Another separate direction of research deals with logic programming as a subclass of
declarative programming languages, which appeared from the idea of combining logical
knowledge representation means and the theory of automated deduction. The first and
probably the most well-known logic programming language was Prolog [War77,CKC81,
Llo87,Kow88], which at the very start of its development was defined as a small subset
of predicate calculus. Further it was extended with nonmonotonic features and the
negation as failure operator. The initial definition of nonmonotonic features in Prolog
was procedural, and then a declarative semantical characterization was given. The latter
development established a link between the logic programming and nonmonotonic logics
as mentioned above.

Despite being a powerful logic programming language, Prolog still has several aspects
which make its applicability for knowledge representation less apparent [EIK09]. Among
such aspects [EIK09] mentions the following:

• Incomplete information handling, that is the ability to properly complete the miss-
ing information with default assumptions, is not supported in Prolog;
• Termination issue is striking in Prolog;
• Ordering of rules in a program and atoms in a rule is important in Prolog8, which
makes modeling tasks in various subject domains less convenient;
• Preference handling, as the possibility to describe which solutions are preferred to
others with respect to some “quality” criterion, is not easily realizable in Prolog.

To overcome the described shortcomings, the Answer Set Programming (ASP) paradigm
was proposed in 1991 [GL91a]. Essentially, ASP programs are closely related to Pro-

8SLD resolution and backtracking are used in Prolog as evaluation techniques.
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log programs. The main difference stems from the semantics, which in the ASP case is
purely model-theoretic, and thus the termination of ASP programs is always guaranteed.
In what follows we present ASP in more detail.

2.3 Logic Programs under the Answer Set Semantics

Answer Set Programming (ASP) has appeared as a declarative problem solving paradigm
oriented towards difficult search problems. ASP has its roots in Logic Programming and
Nonmonotonic Reasoning. This formalism is well-suited for modeling and (automati-
cally) solving problems which involve the previously mentioned commonsense reasoning.
The basic idea of ASP is to describe problem specifications by means of a nonmonotonic
logic program: solutions to instances of such a problem are represented by the intended
models (the so-called answer sets, or stable models) of the program at hand. Rules and
constraints, which describe the problem and its possible solutions rather than a concrete
algorithm, are basic elements of the ASP programs. Such a problem encoding can be
then be sent to an answer set (AS) solver as an input. The ASP solver computes some
models (answer sets) of the program, from which the solutions of the problem can be
extracted. This is done instead of the computation of proofs when dealing with the
prolog programs.

The availability of advanced reasoners makes the ASP formalism applicable to solving
practical tasks. The standard reasoner comprises two components: a grounder and a
solver. The list of the most well-known grounders include: DLV9, Gringo10, LParse11.
Among the solvers one can mention DLV, SModels12, CModels13, clasp14, claspD15, GnT16.
Potassco17 represents a collection of ASP reasoning tools, combining clasp and Gringo
into a system architecture. The performance of the ASP solvers is annually appraised at
the dedicated ASP competition, with the latest results of 2014 are available at https:
//www.mat.unical.it/aspcomp2014/.

Next we present the formal syntax and semantics of ASP.

Syntax. Let ΣP = 〈P, C〉 be a function-free first-order vocabulary, consisting of
nonempty finite sets P of predicates and C of constants. Let, moreover, V be a set of
variables.

We now formally define the building components of logic programs.

• A term is either a constant from C or a variable from V.
9http://www.dlvsystem.com/

10http://potassco.sourceforge.net/
11http://www.tcs.hut.fi/Software/smodels/
12http://www.tcs.hut.fi/Software/smodels/
13http://www.cs.utexas.edu/~tag/cmodels/
14http://potassco.sourceforge.net/
15http://www.cs.uni-potsdam.de/claspD/
16http://www.tcs.hut.fi/Software/gnt/
17http://potassco.sourceforge.net/
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• An atom is defined as follows p(t1, . . . , tl), where p ∈ P, each ti is a term and l is
a positive integer, denoting the arity of p.

• A classical literal is a positive atom a, and a literal of the form not a is called a
default-negated literal.

Definition 2.13. A disjunctive rule is a formula of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm, (2.1)

where 1 ≤ k ≤ m, every ai (1 ≤ i ≤ n), is a classical literal, and not denotes default
negation.

A rule r of form 2.1 is called a fact if n = 1 and m = 0. We sometimes omit
the symbol ← when referring to facts. A rule without head literals, (i.e. n = 0) is a
constraint. A rule is positive if k = m. Moreover,

• H(r) = {a1, . . . , ak} is called the head of r,

• B(r) = {b1, . . . , bk,not bk+1, . . . ,not bn} is called the body of r,

– the set B+(r) = {b1, . . . , bk} is the positive body of r, and

– the set B−(r) = {bk+1, . . . , bm} is the negative body of r.

• An extended disjunctive logic program (EDLP) (also known as Datalog∨,¬) is a
finite set of rules of the form 2.1.

• A program without disjunction in the heads (i.e. n = 1 for all rules of P) is called
extended logic programs or normal logic program (or Datalog¬).

• An extended logic program without default-negated literals (i.e. all rules r of P
are such that B−(r) = ∅) is a positive logic program (or Datalog).

• Furthermore, Datalog∨ refers to a positive logic program, in which disjunction
in heads of rules is allowed.

• If all predicates occurring in a program P are of arity l = 0, then P is called
propositional.

Example 2.14. Consider a graph 3-colourability problem, in which we are given a graph
and three colours, e.g. red, blue and green, and we aim at finding the assignment of
colours to the nodes of a graph in such a way that no adjacent nodes share the same
color. The encoding of this problem is as follows.
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5
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PI =



(1) node(1 . . . 6 ); (2) edge(1 , 2 ); . . . (8) edge(5 , 6 );
(9) coloured(V , red)← not coloured(V , blue),not coloured(V , green),node(V );
(10) coloured(V , green)← not coloured(V , blue),not coloured(V , red),node(V );
(11) coloured(V , blue)← not coloured(V , green),not coloured(V , red),node(V );
(12) ⊥ ← coloured(V ,C ), coloured(V ,C ′), C 6= C ′;
(13) ⊥ ← coloured(V ,C ), coloured(V ′,C ), edge(V ,V ′)


The facts of the programs P describe the nodes and edges of the graph from above.

The rules (9)-(11) state that each node has to be colored in at least one of the three
colours. The constraint (12) forbids the nodes to be colored in more then one color,
while the constraint (13) says that two nodes connected via an edge must have different
colours.

Semantics. The semantics of extended logic program is defined for ground (variable-
free) programs. Given a program P over a signature ΣP = 〈P, C〉, we define the Herbrand
universe and the Herbrand base of P as follows:.

Definition 2.15. The Herbrand universe of a logic program P, denoted by HUP is the
set C. If there are no constants in P, then HUP = {c}, where c is an arbitrary constant
symbol.

Definition 2.16. The Herbrand base of a logic program P, denoted by HBP is the set
of all atoms constructed using predicates from P and constants from C.

The terms, atoms, rules, programs are ground, if they do not contain variables. A
ground instance of a rule r ∈ P is obtained from r by replacing all variables in r with
constants from C. A ground program, denoted by ground(P), corresponds to a set of all
ground instances of all rules in P.

Example 2.17 (cont’d). For the logic program P from Example 2.14, the grounding
ground(P) is obtained by substituting the variables V, V ′, C, C ′ with constants from the
set {1, 2, 3, 4, 5, 6, blue, green, red} in all possible ways.

The semantics of EDLPs is given first for positive ground programs. Before present-
ing it formally, we define several important notions first.

• A set S ⊆ HBP of literals is called consistent, if {p,¬p} 6⊆ S for every atom
p ∈ HBP .
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• An interpretation I relative to a program P is a consistent subset of HBP .

A satisfaction relation of an interpretation with respect to a certain element is defined
as follows:

Definition 2.18. Let P be a ground logic program. An interpretation I ⊆ HB(P)
satisfies

• a literal a, if a ∈ I;

• a default negated literal not a, if a 6∈ I;

• a set of literals, if it satisfies each literal separately;

• a rule r, if H(r) ∩ S 6= ∅ whenever B+(r) ⊆ S and B−(r) ∩ S = ∅;

• a logic program P (I is a model of P), if it satisfies all rules r of P.

Example 2.19. Recall the program from Example 2.14, and let us look at the interpre-
tation I = {coloured(1 , red),node(1 ),node(2 )} and the following ground rules:

r1 : coloured(1 , red)← not coloured(1 , blue),not coloured(1 , green),node(1 );
r2 : coloured(2 , green)← not coloured(1 , blue),not coloured(1 , red),node(2 )

We have that I |= node(1 ). Furthermore, I |= r1, and I 6|= r2.

Definition 2.20. A model I of a logic program P is called minimal, if there is no model
I ′ of P, such that I ′ ⊂ I.

The semantics of ASP programs is given in terms of answer sets (or stable models).

Definition 2.21. Given a positive logic program P, an interpretation I is an answer set
(stable model) of P if I |= P and there does not exist I ′ ⊂ I, such that I ′ |= P. AS(P)
denotes the set of all answer sets.

The notion of answer sets for logic programs with negation is defined using the
Gelfond-Lifshitz reduct.

Definition 2.22. Given a logic program P and an interpretation I of P the Gelfond-
Lifshitz (GL-)reduct denoted by PIgl is constructed from ground(P) by

• deleting all rules r from ground(P) s.t. B−(r) ∩ I 6= ∅, and
• deleting the negative body for all of the remaining rules.

Note that for any program and interpretation the GL-reduct is positive. The defini-
tion of answer sets for arbitrary logic programs is then as follows:

Definition 2.23. An answer set of a program P is an interpretation I ⊆ HBP , such
that I is an answer set of the positive program PIgl.
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Example 2.24 (cont’d). Consider an interpretation I of the program P from Exam-
ple 2.14, which apart from the graph description contains the facts: coloured(1 , red),
coloured(2 , blue), coloured(3 , red), coloured(4 , green), coloured(5 , blue), coloured(6 , green).

The GL-reduct PIgl of P is as follows:

PIgl =



(1) node(1 . . . 6 ); . . . (8) edge(5 , 6 );
(9) coloured(1 , red)← node(1 );
(10) coloured(3 , red)← node(3 );
(11) coloured(4 , green)← node(4 );
(12) coloured(6 , green)← node(6 );
(13) coloured(2 , blue)← node(2 );
(14) coloured(5 , blue)← node(5 )


It is easy to see that I is the minimal model of the positive program PIgl, and thus

an answer set of P. It encodes the following valid graph coloring:

1

2

6

3

5

4

Recently an alternative elegant characterization of answer sets has been introduced
in [FLP11]. It is based on an interesting modification of the GL-reduct of a logic program,
called flp-reduct: FLP stands for the first letters of the authors’ surnames: Faber, Leone,
Pfeifer. Intuitively, the flp-reduct of a set of rules relative to an interpretation is obtained
by removing every rule, the body of which is not satisfied by the interpretation. More
formally,

Definition 2.25. Given an ASP program P and an interpretation I, the set of rules
PIflp = {r ∈ ground(P) | I |= a, ∀a ∈ B+(r); I 6|= a, ∀a ∈ B−(r)} is the flp-reduct of P
relative to I.

For obtaining the flp-answer sets the same minimality condition as in traditional
answer sets definition is applied.

Definition 2.26. An interpretation I is called an flp-answer set of P, if I is a minimal
model of the flp-reduct PIflp. ASflp denotes the set of all flp-answer sets of P.
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Example 2.27 (cont’d). The flp-reduct of the program P from Example 2.14 relative
to the interpretation I from Example 2.24 is as follows:

PIflp =



(1) node(1 . . . 6 ); . . . (8) edge(5 , 6 );
(9) coloured(1 , red)← not coloured(1 , blue),not coloured(1 , green),node(1 );
(10) coloured(3 , red)← not coloured(3 , blue),not coloured(3 , green),node(3 );
(11) coloured(4 , green)← not coloured(4 , blue),not coloured(4 , red),node(4 );
(12) coloured(6 , green)← not coloured(6 , blue),not coloured(6 , red),node(6 );
(13) coloured(2 , blue)← not coloured(2 , green),not coloured(2 , red),node(2 );
(14) coloured(5 , blue)← not coloured(5 , green),not coloured(5 , red),node(5 )


Since I is a minimal model of PIflp, we get that I is an flp-answer set of P.

It has been shown in [FLP11] that the stable model semantics and the FLP-semantics
coincide for extended disjunctive logic programs. We demonstrate this on the following
example

Example 2.28. Consider a simple propositional logic program P.

PI =
{
(1) q ← not p; (3) r ← p;
(2) p← not q; (4) r ← q

}

The flp-reduct PIflp relative to I = {p, r} is

PIflp =
{
(1) p← not q;
(2) r ← p

}

The I is a minimal model of PIflp, thus it is an flp-answer set of P. Consider now the
Gelfond Lifshitz reduct PIgl of P relative to I.

PIgl =


(1) p;
(2) r ← p;
(3) r ← q


Observe that I is a minimal model of PIgl, hence the stable model of P.

These two semantics differ when it comes to logic programs with aggregates, which
we do not consider in this work.

Reasoning Tasks. The most important reasoning tasks in ASP include the following:

• Answer set existence: given a program P, decide whether it has an answer set, i.e.
decide whether AS(P) 6= ∅;

• Computation of all answer sets: given a program P, compute all its answer sets,
i.e. find AS(P);
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• Answer set checking: given a program P and an interpretation I, decide whether
I is an answer set of P, i.e. decide whether I ∈ AS(P);
• Brave reasoning: given a program P and a ground formula F , decide whether F
holds in some answer set of P, denoted by P |=b F ;
• Cautious reasoning: given a program P and a ground formula F , decide whether
F holds in all answer sets of P, denoted by P |=c F .

Example 2.29. Verifying whether a graph encoded in a logic program from Exam-
ple 2.14 is 3-colourable corresponds to the problem of answer set existence. Checking
whether there exists a coloring, in which the node 1 is colored in red corresponds to
brave reasoning, and deciding whether the node 1 is red in all possible valid colorings is
a cautious reasoning task.

2.4 Hybrid Knowledge Bases

So far we have considered two well-established formalisms for knowledge representation:
DLs and ASP, serving diverse needs. DLs are widely accepted for creating ontologies,
which in the Semantic Web context are intended to describe and structure complex web
resources. ASP plays an important role in AI and databases. In AI ASP is mainly
used for declarative problem solving and commonsense reasoning, and in databases for
querying data repositories.

While DLs are monotonic, and they focused on specifying and reasoning in relation to
conceptual knowledge, rules target issues associated with nonmonotonic inference. The
semantics of DLs uses open domain, which allows one to express the knowledge about
anonymous or unnamed individuals. For instance, we can express the information that
every person has a parent without explicitly specifying the parent in the ontology. Con-
versely, the semantics of ASP uses the closed Herbrand domain which is often essential
in various application scenarios. However, once the vocabulary is fixed the anonymous
individuals can not be modeled in ASP. Although some extensions of ASP, e.g. gener-
alized stable models [FLL07], Quantified Equilibrium Logic [Pea96], Open Answer Set
Programming (OASP) [HNV07] convey the open domain assumption, the complexity of
reasoning in such extensions increases and sometimes goes even beyond decidability. In
DLs the maximal predicate arity is usually restricted to 2, while in ASP the usage of
predicates with larger arities is possible.

Many practical applications require the features of both DLs and rules. Thus, the
natural solution of combining representatives of Description Logics and rule-based lan-
guages has given rise to the notion of Hybrid Knowledge Bases [LNS96]. Informally, a
hybrid KB is a pair Π = 〈O,P〉, where O is a DL-based ontology and P is a set of logical
rules. There are three approaches for defining hybrid KBs: tight coupling, embedding
approaches and loose coupling. The tight coupling approaches, like SWRL [HPSB+04],
r-hybrid KBs [Ros05] and ELP [KRH08], define the interface based on common mod-
els. The embedding approaches, like MKNF KBs [MR10], G-hybrid KBs [HPF+06] and
Open Answer Set Programming [Hey06], define the interface based on embeddings of
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both the ontology and the rules in a single unifying non-monotonic formalism. In the
loose coupling approach [dBBC+09] the ontology and the rules act separately but com-
municate via a well-defined interface, e.g. F-Logic KBs [HKE+10] and Description Logic
programs [EIL+08].

In this work, we focus on the loosely coupled hybrid KBs, and in particular con-
sider Description Logic (DL-) programs. One of the main reasons behind the increasing
popularity of DL-programs is the availability of sophisticated solvers for DL-programs
(e.g. dlvhex, DReW). A bidirectional flow of information in the DL-programs between
the logic program and the DL ontology is achieved via so-called DL-atoms, which prior
to querying ontology can update it with the information derived from the rules.

2.5 DL-programs
We now turn to the formal description of syntax and semantics of DL-programs.

Syntax. A DL-program is a pair Π = 〈O,P〉 over a signature ΣΠ = 〈P, C, I,C,R, 〉
of a finite ontology O over a signature ΣO = 〈I,C,R〉 and a finite set of rules P over
a signature ΣP = 〈P, C〉. In this work we assume that C = I, i.e. the set of ontology
individuals and constants of the logic program part coincide. The rules r of P are of the
form:

a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm , (2.2)

where each ai, 0 ≤ i ≤ n, is an lp-atom and each bi 1 ≤ i ≤ m, is either an lp-atom or a
DL-atom. These atoms are defined as follows:

• an lp-atom is a first-order atom p(~t) with predicate p from a set P of predicate
names disjoint with C and R, and constants from the set C;
• a DL-atom a(~t) is of the form DL[λ; Q](~t), where

λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0, (2.3)

is such that, for 1 ≤ i ≤ m, Si ∈ C ∪ R, opi ∈ {], −∪, −∩} is an update operator,
and pi ∈ P is an input predicate of the same arity as Si. Intuitively, opi =] (resp.,
opi = −∪) increases Si (resp., ¬Si) by the extension of pi, while −∩ constraints Si to
pi;
• Q(~t) is a DL-query, which is of one of the following forms:

(i) C(t), where C is a concept and t is a term;
(ii) R(t1, t2), where R is a role and t1, t2 are terms;
(iii) C1 v C2, where C1, C2 are concepts;
(iv) R1 v R2, where R1, R2 are roles, or
(v) ¬Q′(~t) where Q′(~t) is from (i)-(iv).

We skip (~t) for ~t= ε.
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O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)


P =

{
(7) ischildof (john, alex); (8) boy(john);
(9) hasfather(X,Y )← DL[Male ] boy; Male](Y ),DL[; hasParent](X,Y )

}
Figure 2.2: DL-program Π over a family ontology

The set of all DL-atoms of a DL-program Π is denoted by DLΠ. The notions of rule’s
head and body are naturally inherited from normal logic programs, i.e. for a DL-rule r,
H(r) = a1, . . . , an is called the head of r, and B(r) = {b1, . . . , bk,not bk+1, . . . ,not bm}
is called the body of r.

Example 2.30. Consider the DL-program Π in Figure 2.2, which captures information
about children of a primary school and their parents in simplistic form. It consists of
an ontology O which contains a taxonomy T of concepts (i.e., classes) in (1)-(3) and
factual data (i.e., assertions) A about some individuals in (4)-(6). The rules P contain
some further facts (7), (8) and proper rules: (9) determines fathers from the ontology,
upon feeding information to it.

A DL-atom DL[Male ] boy; Male](Y ) contained in the rule (9) first enriches the
concept Male in O by the extension of the predicate boy in P via ], and then queries
the concept Male over the modified ontology.

Semantics. The formal semantics of DL-programs associates Π with a collection of
answer sets. Similar as for the case of ordinary logic programs, answer sets are defined
in terms of the program’s grounding gr(Π) = 〈O, gr(P)〉 over C, i.e., gr(P) contains all
ground instances of rules r in P over C. In the remainder, by default we assume that Π
is ground.

Definition 2.31. A (Herbrand) interpretation of Π is a set I ⊆ HBΠ of ground atoms,
where HBΠ is the usual Herbrand base w.r.t. C and P.

The satisfaction relation for an interpretation is defined as follows:

Definition 2.32. Let Π = 〈O,P〉 be a ground DL-program. An interpretation I satisfies

• an lp-atom a, if a ∈ I;

• a default negated atom not a if a 6∈ I;

• a DL-atom a of the form (2.3), if

O ∪ λI(a) |= Q(c) (2.4)

where λI(a) =
⋃m
i=1Ai(I), and
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– Ai(I) = {Si(~t) | pi(~t) ∈ I}, for opi = ];
– Ai(I) = {¬Si(~t) | pi(~t) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(~t) | pi(~t) 6∈ I}, for opi = −∩.

• a set S of (DL)-atoms, if it satisfies each atom individually;

• a ground DL-rule r = a ← b1, . . . , bk,not bk+1 . . . ,not bm, if either I 6|= B(r) or
I |= H(r);

• a ground DL-program Π if it satisfies each rule r of Π.

We denote that I satisfies (is a model of) an object o (atom, rule, etc.) by I |=Oo.

Let us now illustrate the defined notions by the following example.

Example 2.33. In Example 2.30, the interpretation I = {ischildof (john, alex), boy(john)
hasParent(john, pat)}, satisfies a = DL[Male ] boy; Male](john), since it holds that
O ∪ λI(a) |= Male(john). Furthermore, I |=O r, for every rule r of Π and thus
I |=O Π.

Various semantics were introduced for DL-programs, see [EIL+08] for overview. As in
the ordinary ASP setting, we start the description of the semantics for the most simple
class of positive DL-programs. Informally, positive DL-programs contain no default
negations and involve only monotonic DL-atoms.

Definition 2.34. A ground DL-atom a is monotonic relative to Π = 〈O,P〉 if I |=O a
implies I ′ |=O a, for all I ⊆ I ′ ⊆ HB(Π), otherwise a is nonmonotonic. We denote by
DL+

Π ⊆ DLΠ the set of all DL-atoms known to be monotonic, and as DL?
Π = DLΠ\DL+

Π
the set of all other DL-atoms. A DL-program Π is monotonic, if all DL-atoms that it
involves are monotonic.

Note that a DL-atom involving the operator −∩ may be not monotonic, since an
increasing set of ground predicates leads to a reduction of the ABox assertions by which
the ontology is updated prior to its querying. On the other hand the DL-atoms that do
not contain −∩ are guaranteed to be monotonic.

Definition 2.35. A DL-program Π = 〈O,P〉 is positive if (i) P does not involve default
negated atoms, and (ii) every ground DL-atom occurring in Π is monotonic relative to
O. It is normal if n = 1 for every rule of form 2.2.

Like ordinary positive logic programs, every satisfiable positive non-disjunctive DL-
program has a single least model reflecting the so-called least model semantics. Note
that for disjunctive positive logic programs there is a least model in general.

Example 2.36. The non-disjunctive program Π = 〈O,P〉 from Figure 2.2 is positive,
and its least model is I = {ischildof (john, alex), hasParent(john, pat), boy(john)}.
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For stratified DL-programs, which informally are composed of a layered hierarchy of
positive DL-programs, the iterative least model semantics can be found in [EIL+08].

For our work the relevant semantics are strong, weak and flp, which we describe in
the following.

Strong and weak answer set semantics. The strong semantics for DL-programs
is reduced to the least model semantics of positive DL-programs by the following trans-
formation, called the strong reduct.

Definition 2.37. Let Π = 〈O,P〉 be a DL-program. The strong reduct of Π relative to
O and an interpretation I ⊆ HB(Π), denoted PI,Ostrong, is the set of all DL-rules obtained
from ground(Π) by deleting

• every DL-rule r, such that either I 6|=O a for some a ∈ B+(r) ∩DL?
Π, or I |=O d

for some d ∈ B−(r); and
• from each remaining DL-rule r all literals in B−(r) ∪ (B+(r) ∩DL?

Π).

Note that the strong reduct of any DL-program is positive by construction, and thus
if a given non-disjunctive DL-program is satisfiable, then it must have some minimal
model. Formally, strong answer sets are defined as follows:

Definition 2.38. Let Π = 〈O,P〉 be a non-disjunctive DL-program. A strong answer
set of Π is an interpretation I ⊆ HBΠ, such that I is a minimal model of 〈O,PI,Ostrong〉.
ASstrong(Π) denotes the set of all strong answer sets of Π.

Example 2.39. Consider a program Π = 〈O,P〉 with the ontology O as in Exam-
ple 2.30, and the following rules P:

P =


(7) ischildof (john, alex); (8) boy(john);
(9) hasfather(john, pat)← DL[Male ] boy; Male](pat),DL[; hasParent](john, pat);
(10) contact(john, pat)← DL[; hasParent](john, pat),not omit(john, pat);
(11) omit(john, pat)← DL[; Adopted](john), hasfather(john, pat)


The rule (9) is a ground version of the rule (9) from Example 2.30, while the rules (10)

and (11) intuitively distinguish adult representatives for children (which can be contacted
in case of emergency). Biological fathers of adopted children are omitted. Let us look
at the interpretation I = {ischildof (john, alex), hasfather(john, pat), contact(john, pat),
boy(john)}. Note that all DL-atoms in the program are monotonic. The strong reduct
PI,Ostrong contains all facts and rules of P apart from (11). Since I is the minimal model
of the strong reduct PI,Ostrong, it is a strong answer set of Π.

It is known that the strong answer set semantics of a DL-program without DL-atoms
coincides with the least model semantics of a DL-program without DL-atoms. Another
important property is as follows:

Proposition 2.40 (cf. [EIL+08]). Strong answer sets of a DL-program Π are also models
of Π, and moreover minimal models of Π if DLΠ = DL+

Π.
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For positive (resp. stratified) programs the strong answer sets coincide with the least
models if the program is satisfiable (resp. consistent) and do not exist otherwise.

The weak answer set semantics is defined in terms of the weak reduct.

Definition 2.41. Let Π = 〈O,P〉 be a DL-program. The weak reduct of P relative to
O and to an interpretation I ⊆ HBΠ, denoted PI,Oweak is the ordinary positive program
obtained from ground(P) by deleting

• all DL-rules r such that either I 6|=O a for some DL-atom a ∈ B+(r), or I |=O l
for some l ∈ B−(r); and

• from every remaining DL-rule r all the DL-atoms in B+(r) and all the literals in
B−(r).

Notice that PI,Oweak is an ordinary ground positive program without any DL-atoms and
default-negated literals. Therefore we define the weak answer set semantics of general
DL-programs by reduction to the least model semantics of ordinary positive programs
in the following way.

Definition 2.42. Let Π = 〈O,P〉 be a DL-program. A weak answer set of Π is an
interpretation I ⊆ HBΠ such that I is a minimal model of the ordinary positive program
PI,Oweak. ASweak(Π) denotes the set of all weak answer sets of Π.

Example 2.43. For the program Π = 〈O,P〉 from Example 2.39, the weak reduct PI,Oweak
contains only the following facts:

P =
{
(7) ischildof (john, alex); (8) boy(john);
(9) hasfather(john, pat); (10) contact(john, pat)

}
Clearly, I is a a minimal model of PI,Oweak and therefore a weak-answer set of Π from

Example 2.39.

The weak answer set semantics of a DL-program Π with no DL-atoms involved
coincides with the ordinary answer set semantics of Π.

Another important property states that every weak answer set of a DL-program Π
is also a model of KB. However, unlike for the case of strong answer sets, a weak answer
set is not necessarily a minimal model. This holds even for DL-programs containing only
monotonic DL-atoms. The set of all strong answer sets of a DL-program Π is contained
in the set of all its weak answer sets. The converse, however, does not hold in general.

Example 2.44. Consider Π = 〈O,P〉, where the ontology O is empty, i.e. O = ∅, and
the rule part P is as follows: P = {man(pat)← DL[Male ] man; Male](pat).}. We now
compute strong and weak answer sets of Π.

Let us look at the interpretation I1 = ∅. The strong reduct is PI1,Ostrong = P, since
the DL-atom DL[Male ] man; Male](pat) 6∈ D?

Π. Observe that I1 is a minimal model of
PI1,Ostrong, hence we get that I1 ∈ ASstrong(Π). The interpretation I1 is also a weak answer
set of Π, since PI1,Oweak = ∅. Furthermore, Π has I2 = {man(pat)} as another weak answer
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set. Indeed, PI2,Oweak = {man(pat).}, and clearly I2 is its minimal model. Note that I2,
however, is not a strong answer set of Π. The strong reduct PI2,Ostrong = P of P relative
to I2 has a model I1, which is smaller then I2.

Overall, we have ASstrong(Π) = {I1}, and ASweak(Π) = {I1, I2}.

The strong answer semantics provides stricter conditions on answer sets than the
weak one, but the weak semantics remains a reasonable choice if no information about
monotonicity of DL-atoms is available.

FLP answer set semantics. The last semantics relevant for our work is the flp-
semantics, which characterizes the answer sets in terms of the so-called flp-reduct.

Definition 2.45. Let Π = 〈O,P〉 be a DL-program. The flp-reduct PI,Oflp of Π relative
to I ⊆ HBΠ is the DL-program obtained from ground(P) by deleting

• all DL-rules r such that either I 6|= B(r), i.e. I 6|=O bi, for all bi, 1 ≤ i ≤ k and
I |=O bj , for all k < j ≤ m.

Now the flp-answer sets are given as follows:

Definition 2.46. Let Π = 〈O,P〉 be a DL-program. An (flp-)answer set of Π = 〈O,P〉
is any interpretation I ⊆ HBΠ that is a ⊆-minimal model of the flp-reduct PI,Oflp .

Example 2.47. Consider the DL-program Π = 〈O,P〉, where we have O = ∅ and
P = {woman(pat) ← DL[Male −∩man; ¬Male](pat)}. Let us look at the interpretation
I1 = {woman(pat)}. The flp-reduct PI1,Oflp of P relative to I1 contains all rules of P, i.e.
PI1,Oflp = P. As I1 is a minimal model of PI1,Oflp , we have that I1 ∈ ASflp(Π).

The notion of consistency for DL-programs is defined in the usual way:

Definition 2.48. A DL-program Π is inconsistent, if it has no answer set.

The flp-semantics is attractive as it naturally handles DL-atoms which are not mono-
tonic. The correspondence between the flp semantics and strong semantics for DL-
programs containing only DL-atoms, known to be monotonic is given in the following
proposition.

Proposition 2.49. [EIST05] Given a DL-program Π, I is an flp answer set of Π iff I
is a strong answer set of Π.

In fact the operator −∩ is rarely used in practice and as shown in [WEY+13], it can
be often removed by simple translations. Unless stated otherwise, we assume that DLΠ
is the set of all monotonic DL-atoms of Π.

If the semantics under which the answer sets for a given DL-program are computed is
not important, we refer to the answer sets as x-answer sets, where x can be substituted
by any concrete semantics, e.g. when x = flp we get flp-answer sets.
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The reasoning tasks for DL-programs are the same as for ASP, and they can be
considered under various semantics. For example, decide whether there exists a strong
answer set for a DL-program Π is denoted by ASstrong(Π) 6= ∅, deciding whether I is a
weak answer set of Π is denoted by I ∈ ASweak(Π).

2.6 HEX-programs

Apart from the interaction with the DL ontology through a logic program there are
other ways of accessing information from different external sources. An important gen-
eralization of DL-programs are HEX-programs [EIL+08], which accommodate a universal
bidirectional interface for arbitrary sources of external computation. This is achieved by
means of the notion of an external atom. Using such external atoms, whose semantics
is abstractly modeled by an input-output relationship, one can access different kinds
of information and reasoning in a single program. HEX-programs have been success-
fully used in various kinds of applications. Some examples include multi-agent systems,
rule-based policy specification, distributed SPARQL processing, to mention a few.

We assume that for a given HEX-program the vocabulary consists of mutually dis-
joint sets C of constants, V of variables, P of predicates, X of external predicates. We
recall several notions relevant for HEX-programs.

• A (signed) literal is a positive or a negative formula Ta resp. Fa, where a is an atom
of form p( ~X) = p(X1, . . . , X`), with a predicate p and terms X1, . . . , X` ∈ C ∪V;

• A signed literal or atom is ground, if all terms in ~X are constants, and nonground
otherwise.

• An assignment A over a (finite) set A of ground atoms is a consistent set of ground
signed literals Ta and Fa, a ∈ A, where Ta expresses that a is true and Fa that
a is false.

• An interpretation is any assignment A that is complete, i.e., no strictly larger
assignment A′ ⊃ A over A exists.

Next we recall syntax and semantics of HEX-programs.

Syntax. HEX-programs generalize (disjunctive) extended logic programs under the
answer set semantics described earlier with external atoms, which enable a bidirectional
interaction between a program and external sources of computation. External atoms
have a list of input parameters (constants or predicate names) and a list of output
parameters.

Definition 2.50. An external atom a(~Z) is of the form

&g[~Y ]( ~X), (2.5)
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where &g ∈X , ~Y =Y1, . . . , Y`, and ~X = X1, . . . , Xm, such that Yi, Xj ∈ P ∪ C ∪V, for
1≤ i ≤ ` and 1≤ j ≤m, and ~Z is the restriction of ~Y and ~X to elements from V.

An external atom is ground if Yi ∈ C ∪ P for all 1 ≤ i ≤ l and Xj ∈ C for all
1 ≤ j ≤ m.

Example 2.51. As an example of an external atom, consider a( ~X) = &diff [p, q]( ~X),
where p and q are predicates. The atom a( ~X) computes the set of all elements X, which
are in the extension of p but not in the extension of q.

HEX-programs are defined as follows:

Definition 2.52. A HEX-program consists of rules r of form

a1 ∨ · · · ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm , (2.6)

where each ai is an (ordinary) atom, each bj is either an ordinary atom or an external
atom, and n+m > 0.

Like for ordinary logic programs, we refer to H(r) = {a1, . . . , an} as the head of r,
and to B(r) = {b1, . . . , bk,not bk+1, . . . ,not bn} as the body of r.

Example 2.53. Consider the program Π

d(c)←; q(c) ← d(c),&diff [d, p](c);
p(c) ← d(c),&diff [d, q](c)

Informally, this program implements a choice from p(c) and q(c).

A program is ground, if it contains no variables. We will also consider non-ground
HEX-programs in our examples, for which suitable safety conditions allow to use a
grounding procedure that transforms the program to a variable-free program with the
same answer sets. We thus confine our formal investigations here to ground programs.

Semantics. The semantics of a HEX-program is defined via interpretations A over the
Herbrand base, which is naturally generalized from ordinary logic programs as follows:

Definition 2.54. A Herdbrand Base of a HEX-program Π, denoted HB(Π) is the set
of all atoms constructible from the predicates occurring in Π and the constants from C.

Given a HEX-program Π, satisfaction of (sets of) literals, rules, etc. O w.r.t. an
assignment A over HB(Π), denoted A |= O, extends naturally from ordinary [GL91a]
to HEX-programs and the satisfaction of a ground external atom &g[~y](~x) is a more
involved. It is given by the value of a 1+|~y|+|~x|-ary Boolean function f&g. Formally,

Definition 2.55. Let Π be a HEX-program and A an interpretation. The satisfaction
relation is defined as follows:

• for an ordinary atom b, A |= b, if Tb ∈ A, and A 6|= b, if Fb ∈ A;
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• for a ground external atom &g[~p](~c), A |= &g[~p](~c), if f&g(A, ~y, ~x) = 1, and
A 6|= &g[~p](~c), if f&g(A, ~y, ~x) = 0;

• A satisfies an (ordinary or external) literal not b, if A 6|= b;

• A satisfies a rule of form (2.6), if A |= ai for some 1 ≤ i ≤ k or A 6|= bi for some
1 ≤ i ≤ m or A |= bi for some m < i ≤ n;

• A satisfies a ground HEX-program Π (A is a model of Π), if A |= r for all rules
r of Π.

The answer sets of HEX-programs are defined in terms of the flp-reduct.

Definition 2.56. Let Π be a HEX-program and let A be an assignment. An flp-reduct
of Π w.r.t. A is a program ΠA

flp = {r ∈ Π | A |= B(r)}.

Definition 2.57. Given a HEX-program Π, an assignment A is an flp-answer set of Π,
if A is a model of ΠA

flp, whose positive part (i.e., {Ta ∈ A}) is subset-minimal. ASflp(Π)
denotes the set of all flp-answer sets of a HEX-program Π.

Example 2.58. Recall the HEX-program from Example 2.53 and consider an assign-
ment A1 = {Td(c),Fp(c)}. The reduct ΠA1

flp of Π relative to A1 is as follows:

ΠA1
flp = {d(c); p(c)← &diff [d, q](c)}.

Observe, that A1 is a minimal model of ΠA1
flp , therefore A1 ∈ ASflp(Π).

The assignment A2 = {d(c), q(c)} is another flp-answer set of Π. Indeed, the flp-
reduct comprises

ΠA2
flp = {d(c); q(c)← &diff [d, p](c)}.

As A2 is the minimal model of ΠA2
flp , we get that A2 ∈ ASflp(Π).

Evaluation. The usual way to compute the answer sets of a HEX-program Π is
via a transformation to an ordinary ASP program Π̂ [EFK+14]. Each external atom
a = &g[~y](~x) in a rule r ∈ Π is replaced by an ordinary replacement atom â = e&g[~y](~x)
(resulting in a rule r̂), and a rule e&g[~y](~x)∨ ne&g[~y](~x)← is added to the program. The
answer sets of the resulting guessing program Π̂ are computed by an ASP solver and
projected to non-replacement atoms. However, each answer set Â of Π̂ merely gives rise
to a candidate answer set of Π, as the guess for e&g[~p](~c) must be checked against the
actual value of &g[~p]. If no discrepancy is found, the model candidate is a compatible
set of Π. More precisely,

Definition 2.59. Let Π be a HEX-program Π. The guessing program Π̂ is an ASP
program obtained from Π as follows:
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• each external atom a = &g[~p](~c) in a rule r is replaced by an ordinary ground
replacement atom â = e&g[~p](~c) (resulting in a rule r̂), and

• for each external atom a = &g[p](c) an additional guessing rule rule of the form

e&g[~p](~c) ∨ ne&g[~p](~c)← (2.7)

is added to Π̂.

Definition 2.60. A compatible set of a HEX-program Π is an assignment Â such that

(i) Â∈AS(Π̂) and

(ii) for all &g[~y](~x) in Π, Te&g[~y](~x)∈ Â.

As each answer set of Π is a projection of a (unique) compatible set that fulfills an
additional minimality check, computing compatible sets is essential for evaluation.

2.6.1 From HEX-programs to DL-programs

As HEX-programs are generalizations of DL-programs, there is a correlation between
their syntax and semantics, which we discuss next. Let Π = 〈O,P〉 be a DL-program,
where O is a consistent ontology fixed as an external source and P is a set of DL-rules.

DL-atoms are encoded as external atoms of the form &DL[c+, c−, r+, r−, Q](~x), bi-
nary (resp. ternary) predicates and Q is a string which encodes an ontology query. The
query Q is a possibly negated ontology concept or a role name, concept or role subsump-
tion or its negation.

The oracle function of &DL is defined by

f&DL(A, c+, c−, r+, r−, ~x) = 1
⇐⇒ O ∪ UA(c+, c−, r+, r−) |= Q(~x),

where UA(c+, c−, r+, r−) is an update to O, specified by the (extension of the) predicates
c+, c−, r+, r−. More specifically, it contains for each Tc+(C, a) ∈ A (resp. Tc−(C, a) ∈
A), a concept assertion C(a) (resp. ¬C(a)). Updates of roles, generated by the predi-
cates r+ and r− are analogous.

Example 2.61. The DL-atom DL[Male ] boy; Male](X) from Example 2.30 is trans-
lated to &DL[c+, c−, r+, r−,Male](X), s.t. P is extended by the rule c+(Male, X) ←
boy(X) in P, and the predicate c+ does not occur elsewhere in the program P.

The rules P in the syntax of HEX-programs is as follows:

P =


(7) ischildof (john, alex); (8) boy(john);
(9) hasfather(X ,Y )← &DL[c′+, c′−, r′+, r′−, hasParent](X,Y ),

&DL[c+, c−, r+, r−,Male](Y );
(10) c+(Male,X)← boy(X)
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The described transformation has been implemented within the dlplugin18 and dl-
liteplugin19 of the dlvhex system, which is a HEX-program solver.

2.7 Computational Complexity
We now briefly review computational complexity theory and discuss the main relevant
complexity results for reasoning problems in DLs, ASP and DL-programs.

We start by formally defining the notion of a problem.

Definition 2.62. A problem is a question together with an (in general infinite) set of
possible instances Π (i.e. possible inputs) encoded in some meaningful way.

Standard complexity theory deals with decision problems.

Definition 2.63. A problem is a decision problem if it’s question has a yes/no answer,
i.e. the answer is “yes”, if the problem input falls into the set of yes-instances Y ⊆ Π,
and “no” if the problem input falls into the set of no-instances Π\Y.

Example 2.64. The graph 3-colourability problem, which we considered in Exam-
ple 2.14 is a decision problem, and it can be represented as follows:

GRAPH 3-COLOURABILITY
INSTANCE: A graph G = (V,E).
QUESTION: Is a graph G 3-colourable?

For the GRAPH 3-COLOURABILITY problem the set of instances Π is the set
of all possible graphs, while the set of “yes”-instances Y ⊂ Π is the set of graphs that
are 3-colourable, and the set of “no” instances Π\Y is the set of all other graphs.

Definition 2.65. Computational complexity theory is a field of study that aims at de-
termining the upper and lower bounds on the amount of resources (time, space) needed
to solve a computational problem at hand.

Worst-case complexity analysis measures the complexity in terms of a (complexity)
function f , whose argument is the size n of an instance of the problem (i.e., the length
of its encoding) and whose result is the amount f(n) of time/space needed in the worst-
case to solve a problem instance of size n. Problems that can be solved using a specific
set of resources are grouped together to form a complexity class. We assume that the
reader is familiar with the basic notions from computational complexity theory such as
(non-)deterministic Turing machines, problem reductions and completeness (see [Pap94]
for an excellent introduction to the field).

All complexity classes can be divided into two groups: time complexity classes and
space complexity classes. More formally,

18https://github.com/hexhex/dlplugin
19https://github.com/hexhex/dlliteplugin
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Complexity Class Definition

LogSpace SPACE(log2 n)

NLogSpace NSPACE(log2 n)

P ⋃
k∈N

(TIME(O(nk)))

NP ⋃
k∈N

(NTIME(O(nk)))

PSpace
⋃
k∈N

(SPACE(O(nk)))

NPSpace
⋃
k∈N

(NSPACE(O(nk)))

ExpTime
⋃
k∈N

(TIME(O(2nk)))

NExpTime
⋃
k∈N

(NTIME(O(2nk)))

2ExpTime
⋃
k∈N

(TIME(O(22nk

)))

2NExpTime
⋃
k∈N

(NTIME(O(22nk

)))

Table 2.6: Defining complexity classes

Definition 2.66. A time complexity class TIME(f(n)) (resp. NTIME(f(n))) is the
set of languages L, s.t. L is decided by a deterministic (resp.) nondeterministic Turing
machine in time O(f(n)).

Definition 2.67. A space complexity class SPACE(f(n)) (resp. NSPACE(f(n))) is
the set of languages L s.t. L is decided by a deterministic (resp. nondeterministic)
Turing machine within space O(f(n)).

As usual we denote by P(resp. NP) a class of decision problems that can be solved on
a deterministic (resp. nondeterministic) Turing Machine in polynomial time. AC0 is the
class of problems definable using a family of circuits of constant depth and polynomial
size, which can be generated by a deterministic Turing machine in logarithmic space in
the size of the input. AC0 allows one to use polynomially many processors, while keeping
the run-time constant. PSpace is the class of problems solvable with polynomial work
space. Some major complexity classes are shown in Table 2.7.

The relation among the complexity classes is as follows:

AC0 ⊂ LogSpace ⊆ NLogSpace ⊆ P
P ⊆ NP ⊆ PSpace ⊆ NPSpace
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NPSpace ⊆ ExpTime ⊆ NExpTime ⊆ 2ExpTime ⊆ 2NExpTime

An Oracle Turing Machines model computations with calls to subroutines, and they
are capable of solving certain decision problems in a single operation. Given a complexity
class C and an oracle A, we denote by CA a class of problems which can be solved by
a Turing Machine within the timebound of the class C, where the Turing Machine can
invoke an oracle for solving any problem from the class A. Given an instance I of A,
such an oracle machine can produce a correct answer for I in one unit of time. Moreover,
given a complexity class C, a class co-C denotes the class of problems whose complement
language is in C. For example, the problems in NP intuitively ask whether there exists a
string satisfying certain properties, whereas problems in co-NP ask whether all strings
satisfy certain properties. A canonical NP-complete problem is deciding satisfiability of
a propositional CNF formula, while deciding its validity is a typical co-NP-complete
problem. A natural extension is to consider problems which combine existential and
universal quantifiers. The complexity classes which emerge from this process make up
the polynomial hierarchy, which is a hierarchy of complexity classes that generalize the
classes of P, NP and co-NP.

Definition 2.68. The polynomial hierarchy consists the following sequence of classes:

• ∆P
0 = ΣP

0 = ΠP
0 = P

• ∆P
i+1 = PΣP

i

• ΣP
i+1 = NPΣP

i

• ΠP
i+1 = co-NPΣP

i

for all i ≥ 0. Moreover, the collective class is defined as follows: PH =
⋃
i≥0

ΣP
i .

Note that since ΣP
0 = P, we have that ΣP

1 = NP, ∆P
1 = P, and ΠP

1 = co-NP. At
each level the classes are believed to be distinct, and furthermore each class at each level
also includes the classes from the previous levels. Checking whether a ground disjunctive
logic program has some answer set is a well-known ΣP

2 -complete problem [EG93].
There are also some problems that are undecidable, i.e. decision problems, for which

it is known to be impossible to construct a single algorithm that always leads to a correct
yes-or-no answer in finite time. For instance, the problem of deciding satisfiability of a
first order formula is well-known to be undecidable.

2.7.1 Complexity of DLs, ASP and DL-programs: Main Results

In this section we provide an overview of the known complexity results for DLs, ASP
and DL-programs.

DL-LiteA and EL DL. The DLs considered in this work belong to the class of
lightweight DLs, therefore the reasoning tasks for these DLs can be regarded as com-
putationally “easy”. For the DL-LiteA case the works [CLLR07] and [PLC+08] provide
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O satisfiability O |= P (~t) C v D
in the size of T in the size of A in the size of T in the size of A in the size of T in the size of A

DL-LiteA NLogSpace AC0 NLogSpace AC0 NLogSpace AC0

EL P P P P P P

Table 2.7: Complexity of Lightweight DLs (completeness results)

Program Class AS(P) 6= ∅ P |=b F P |=c F

Prop. positive lp trivial P P

Prop. normal lp NP NP co-NP

Prop. disjunctive lp ΣP
2 ΣP

2 ΠP
2

Datalog trivial ExpTime ExpTime

Datalog¬ NExpTime NExpTime co-NExpTime

Datalog¬,∨ NExpTimeNP NExpTimeNP co-NExpTimeNP

Table 2.8: Complexity of logic programming (completeness results)

Ground Π = 〈O,P〉 ASstrong/flp(Π) 6= ∅ ASweak(Π) 6= ∅

O in SHIF NExpTime NExpTime

O in SHOIN PNExpTime PNExpTime

O in DL-LiteA or EL
Normal P ΣP

2 NP

Arbitrary P ΣP
2 ΣP

2

Table 2.9: Complexity of DL-programs (completeness results)

the complexity results, while the complexity of DL EL was mostly studied in [BBL05]
and [BBL08]. We give the summary of the relevant complexity upper bounds in Ta-
ble 2.7. For each of the reasoning tasks we present the complexity measured in terms of
the size of the TBox and the ABox respectively.

ASP. The complexity of ASP has been extensively studied both in the propositional
and the first-order case. We summarize the main known results in Table 2.8, and refer
the reader to [DEGV01] for more detailed exposition. The first column of Table 2.8
distinguishes program classes for which the complexity of reasoning tasks is presented.
The columns 2-4 specify the reasoning tasks considered, i.e. the second column refers to
the checking an answer set existence, the second and third columns are related to the
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brave and cautious reasoning respectively.
Complexity of various restricted types of logic programs were analyzed in the litera-

ture as well, see e.g. [EFFW07].

DL-programs. Extensive overview of the complexity for DL-programs over ontologies
in expressive DLs is provided in [EIL+08] and for lightweight DLs some results can be
obtained based on [WEY+13]. We provide a complexity summary in Table 2.9.
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CHAPTER 3
Inconsistency Management

Inconsistency is known to cause severe problems in logic-based and data intensive sys-
tems. An inconsistent logical knowledge base has no model, and the set of its classical
consequences is trivialized, i.e. every formula follows from it. This makes query answer-
ing from such an inconsistent knowledge base meaningless.

Treating adequately logically contradicting information is a major challenge faced by
KR formalisms in various settings. Therefore, inconsistency management has emerged
as an important area of research in AI and KR, which has been extensively studied in
various fields, e.g. belief revision [AGM85,GR95], knowledge base updates [EEFS05],
diagnosis [Rei87], nonmonotonic reasoning [Bre89,SI03] and many others (e.g., [BHS05,
Ngu08,MMSA13,Ber11,dCH15]).

There are mainly two approaches for dealing with inconsistency in a logic-based
system. These depend upon the practical settings. The first approach seeks to minimize
changes to a faulty system (e.g. by deleting information) in the search of satisfiability.
The second approach promotes the use of paraconsistent semantics which is capable
of producing reasonable inferences from a faulty system. Under these semantics, the
contradictory statement does not deduce an arbitrary formula, hence the whole theory
is not trivialized. Historically, paraconsistent logics have been developed in the area of
philosophical logic [Mid11].

In this chapter we overview existing strategies for handling inconsistencies in the
context of databases (Section 3.1), ontologies (Section 3.2), rules (Section 3.3), and
hybrid logical formalisms with the focus on DL-programs (Section 3.4). For a good
survey of consistency-related issues we refer the reader to [FGC+11].

3.1 Inconsistencies in Databases

Managing inconsistent databases, i.e. databases violating integrity constraints is a com-
mon problem that has been intensively studied in the recent years. Even though integrity

45



constraints successfully capture data semantics, the actual data in the database often
fails to satisfy such constraints. This may happen because the data is drawn from a
variety of independent sources as in data integration settings [DLLR04,Lem04].

The problem of dealing with inconsistency in databases is tightly related to belief
revision and update [AGM85,GR95] in AI, which study the problem of integrating new
information with available knowledge. Among the first theoretical approaches to the
problem of dealing with incomplete and inconsistent information in databases one can
mention the work [IJ84], which mainly focused on issues related to the semantics of in-
completeness. The problem of extracting reliable information from inconsistent data was
then addressed in [AKWS95], where an extension of relational algebra (namely flexible
algebra) was proposed to evaluate queries on data inconsistent w.r.t. key constraints.
The first proof-theoretic notion of consistent query answers was introduced in [Bry97],
expressing the idea that tuples involved in an integrity violation should not be considered
in consistent query answering.

In [ABC99] a different notion of consistent answer based on the notion of repair
was introduced. In particular, the authors of [ABC99] show that, for quantifier-free
conjunctive queries and binary universal constraints, consistent answers can be evaluated
without computing repairs, but by looking only at the specified constraints and rewriting
the original query q into a query q′ such that the answer of q′ on D is equal to the
consistent answer of q on D. This technique based on query rewriting was further
developed in [CB00] and extended in [FM07,FFP05] to work for a subclass of conjunctive
queries with existential quantification in the presence of key constraints. The results
provided in [FM07] were further generalized in [Wij09].

Based on the notions of repair and consistent query answer introduced in [ABC99],
several works investigated the problem of querying inconsistent data considering more
expressive classes of queries and constraints. The notion of consistent answer was ex-
tended to the case of aggregate queries in [ABC03], where consistent answers of aggregate
queries were investigated in the presence of functional dependencies.

Several works considered logic-based frameworks for exploiting the problem of com-
puting repairs and consistent query answering. Specifically, in [ABC00,ABC03] extended
disjunctive logic programs with exceptions were used for the computation of repairs. A
further generalization was proposed in [GGZ03], where the authors defined a technique
based on the rewriting of constraints into extended disjunctive rules with two different
forms of negation (negation as failure and classical negation). This technique was shown
to be sound and complete for universally quantified constraints. In [ABC00], a repair-
ing framework based on a non-classical logic (the annotated predicate calculus [KL92])
was proposed, which works for queries that are conjunctions or disjunctions of positive
literals in the presence of universal constraints. This strategy was extended in [BB02] to
deal with referential integrity constraints. A similar approach was proposed in [BB03],
where repairs were specified as the stable models of a disjunctive logic program where the
database predicates contain annotations as extra arguments (as opposed to annotated
programs that contain annotated atoms).
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3.2 Inconsistencies in Description Logics

The problematic ontologies fall into two categories: inconsistent and incoherent. An
ontology is inconsistent, if it does not have any model. An ontology is incoherent, if its
TBox contains at least one unsatisfiable concept, i.e. concept that is interpreted as the
empty set in all models of the TBox.

For fixing inconsistent ontologies a number of techniques were proposed. In particu-
lar, [LLR++11,Bie12] studied consistent query answering over DL-Lite ontologies based
on the repair technique (see [Ber11]), using minimal deletion repairs. A work [RRGM12]
is based on ABox cleaning in DL-LiteA ontologies. There an inconsistent ontology (with
consistent TBox) is repaired by identifying and eliminating minimal conflict sets, caus-
ing, i.e. explaining, inconsistency, thus resulting in maximal deletion repairs. A recent
work [NMSN14] proposes an approach for efficient inconsistency detection in distributed
DL-LiteA knowledge bases. It relies on the generation of so-called clash queries in the
distributed setting. The clash queries essentially amount to conflict sets considered by
Lembo et al [LLR+11].

A vast amount of research has been devoted to studying inconsistencies in ontologies
in general without distinguishing the data part from the TBox, e.g. [PSK05, JHQ+09,
HvHtT05,HvHH+05,WWT10]. For example, the work [JHQ+09] proposes a technique
for repairing inconsistent ontologies by generating minimal inconsistent subsets for re-
solving inconsistencies. A similar approach reported in [HvHH+05] provides method-
ologies for extracting minimal inconsistent and maximal consistent subontologies. The
authors of [HRDA11] deal with the identification of contradiction derivations under the
integrity constraint rules defined in a logic program. For resolving detected inconsis-
tencies, they generate all possible Minimal Inconsistent Resolve Candidates (MIRCs).
These are defined as a set of asserted ontology triples whose removal results in a consis-
tent subontology.

As for incoherent ontologies, an attempt described in [SGWB10] uses default logics
for relaxing the axioms that cause incoherence, and shows how probabilistic description
logics can be used to resolve conflicts. Other earlier approaches for debugging termi-
nologies and resolving incoherence were proposed in [KPSG06,Sch05].

The most prominent techniques for paraconsistent reasoning in ontologies are based
on the use of additional truth values standing for undefined (i.e. neither true nor false)
and over-defined (or contradictory, i.e. both true and false). Such multi-valued seman-
tics are defined for Description Logics in [MH09]. In [GCS10] the authors suggest to
apply querying only on a consistent fragment of the inconsistent ontology. Identifying
consistent fragments is based on a selection function, which can be defined by some
syntactic or semantic relevance [HvHtT05]. Another recent attempt for dealing with in-
consistencies in ontologies was presented in [GCS10], where ontologies are expressed as
defeasible logic programs (DeLP). For a given query, a dialectical analysis is performed
on the DeLP program, where all arguments in favor and against the query results are
taken into account.
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3.3 Inconsistencies in Logic Programs

Inconsistent logic programs are programs, lacking answer sets. A subset of inconsistent
programs is called incoherent; these are lacking answer set for a particular reason of
cyclic dependence of some atom on its default negation. The efforts towards detecting
and solving inconsistencies in logic rules are mostly described in the papers that focus
on debugging of logic programs (e.g. [GPST08,PSEK09,Syr06], etc).

The approach by Syränen [Syr06] is designed to find reasons for the absence of answer
sets. It addresses the issue of debugging incoherent logic programs, which is adapted from
the field of model-based diagnosis [Rei87]. A generalization of the same problem is given
in the work [GPST08] which provides explanations why interpretations are not answer
sets of a program under consideration. The latter method relies on a meta-programming
technique, i.e., a program over a metalanguage manipulates another program over an
object language. An important contribution of that work is a classification scheme of
errors that is based on a rather intuitive characterization of answer sets [Lee05]. The
consistency-restoring rules of Balduccini and Gelfond [BG03] are another related ap-
proach in this regard. The authors of this work define a method that allows a reasoning
system to find the best explanation for conflicting observations. Furthermore,some pre-
vious work on the properties of odd and even cycles in a program and their effect on the
existence and number of answer sets is given in such works as [YY94,LZ04].

Among the best known approaches in the area of paracoherent reasoning for logic
programs are 3-valued stable models [Prz91], L-stable models [ELS97], revised stable
models (Pereira et. al), regular models (You et. al), p-stable models (Osorio et. al)
and semi-stable models (Sakama et. al). For more discussion of 3-valued stable and
regular models as well as many other semantics coinciding with them, see [ELS97]. The
paracoherent semantics proposed in [EFM10] is designed for paracoherent programs.
The authors propose a semantic characterization of semi-stable models in terms of bi-
models and of semi-equilibrium models was given. One of the weak points of this work
is the absence of support of modularity properties of the programs. Therefore, lifting
the semantics for programs with modules is an interesting and challenging issue. Such
extension should exist, since the Equilibrium Logic is rather flexible.

Another issue with regard to [EFM10] is to lift the paracoherent semantics to the
paraconsistent one, where the strong negation will also be allowed. The semantics can
be further enhanced for treating programs with strong negation, nested programs, etc.

A recent work [DBV12] surveys and explains the application of the approximation
fixpoint theory to the semantics of logic programming and answer set programming and
generalizations of these.

3.4 Inconsistencies in Hybrid Logical Formalisms

In general, combining different pieces of knowledge is more vulnerable for contradictions
than individual representations. Therefore, inconsistency handling in hybrid theories
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O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =


(7) ischildof (john, alex); (8) boy(john);
(9) hasfather(john, pat)← DL[Male ] boy; Male](pat),DL[; hasParent](john, pat);
(10) ⊥ ← not DL[; Adopted](john), hasfather(john, pat), ischildof (john, alex),

not DL[Child ] boy; ¬Male](alex)


Figure 3.1: Inconsistent DL-program Π over a family ontology

poses a far non-trivial challenge. These logical theories might turn out to be inconsistent
even if the pieces of information are perfectly consistent when considered separately.

Most of the approaches for handling inconsistencies in hybrid formalisms are based on
paraconsistent reasoning. For example, the works [KAH08,HLH13] present a paraconsis-
tent semantics for tightly-coupled MKNF hybrid KBs, which is based on the four-valued
logic proposed by Belnap [Bel77]. A translation of this semantics to the stable model
semantics via a linear transformation operator is also described by the authors. The
work [Fin12a] presents a paraconsistent semi-equilibrium model semantics for abstract
hybrid logical theories, given by a classical first order theory and a rules part as a set of
declarative logic program rules.

The authors of [EFSW10,EFW14] focus on explaining inconsistency in multi-context
systems (MCS), where decentralized and heterogeneous system parts interact via non-
monotonic bridge rules. The techniques described in [EFSW10] characterize inconsis-
tency in terms of bridge rules that are involved: either by pointing out rules which need
to be altered for restoring consistency, or by finding combinations of rules which cause in-
consistency. Among other related works in the context of MCS there are [BE07,BEFS10].

3.4.1 Analyzing Inconsistencies in DL-programs

Before delving into details about the existing research related to inconsistent DL-programs,
let us first consider an inconsistent version of Example 2.30, depicted in Figure 3.1.

Example 3.1. In Chapter 2 we have already seen the ontology O and the rules (7)-(9)
of Π from Figure 3.1. Consider now the additional constraint (10). Intuitively, it states
that a child can not have two male parents unless it is adopted. Observe, that pat is a
father of john, and john is not known to be adopted. Furthermore, alex is a parent of
john who is not provably ¬Male. Therefore, the constraint (10) is applied for any model
candidate, and Π does not have any answer sets.

There are multiple strategies that one could follow for resolving inconsistencies in
Π from the above example. Indeed, one could assume that the logic rules P of Π are
not appropriate or that the ontology O contains some faulty (incomplete) information
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bits. Under the former view suitable changes applied to P would resolve the problem.
For instance, the constraint (10) can be dropped or changed to a rule by introducing
affiliated(john) in its head. Under the latter view, i.e. if the reasons for conflicts are in
O, resolving them could be done by replacing pat with alex in axioms (4) and (6) or by
adding the assertion Adopted(john) to O. In addition to possible problems in rules or the
ontology, the interfaces between them can be not fully correct. Provided that Π contains
an additional fact woman(alex), for resolving contradictions in Π it would be plausible
to extend the input signature λ of the DL-atom a = DL[Child ] boy; ¬Male](alex) by
adding Female ] woman to it. This would lead to a being true in the model candidates,
and thus the constraint (10) would not be applied any longer.

Summarizing these observations, we can naturally distinguish the following possible
sources of inconsistency in a DL-program Π = 〈O,P〉:

(1) the rules P;
(2) the ontology O;
(3) the interface DL[λ; Q](~t) between P and O;
(4) combinations of (1)-(3).

Handling inconsistencies in DL-programs is a relatively new issue, since the formal-
ism of DL-programs itself is quite young. There were very few works that targeted
this problem before the start of this thesis, and all of them focused on inconsistency
tolerance. For example, in [PHE10], rules with DL-atoms that amount to queries over
inconsistent ontologies are suppressed. The semantics for general hybrid theories pre-
sented in [Fin12a] pays particular attention to inconsistency due to the lack of stability
in models (termed paracoherence), and it is in line with paraconsistent semantics for
Description Logics [MHL08].

The problem of repairing DL-programs, i.e. changing formulas to obtain consistency
(which is a natural and ubiquitous approach in knowledge representation) has not been
attacked earlier. As we have seen due to multiple sources of inconsistencies (1)-(4),
different possibilities to restore inconsistency exist. We now shed some light on the
techniques that can be applied to restoring consistency of DL-programs while focusing
on changing rules, ontology and interfaces respectively.

Repair of rules. Repairing rules in a DL-program subsumes repair of ordinary
nonmonotonic programs, and thus poses a challenge as such, especially if repair goes
beyond merely dropping rules.

Inconsistent DL-programs can be seen as programs with bugs, and for fixing these
bugs suitable debugging techniques are required. In fact, the development of debugging
techniques for DL-programs has started in [OPT12]. The proposed debugging approach
is built on standard answer set debugging techniques [Syr06,GPST08,P1̈4]; the debug-
ging is done in a user-interactive way, and it proceeds by stepping through the rules of
the DL-program, and distinguishing at each step a set of rules that are active together
with an intermediate interpretation. Faulty rules are identified, once a conflict is reached
in the stepping process.
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Debugging techniques can be applied to modules of DL-programs [DEFK09]. A
given DL-program can be split into independent components such that each component
is evaluated separately, and then the results are conveniently combined. Having modules
of a DL-program clearly identified, one can focus on debugging/repairing the rules of
each of the modules individually.

Repair of interfaces. Repairing interfaces might be addressed in different ways. One
possibility is to modify the update specification λ in a DL-atom DL[λ; Q](~t) and/or
the query Q(t) to effect a different information flow between the rules and the ontology.
However, the search space for changes here is large and needs to be appropriately limited.
Furthermore, user intervention will most likely be indispensable.

Another possibility is to change query evaluation: rather than simply expanding the
ontology O with assertions assembled from the update specification λ, one incorporates
them into O in a way such that consistency is preserved, using a revision or update
operator [AGM85,GR95]; it remains to identify suitable such operators. Alternatively,
the DL-queries can be evaluated using a suitable paraconsistent semantics.

Repairs of interfaces can be done in groups. One can build a partition of DL-atoms
according to their mutual dependence, e.g. dependence w.r.t. value, update, DL-query.
Repairing interfaces can be done in such partitions, for instance if an update P ] q
is removed from a DL-atom DL[P ], q; D](~t), then it might be worthwhile to consider
the removal of the same update from the interface DL[P ] q,Q ] m; D](~t). Further
syntactical similarities among DL-atoms can be exploited.

Orthogonal to the actual repair techniques is a problem of selecting a concrete set
of interfaces that should be changed from all possibilities. That is, assume we identified
a set A of faulty DL-atoms, such that the logical value of at least one of them must
be relaxed or changed for the overall system to become consistent. From the purely
technical point of view, any atom a from the set A could be modified to do the job.
However, obviously we are interested in making the best possible choice for such a.
That is, we do not want to modify the interfaces which are a priori irrefutable.

The question that arises in this setting is how to find such irrefutable atoms and how
to compare two interfaces with respect to their correctness. In many cases pure syntactic
analysis will not bring satisfactory results, and thus additional semantic information
about DL-atoms needs to be taken into account whenever possible. Ideally such domain
dependent information should be provided by the designer of the program in such a way
that it can be exploited during the inconsistency handling process. However, it is not
clear

• what kind of information the program designer should provide about the DL-atoms;
• how this information could be represented in a convenient way;
• what framework can one offer to the user for encoding the additional information
about the DL-atoms (e.g. forms of tagging DL-atoms).

These are open questions, to which answers are far nontrivial, but they go beyond the
scope of this thesis. We leave the problem of modifying interfaces for future work.
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Repair of ontology. Finally repair of ontologies is an important aspect and the main
focus of this thesis. Naturally, the possible changes in the ontology repair concern the
modifications of the TBox, ABox or both of them. Normally, the modifications of the
TBox are less obvious, as the TBoxes are often carefully constructed, and consulting
domain experts is often vital for making reasonable changes. If, however, the TBox still
has to be repaired, application of techniques for dealing with incoherent ontologies need
to be adapted accordingly.

In this work we concentrate on modifying the data part of the ontology (i.e. its
ABox) for restoring consistency. The approaches that we propose are discussed in the
next chapters.

The ideas and techniques that we mentioned above can be combined in the general
setting of handling inconsistencies. For example, if it was decided to make suitable
changes to the rules, the one can still choose to consider paraconsistent evaluation of
DL-queries in the same scenario. The general semantics of DL-programs can be extended
to semi-equilibrium model semantics [EFM10], and yet some changes to the ontology
could be still allowed. A policy language that could make suggestions in the interactive
mode about the suitable techniques for drawing plausible inferences from a DL-program
could effectively guide the inconsistency handling process.
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CHAPTER 4
DL-program Repair Semantics

As discussed earlier the powerful formalism of DL-programs permits a bidirectional in-
formation flow between the rule part and the ontology, which makes it attractive for
various application scenarios. This information flow, however, can have unforeseen ef-
fects and cause inconsistency such that no answer set (i.e., model), of a DL-program
exists. Absence of answer sets often makes the DL-program unusable, which calls for
dealing with this problem, e.g. by computing a repair. In this chapter we tackle the
problem of repair computation from the theoretical perspective by introducing the re-
pair semantics and analyzing its complexity. To illustrate the notion of inconsistency in
DL-programs, we turn to an extended version of Example 3.1 from the family domain.

Example 4.1. Consider the DL-program Π from Figure 4.1, which is an extended
version of Example 3.1 with the additional rules (11) and (12). Intuitively, single out
contact persons for children, which by default are the parents; for adopted children,
fathers from the ontology are omitted, if some other contact exists.

The program Π does not have any answer sets, and therefore it is inconsistent. The
inconsistency arises in this program as john, who is not provably adopted, has pat as
father by the ontology, and by the local information possibly also alex; this causes the
constraint (10) to be violated.

The previous works that considered the problem of inconsistencies in hybrid for-
malisms, e.g. [PHE10,Fin12b] focused on inconsistency tolerance. Their approach was
to tolerate inconsistency by suppressing or weakening information that leads to incon-
sistency in model building. However, the problem to repair the program, i.e., change
formulas in it to obtain consistency (which is a natural and ubiquitous approach in data
and knowledge representation), has to the best of our knowledge not been considered.

We study this issue, which due to the interaction between the rules and the ontology
is nontrivial and at least as challenging as for these parts. Ontology repair has been
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O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);
(9) hasfather(X,Y )← DL[Male ] boy; Male](Y ),

DL[; hasParent](X,Y );
(10) ⊥ ← not DL[; Adopted](X), Y1 6= Y2,

hasfather(X,Y1), ischildof (X,Y2),
not DL[Child ] boy; ¬Male](Y2)

(11) contact(X,Y )← DL[; hasParent](X,Y ),
not omit(X,Y );

(12) omit(X,Y )← DL[; Adopted](X), Z 6= Y,
hasfather(X,Y ), contact(X,Z)


Figure 4.1: Extended version of a DL-program Π over a family ontology

studied in many works, e.g., in [LLR++11, Bie12] for consistent query answering; re-
pairing nonmonotonic logic programs instead is less developed (cf. [SI03]). In the light
of this and as the rules are on top of the ontology (such that their plausibility can be
separately assessed), we take the view that the latter, and here in particular its data
part might not be fully correct.

In the above example, suitable changes of the ontology facts make the DL-program
consistent. For example, deleting hasParent(john, pat) from A leads to the answer set
I1 = {ischildof (john, alex), boy(john)}, alternatively the addition of Adopted(john) leads
to I2 = {ischildof (john, alex), boy(john), hasfather(john, pat), contact(john, pat)}; yet
other possibilities exist.

However, not all repairs might be acceptable; the question is how to find suitable
repairs which additionally do not increase the complexity of DL-programs.

In this chapter we tackle this challenge with the following contributions:
(1) We first formalize repairing DL-programs and introduce the notions of repair and
repair answer set in Section 4.1. They are based on changes of the assertions in the
ontology that enable answer sets. As it turns out, repair answer sets do not have higher
complexity than ordinary answer sets (more precisely, weak and FLP answer sets) if
queries in DL-atoms are evaluable in polynomial time; to ensure this, we concentrate on
the lightweight Description Logic DL-LiteA [CLLR07]. We also consider a bit complexity
for repair answer set computation of DL-programs over Description Logic EL, in which
like in DL-LiteA the query answering is feasible in polynomial time [BBL05].
(2) We model repair preference by functions σ introduced in Section 4.2. These func-
tions select preferred repairs from a set of candidates. As preference is a known source of
complexity, we focus on selections σ with a benign independence property (which some
practicable σ selections enjoy). Importantly, the locally selected ABoxes also yield,
modulo a conditional check on the rules part, the σ-selected repairs of the program.
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(3) As a subtask of repair computation, we introduce a generalized ontology repair prob-
lem (ORP) in Section 4.3, which arises from a candidate answer set and the DL-atoms of
the program. It consists of two sets D1, D2 of entailment and non-entailment queries to
the ontology, with possible temporary assertions, and asks for an ABox satisfying these
sets.
(4) Furthermore, we analyze the complexity of the ORP problem. Unsurprisingly, it
is intractable (NP-complete) for DL-LiteA and EL in general, but we show that NP-
hardness holds also in plain ontology settings, due to the temporary assertions. However,
in Section 4.4 we also identify several tractable cases of σ-selections for DL-LiteA that
are useful in practical applications.
(5) To ensure usefulness of repairs we propose in Section 4.5 various domain-dependent
types of restrictions that can be applied on top of σ-selections when computing repairs.
Incorporating domain-specific knowledge into the repair process contributes to the prac-
ticability of our approach.

While we focus here on lightweight DLs, i.e. DL-LiteA and EL, our repair framework
and basic results can be extended to DL-programs with ontologies in other Description
Logics as well. Further ideas regarding an extension of our approach and possible direc-
tions of future work are summarized in Section 4.6.

4.1 Repair Answer Sets
We now turn straight to repairing an inconsistent DL-program Π = 〈O,P〉. In our
setting, we assume that the rule part P, which is on top of the ontology O = 〈T ,A〉,
is reliable and that the cause for inconsistency is in the latter. Thus when searching
for a repair, modifications should only be applied to O. In principle, the TBox T and
the ABox A of the ontology could be subject to change; however, as usually the TBox
is well-developed and a suitable TBox change is less clear in general (the more by an
external user), we confine to change only the ABox.

Hence given a possibly inconsistent DL-program, our goal is to find an ABox A′ such
that replacing the ABox A by A′ makes the DL-program consistent. The answer sets of
such a “repaired” DL-program are then referred to as repair answer sets of the program.

Formally, they are defined as follows.

Definition 4.2. Given a DL-program Π = 〈O,P〉, O= 〈T ,A〉, an ABox A′ is an x-repair
of Π, where x ∈ {flp,weak}, if

(i) O′= 〈T ,A′〉 is consistent, and
(ii) Π′ = 〈O′,P〉 has some x-answer set.

By repx(Π) we denote the set of all x-repairs of Π.
An interpretation I is an x-repair answer set of Π, if I ∈ ASx(Π′), where Π′ = 〈O′,P〉,
O′= 〈T ,A′〉, and A′ ∈ repx(Π). By RASx(Π) we denote the set of all x-repair answer
sets of Π.
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ASx(Π) | RASx(Π) 6= ∅? normal Π disjunctive Π

x = weak NP |NP ΣP
2 |ΣP

2

x = flp ΣP
2 |ΣP

2 ΣP
2 |ΣP

2

Table 4.1: Complexity of deciding weak and flp answer set existence for ground DL-
programs over DL-LiteA ontologies (completeness results)

Furthermore, by repIx(Π) = {A′ ∈ repx(Π) | I ∈ ASx(Π′),Π′ = 〈O′,P〉,O′ = 〈T ,A′〉}
we denote the set of all ABoxes A′ under which I becomes an x-answer set of Π.

Example 4.3. Reconsider Π in Example 4.1. The interpretation I1 = {boy(john),
ischildof (john, alex)} is an flp-repair answer set with flp-repair A′1 = {Male(john),
Male(pat)}. Another flp-repair for I1 is A′2 = {hasParent(john, pat),Female(pat),
Male(john)}. The interpretation I1 is also a weak-repair answer set with the weak-repairs
A′1 and A′2.

4.1.1 Complexity of RAS existence for DL-programs over DL-LiteA
We now look at the problem of deciding whether a given DL-program Π = 〈O,P〉 has
an x-(repair) answer set for x ∈ {flp, weak}. Table 4.1 compactly summarizes our
complexity results for this problem for O in DL-LiteA.

Before formally addressing the complexity of repair answer sets, we first state the
following proposition:

Proposition 4.4. Given any I ⊆ HBΠ, O in DL-LiteA, and a DL-atom a = DL[λ; Q](~t),
deciding I |=O a is feasible in polynomial time.

Proof. Deciding whether I |=O a is equivalent to checking O∪λI(a) |= Q(~t). As instance
checking is known to be polynomial [CLLR07] in DL-LiteA, the result immediately
follows.

Now we are ready to formally prove the complexity results for checking the repair
answer set existence that we obtained.

Theorem 4.5. Given a ground DL-program Π = 〈O,P〉, deciding whether RASx(Π) 6= ∅
is NP-complete for normal Π and x = weak if the ontology O is in DL-LiteA DL.

Proof. (Membership) Let Π = 〈O,P〉 be a DL-program, where O = 〈T ,A〉. We guess
an interpretation I, the value of the DL-atoms and the repair ABox A′.

We then check whether I is a repair answer set. For that we first (i) evaluate all
DL-atoms over O′ = 〈T ,A′〉 and compare their values with the guessed values. If this
test succeeds, then we (ii) check whether the interpretation candidate I is minimal of
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the reduct PI,O′weak. The check (i) is feasible in polynomial time, which follows from the
Proposition 4.4. As for the check (ii), observe that the reduct PI,O′weak is a normal positive
logic program without any DL-atoms. Hence, it must have a single model. We can check
whether I is a model of PI,O′weak in polynomial time. The above algorithm solves the target
problem, which proves its membership in NP.

(Hardness) To prove hardness we provide a reduction from the NP-complete 3SAT
problem to deciding weak repair answer set existence for a DL-program over a DL-LiteA
ontology as follows.

Let φ =
∧

1≤j≤mCj be an instance of the 3SAT problem, where each Cj is a disjunc-
tion of three atoms over the variables x1, . . . , xn. From this we construct a DL-program
Π = 〈T ,A,P〉.

• Construction of the TBox T :

We introduce concept names Xi and X̄i, for each variable xi occurring in φ. More-
over, we introduce a concept name Cj for each clause Cj in φ. Then the TBox T
is constructed as follows:

– Xi v Cj iff xi is a disjunct in Cj ;
– X̄i v Cj iff ¬xi is a disjunct in Cj ;
– Xi v ¬X̄i and X̄i v ¬Xi for all pairs Xi, X̄i;

• The ABox is A = {D(b)}, where D and b are a fresh concept and a fresh constant
respectively.

• Construction of P:

We introduce fresh ground atoms pi(b) (resp. p̄i(b)) for each xi occurring positively
(resp. negatively) in φ. The rules of P are as follows:

P =



(1) ⊥ ← DL[; D](b);
(2) ⊥ ← not DL[; C1](b);

. . .

(3) ⊥ ← not DL[; Cm](b);
(4) ⊥ ← not DL[λ1; ¬C1](b);

. . .

(5) ⊥ ← not DL[λm; ¬Cm](b);
(6) pi(b) | pi occurs in λj , 1 ≤ j ≤ m;
(7) p̄i(b) | p̄i occurs in λj , 1 ≤ j ≤ m



,

where for each xi, we have Xi ] pi (resp. X̄i ] p̄i) occurs in λj if ¬xi (resp. xi)
is a disjunct in Cj of φ. In addition, P contains the facts pi(b) (resp. p̄i(b)) iff xi
(resp. x̄i) occurs in some λj .
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We claim that φ is satisfiable iff RASweak(Π) 6= ∅, i.e. there exists an interpretation
I and an ABox A′ such that I is a weak answer set of Π′ = 〈T ,A′,P〉.

(⇒) Suppose that φ is satisfiable and A(φ) is a satisfying assignment. From this we
construct a repair answer set I of Π and a repair ABox A′ as follows. The interpretation
I contains the set of all ground atoms that occur as facts in P. The ABox A′ is such
that Xi(b) (resp. X̄i(b)) is in A′ if xi is true (resp. false) under the assignment A(φ).

Example 4.6. Let φ = x1 ∨ ¬x2 ∨ x3 be an instance of a 3SAT problem. From this we
construct a DL-program Π = 〈O,P〉 as follows:

The TBox is T = {X1 v C1; X̄2 v C1; X3 v C1}; the ABox is A = {D(b)}; the
program is

P =


(1) ⊥ ← DL[; D](b);
(2) ⊥ ← not DL[; C1](b);
(3) ⊥ ← not DL[X̄1 ] p̄1, X2 ] p2, X̄3 ] p̄3; ¬C1](b);
(4) p̄1(b); (5) p2(b); (6) p̄3(b)

 .
Consider the satisfying assignment A(φ) = {x1, x2,¬x3}. The repair ABox con-

structed from A(φ) is as follows: A′ = {X1(b), X2(b), X̄3(b)}.
Now we show that I is a weak repair answer set of Π with the repair A′. For that we

prove that I is a weak answer set of Π′ = 〈T ,A′,P〉. Observe that the body of the rule
(1) is not satisfied, as A′ does not contain the fact D(b). Furthermore, the DL-atoms
DL[; C1](b), . . . ,DL[; Cm](b) evaluate to true under O′ = 〈T ,A′〉, since O′ |= Cj(b) for
all 1 ≤ j ≤ m by construction. Moreover, each dj = DL[λj ; ¬Cj ](b) evaluates to true
under I, because the ontology O′∪λI(dj) is unsatisfiable (by construction Xi(b) ∈ A′ or
X̄i(b) ∈ A′ for some Xi v Cj resp. X̄i v Cj), and thus each ¬Cj(b) is trivially entailed.
Therefore, none of the constraints of P is present in the program reduct PI,O′weak. The
reduct PI,Oweak contains only facts of the program, from which we get that I is a weak
repair answer set of Π.

(⇐) Let I be a weak repair answer set of Π and let A′ be its respective repair. Then
all DL-atoms of Π apart from DL[; D](b) are true. This means that for all Cj it holds
that O′ |= Cj(b). The ontology O′ = T ,A′ is satisfiable, therefore Xi(b) and X̄i(b) can
not simultaneously be in A′. Therefore, either

(i) Cj(b) ∈ A′ or
(ii) X(b) ∈ A′, such that X v Cj is in T .

If (i) was true, then the bodies of the constraints (4) would be satisfied, which contradicts
I being a repair answer set. Thus, it holds that some X(b) ∈ A′ such that X v Cj ∈ T .
Therefore, from the repair ABox A′ a satisfying assignment A(φ) can be constructed
as follows: A(φ) such that A(xi) = true (resp. A(ai) = false) if Xi(b) ∈ A′ (resp.
X̄i(b) ∈ A′). The assignment A(φ) witnesses satisfiability of φ.

Theorem 4.7. Given a ground DL-program Π = 〈O,P〉, deciding whether RASx(Π) 6= ∅
is ΣP

2 -complete for normal Π and x = flp, if O is in DL-LiteA DL.
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Proof. (Membership) We can guess a repair A′ together with an interpretation I and
then check whether I is an flp-repair answer set of Π′ = 〈O′,P〉, where O′ = 〈T ,A′〉.
Constructing the reduct PI,O′flp is polynomial, as we only need to pick those rules of Π
whose body is satisfied by I, and all DL-atoms can be evaluated in polynomial time.
With the reduct PI,O′flp at hand we then need to check whether (i) I |= PI,O′flp , and (ii)
I is a minimal model of PI,O′flp . The check (i) can be done in polynomial time. For (ii)
we have that the interpretation I is not a minimal model of PI,O′flp iff there exists an
interpretation I ′ ⊂ I such that I ′ |= PI,O′flp . A guess for I ′ is verifiable in polynomial
time, thus deciding whether I is not an answer set of PI,O′flp is in NP. From this we get
that deciding whether I is an answer set of PI,O′flp is in co-NP. Hence for the check (ii)
we need to make a call to a co-NP oracle. Since having an oracle for co-NP is equivalent
to having an oracle for NP, we get that the overall problem can be solved in NPNP = ΣP

2 .

(Hardness) We prove the Σp
2-hardness result by a reduction from the problem of

deciding validity of a QBF formula

φ = ∃x1 . . . xn∀y1 . . . ymE, n,m ≥ 1, (4.1)

where E = χ1 ∨ . . .∨ χr is a DNF formula, and each χk = lk1 ∧ lk2 ∧ lk3 is a conjunction
of literals over atoms x1, . . . , xn, y1, . . . , ym.

For each atom xi we introduce a fresh concept Xi, and for each atom yj we in-
troduce a fresh concept Yj and a fresh logic program predicate yj . Furthermore, we
introduce an additional fresh predicate w. Given φ, we construct Π = 〈∅,A,P〉 with
A = {X1(b), . . . , Xn(b)} and P as follows:

P =



(1) ⊥ ← not DL[; Xi](b), not DL[; ¬Xi](b);
(2) ⊥ ← DL[; Yj ](b);
(3) ⊥ ← DL[; ¬Yj ](b);
(4) w(b) ← not w(b);
(5) yj(b) ← w(b);
(6) w(b) ← f(lk1), f(lk2), f(lk3)


,

where f(xi) = DL[Xi ] w; Xi](b),
f(¬xi) = DL[Xi −∪ w; ¬Xi](b),
f(yj) = DL[Yj ] yj , Yj ] w; Yj ](b),

f(¬yj) = DL[Yj −∩ yj , Yj −∪ w; ¬Yj ](b).

Intuitively, the rules of the form (1) of P ensure that for each xi at least one of Xi(b)
and ¬Xi(b) is present in the repair ABox A′, while the rules (2) and (3) forbid that
Yj(b) resp. ¬Yj(b) is in A′. The rule (4) forces each consistent flp-repair answer set of Π
to contain w(b). The rule (5) ensures that the ground atoms of the form yj(b) are also
contained in each repair answer set. Finally, the rules of the form (6) are present in P for
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each clause χk of φ. For each literal lkh
in χk these rules have a DL-atom f(lkh

) in the
body, which poses to the ontology under some updates an instance query corresponding
to the literal lkh

.
We now formally show that φ is valid iff RASflp(Π) 6= ∅.
(⇒) Let φ be valid and let A(φ) be a satisfying assignment, i.e. for all extensions of A

to variables y1, . . . , ym it holds that A(φ) is true. From this we construct a repair ABox
A′ as follows. If A(xi) = true, then Xi(b) ∈ A′, otherwise ¬Xi(b) ∈ A′. By construction
the repair A′ represents a maximal consistent subset of {Xi(b), ¬Xi(b) | 1≤ i≤n}.
Therefore, the constraints (1)-(3) are not violated under A′.

We now show that for any interpretation I the body of at least one rule of the form
(6) of Π′ must be satisfied by I. Let us consider various possibilities for an interpretation
I of Π′.

• I ∩ {y1(b), . . . , ym(b)} = ∅. Let us look at an extension A′ of A, under which
all variables yj of φ are false. Since A′(φ) = true, there must exist a clause χk,
such that A′(χk) = true. Consider the rule rk of the form (6) that corresponds
to χk. The clause χk is a conjunction of literals, thus all of its conjuncts over
yj must be negative. We have that each ¬yj occurring in χk corresponds to a
DL-atom of the form f(¬yj) = DL[Yj −∩ yj , Yj −∪w; ¬Yj ](b). As yj(b) 6∈ I, it holds
that λI(f(yj)) = {¬Yj(b)}, leading to I |=O′ f(¬yj). All DL-atoms of the forms
f(xi) and f(¬xi) are satisfied by the construction of A′.

• I ∩ {y1(b), . . . ym(b)} 6= ∅. Let us look at an extension A′ of A such that

A′(yj) =
{
true, if yj(b) ∈ I
false, if yj(b) 6∈ I.

Since A(φ) is a satisfying assignment of φ, there must exist a clause χk in φ such
that A′(χk) = true. Let us look at the rule rk of the form (6) corresponding to
χk. For all literals lkh

we have that I |= f(lkh
). Indeed, if lkh

is a literal over xi,
then the corresponding DL-atom is true by construction of A′. If lkh

= yj then as
A′(yj) = true we have that yj(b) ∈ I and thus λI(f(yj)) = {Yj(b)}. Similarly, if
lkh

= ¬yj , then λI(f(¬yj)) = {¬Yj(b)}. Therefore, I |= f(lkh
) for all lkh

occurring
in χk.

So we have that for any I the body of at least one rule rk of the form (6) must be
satisfied, and hence the rule rk must be present in the reduct PI,O′flp . Moreover, if Π′ has
some flp-answer set I, then it must contain w(b) (this follows from w(b) ← not w(b)),
and thus the rule of the form (4) is not in PI,O′flp . Finally, according to the rules (5) the
answer set I should also contain all yj(b) for 1 ≤ j ≤ m.

Since there are no other atoms which could potentially be in the answer set, we now
show that I = {w(b), y1(b), . . . , ym(b)} is a minimal model of PI,Oflp . First, obviously
I satisfies all rules of the reduct; we only need to show its minimality. Towards a
contradiction, assume that there is an interpretation I ′ ⊂ I, such that I ′ |= PI,O′flp .
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There are two possibilities: either w(b) ∈ I ′ or w(b) 6∈ I ′. The former can not be true, as
then there is some yj(b), such that yj(b) 6∈ I ′, and hence for some rule r of the form (5) we
have that r is not satisfied by I ′. If the latter holds, then we know that there are no rules
of the form (6), whose body is satisfied by I ′. Consider an extension A′′ of the assignment
A to the atoms yj , such that A′′(yj) = true, if yj(b) ∈ I ′, and A′′(yj) = false otherwise.
We know that A′′(φ) = true, i.e. there is a disjunct χk in φ, such that A′′(χk) = true.
Let us look at the rule rk corresponding to the conjunct χk. All DL-atoms f(xi) are
satisfied by I ′, due to the construction of the ABox A′. The DL-atoms of the forms
f(yj) are satisfied by I ′, because yj(b) ∈ I ′, and thus λI(f(yj)) |= Yj(b). Similarly, as
yj(b) 6∈ I ′, we have that λI(f(¬yj)) |= ¬Yj(b), leading to the satisfaction of the DL-
atoms of the form f(¬yj) by I ′. Hence I ′ must satisfy B(rk); but since w(b) 6∈ I ′, we
have that I ′ 6|= rk, leading to a contradiction. Therefore, I is indeed an flp-repair answer
set of Π.

(⇐) Let I ∈ RASflp(Π) be some flp-repair answer set of Π with a repair ABox A′, i.e.
I ∈ ASflp(〈T ,A′,P〉). Since I is a repair answer set, the repair ABox A′ must contain a
nonempty consistent subset of {Xi(b),¬Xi(b)}, 1 ≤ i ≤ n because of constraints of the
form (1). We construct an assignment A of φ from A′ as follows:

A(xi) =
{
true, if Xi(b) ∈ A′
false, if ¬Xi(b) ∈ A′.

We now show that A is a satisfying assignment of φ, i.e. for any extension A′ of A
to the values of yj , we have that A′(φ) = true. Towards a contradiction, assume that
this is not the case, i.e. there exists an extension A′ of A to the values of yj , such that
A′(φ) = false, that is A′(χk) = false for all clauses χk of φ.

Let us now look at the interpretation I ′ of Π′, such that yj(b) ∈ I ′, if A′(yj) = true

and yj(b) 6∈ I ′, if A′(yj) = false. We know that I ⊃ I ′ is a minimal model of PI,O′flp .
Therefore, it must hold that I ′ 6|= r for some rule r of PI,O′flp , i.e. I ′ |= B(r), but
I ′ 6|= H(r). Observe that the reduct PI,O′flp contains only the rules (5) and (6). Since
w(b) 6∈ I ′, the rule r that I ′ does not satisfy can not be of the form (5), hence it must
be of the form (6). Let us look at the corresponding clause χk in φ. We know that
A′(χk) = false, i.e. there is a conjunct lkh

in χk, such that A′(lkh
) = false. We

distinguish the following cases:

• lkh
is a literal over xi. We know that λI′(f(lkh

)) = ∅, because w(b) 6∈ I. Thus
it must be true that A′ |= f(lkh

). Since A′ is a repair, by Definition 4.17 it
must be consistent. Thus the query of f(lkh

) must be explicitly present in A′, i.e.
Xi(b) ∈ A′, if lkh

= xi; ¬Xi(b) ∈ A′, if lkh
= ¬xi. However, then by construction

of A′ we have that A(lkh
) = true, which leads to a contradiction.

• lkh
is a literal over yj . There are two possibilities: either lkh

= yj or lkh
= ¬yj .

– First assume that lkh
= yj . We know that the corresponding DL-atom f(yj) =

DL[Yj ] yj , Yj ] w; Yj ](b) is true under I ′. Since the repair ABox A′ is
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consistent and does not contain any concepts of the form Yj(b), it must hold
that λI′(f(yj)) |= Yj(b). Observe that w(b) 6∈ I ′, thus it must be true that
yj(b) ∈ I ′; however, then A′(lkh

) = true, contradicting our assumption.
– Now suppose that lkh

= ¬yj . Again we have that I ′ |= f(¬yj), where
f(¬yj) = DL[Yj −∩ yj , Yj −∪w; ¬Yj ](b). Since w(b) 6∈ I ′, it must hold that
yj(b) 6∈ I ′. Therefore, A′(yj) = false, i.e. A′(lkh

) = true leading to a contra-
diction.

We have shown that A′ is a satisfying assignment for φ for each extension of A to
variables yj , from which the validity of φ follows.

Theorem 4.8. Given a ground DL-program Π, deciding whether RASx(Π) 6= ∅ is ΣP
2 -

complete for arbitrary Π and x = weak.

Proof. (Membership) The overall algorithm of deciding the existence of a weak repair
answer set proceeds as follows: We guess an interpretation I, values of DL-atoms and
an ABox A′ and then check whether:

(1) the real values of DL-atoms over I and O′ = 〈T ,A′〉 coincide with the guessed
values;

(2) I is a minimal model of PI,O′weak.

The condition (1) can be checked in polynomial time. Regarding the condition (2) the
reduct PI,Oweak can be clearly constructed in polynomial time for O in DL-LiteA. PI,Oweak is
a propositional program. Deciding whether I is its minimal model can be verified with
a call to an NP oracle, from which the membership in ΣP

2 follows.

(Hardness) To prove ΣP
2 hardness, we provide a reduction from the problem of va-

lidity of a QBF formula φ = ∃x1 . . . xn∀y1 . . . ymE, n,m ≥ 1. We may assume that
E = C ′1 ∨ . . . ∨C ′r and each C ′i = Li,1 ∧Li,2 ∧Li,3 is a conjunction of literals over atoms
x1, . . . , xn, y1, . . . , ym. Deciding whether φ is valid is ΣP

2 -hard.
We construct the DL-program Π = 〈∅, {C(b)},P〉, which is depicted in Figure 4.2.

Intuitively, xi(b) and x̄i(b) correspond to the literals xi and ¬xi of φ. Similarly, yj(b)
and ¬yj(b) refer to yj and ¬yj of φ. If I is a weak-repair answer set then w(b) must
be in I (follows from (3)). Furthermore, all yj(b) and ȳj(b) must be in I because of the
rules (4) and (5). Due to the rule (1) I must also contain at least one of xi(b) and x̄i(b);
by the minimality of I it can contain only one such atom. Every rule rk of the form (7)
corresponds to some clause χk of φ, and every DL-atom akh

in rk to a literal lkh
in χk.

The interpretation I must satisfy B(rk) at least for one rule rk of the form (7), which
follows from the minimality of I. Satisfaction of B(rk) for such rule rk guarantees the
validity of φ, since a DL-atom akh

can be satisfied by I only due to its update λI(akh
),

which depends on the guesses of atoms over xi, if lkh
is of the form xi or ¬xi, and always

entails the respective DL-query otherwise.
We now formally show that φ is valid iff some weak-repair answer set of Π exists.
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P =



(1) xi(b) ∨ x̄i(b);
(2) yj(b) ∨ ȳj(b);
(3) w(b) ← not w(b);
(4) yj(b) ← w(b);
(5) ȳj(b) ← w(b);
(6) w(b) ← yj(b), ȳj(b);
(7) w(b) ← f(lk1), f(lk2), f(lk3);
(8) ⊥ ← DL[; C](b);
(9) ⊥ ← DL[; Xi](b);
(10) ⊥ ← DL[; ¬Xi](b);
(11) ⊥ ← DL[; Yj ](b);
(12) ⊥ ← DL[; ¬Yj ](b)



,

where f(xi) = DL[Xi ] xi; Xi](b),
f(¬xi) = DL[Xi −∪ x̄i; ¬Xi](b),
f(yj) = DL[Yj ] yj , Yj ] w; Yj ](b),

f(¬yj) = DL[Yj −∩ yj , Yj −∪ w; ¬Yj ](b).

Figure 4.2: DL-program Π from the proof of Theorem 4.8

(⇒) Let φ be valid. Then there exists a satisfying assignment A(φ), such that every
extension A′ of A to y1, . . . , ym satisfies φ. Let I be the following interpretation:

I = {xi(b) : A(xi) = true} ∪ {x̄j(b) : A(xj) = false} ∪ {y1(b), . . . , ym(b), w(b)}.

We prove that I is a weak-repair answer set of Π, i.e. some repair ABox A′ exists,
such that I ∈ ASweak(〈T ,A′,P〉). Let us consider A′ = ∅. We have that the bodies
of the constraints (8)-(12) are not satisfied, therefore they are not present in PI,O′weak.
Furthermore, at least one rule of the form (7) is satisfied by I. Indeed, let us look at
some extension A′ of the assignment A to the variables yj . We have that A′(φ) = true.
Therefore, for some clause χk of φ, A′(χk) = true. Consider the corresponding rule rk
of the form (7) in P. By construction of I all DL-atoms of the form f(xi) or f(¬xi)
are satisfied by I. The rest of the DL-atoms are also satisfied by I due to w(b) ∈ I and
yj(b) ∈ I. This means that PI,O′weak contains the rules (1), (2), (4)-(6) and a fact w(b).

Clearly, I |= PI,O′weak; it is left to show that I is a minimal model of PI,O′weak. Assume
to the contrary, that some I ′ ⊂ I exists, such that I |= PI,O′weak. Observe that I ′ must
coincide with I on x1, . . . , xn, x̄1, . . . x̄n and must contain w(b), as the latter is a fact of
P. In addition, at least one of yj , ȳj is in I ′ due to the rules of the form (2). If I\I ′
contains atoms over yj or ȳj , then some rule of the form (4) or (5) is not satisfied by I ′.
Thus I ′ coincides with I, and we obtain that I is indeed minimal.
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(⇐) Suppose that I is a weak-repair answer set of Π, i.e. it is a weak answer set of
Π′ = 〈∅,A′,P〉 for some A′. Let the assignment A(φ) to the atoms x1, . . . , xn be defined
by

A(xi) =
{
true, if xi(b) ∈ I
false, if x̄i(b) ∈ I

The assignment A(φ) is well defined, as I can by minimality contain exactly one atom
out of xi(b) and x̄i(b) for every 1 ≤ i ≤ n. The interpretation I must contain w(b)
because of the rule (3), and therefore all yj(b) and ȳj(b) because of the rules (4) and
(5). As I is a repair answer set, it holds that for each I ′ ⊂ I, that contains exactly
one of yj(b), ȳj(b), and coincides with I ′ on xi, x̄i, there must be some k, such that
I ′ |=O′ f(lkh

), 1 ≤ h ≤ 3. Note that I ′ |=O′ f(lki
) holds if either of the following is

true: (i) the DL-query of the DL-atom f(lki
) is explicitly present in A′; (ii) the update

λI
′(f(lkh

)) ∪O′ is inconsistent or (iii) the DL-query of f(lki
) occurs in the update. The

case (i) could not hold due to the constraints (9)-(12). The case (ii) is not possible
either, since the TBox is empty and inconsistency can be obtained only if the negation
of the DL-query is explicitly present in the ABox, which is again forbidden by (9)-(12).
This means that all f(kkh

) are true under I because of the right choice of atoms xi(b),
present in the interpretation I. Thus φ evaluates to true.

4.1.2 Extending Complexity Results for DL-programs over EL
In fact, for DL-programs over EL ontologies the complexity results from above should
be inherited too. Intuitively, the main reason for that is the tractability of query an-
swering in EL. The result of Theorem 4.5 extends to EL, and the hardness proof can
be easily adjusted (one can replace Xi v ¬X̄i by Xi u X̄i v A and ¬Cj by A in the
construction exploited in the proof of Theorem 4.5). We now establish the NP-hardness
result for repair answer set existence for normal DL-programs over EL ontologies under
the additional restriction that all of the DL-atoms occurring in the program have empty
updates.

Theorem 4.9. Given a ground DL-program Π = 〈O,P〉, deciding the repair answer set
existence of Π, (i.e. RASx(Π) 6= ∅) is NP-complete for normal Π and x = weak, if the
ontology O is in EL DL; hardness holds even if all DL-atoms of Π have empty input
signature, i.e. they are of the form DL[; Q](~t).

Proof. (Membership) Since instance query entailment checking is in EL feasible in poly-
nomial time, for evaluation of DL-atoms we obtain tractability results similarly as in
Proposition 4.4. The algorithm for repair answer set computation first guesses an in-
terpretation candidate I and values of the DL-atoms and then checks whether the real
values of the DL-atoms coincide with the guessed values, and whether the interpretation
I is a minimal model of the weak reduct of the repaired program. As both of checks are
feasible in polynomial time, membership in NP is obtained.
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(Hardness) To prove hardness we provide a reduction from the NP-complete 3SAT
problem to deciding weak repair answer set existence for a DL-program over the EL
ontology as follows.

Let φ =
∧

1≤j≤mCj be an instance of the 3SAT problem, where each Cj is a disjunc-
tion of three literals over the variables x1, . . . , xn. From this we construct a DL-program
Π = 〈T ,A,P〉.

• Construction of the TBox T :
We introduce a concept name Xi (resp. X̄i) for each variable xi occurring in φ.
Moreover, for each 1 ≤ i ≤ n we introduce a fresh concept name Bi. Then the
TBox T is constructed as follows:

– Xi u X̄i v Bi, for all 1 ≤ i ≤ n;
• The ABox is A = ∅;
• Construction of P:

We introduce fresh ground atoms pj(b) for each clause Cj of φ. The rules of P
include the following:

P =



(1) ⊥ ← not DL[; X1](b),not DL[; X̄1](b);
. . .

(2) ⊥ ← not DL[; Xn](b),not DL[; X̄n](b);
(3) ⊥ ← DL[; B1](b);

. . .

(4) ⊥ ← DL[; Bn](b);
(5) p1(b)← DL[; Xi](b) | if xi is a disjunct in C1;
(6) p1(b)← DL[; X̄i](b) | if ¬xi is a disjunct in C1;

. . .

(7) pm(b)← DL[; Xi](b) | if xi is a disjunct in Cm;
(8) pm(b)← DL[; X̄i](b) | if ¬xi is a disjunct in Cm;
(9) ⊥ ← not p1(b);

. . .

(10) ⊥ ← not pm(b)



,

We claim that φ is satisfiable iff RASweak(Π) 6= ∅, i.e. there exists I and A′ such
that I is a weak answer set of Π′ = 〈T ,A′,P〉.

(⇒) Suppose that φ is satisfiable and A(φ) is its satisfying assignment. From this we
construct a repair answer set I of Π and a repair ABox A′ as follows. An interpretation I
contains the set of atoms p1(b), . . . , pm(b). An ABox A′ is such that Xi(b) (resp. X̄i(b))
is in A′ iff xi is true (resp. false) under the assignment A(φ).

Now we show that I is a weak repair answer set of Π with the repair A′. Observe
that either DL[; Xi](b) or DL[; X̄i](b) evaluates to true for all i under O′ = 〈T ,A′〉 as
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A(φ) is a full assignment, i.e. each xi is set to either true or false in A. Furthermore,
A(φ) represents a consistent set of literals, therefore not both Xi(b) and X̄i(b) can be
present in A′, meaning that the bodies of the constraints (3) and (4) are not satisfied.
For each pj(b) occurring in the set of rules (5)-(8), there is at least one rule with a
DL-atom whose value is true under O′, as every clause of φ is satisfied by A. As the
reduct PI,Oweak contains only facts, occurring in I, the result immediately follows.

(⇐) Let I be a weak repair answer set of Π and A′ be a respective repair. Note that
the only possible repair answer set of Π is the one that contains pj(b) for all 1 ≤ j ≤ m,
since otherwise some of the constraints (9)-(10) are violated. By the constraints (1)-(2),
the repair must contain either Xi(b) or X̄i(b); the constraints (3)-(4) forbid both Xi(b)
and ¯Xi(b) to be in A. Finally, as the bodies of the rules (5)-(8) must be satisfied, the
repair encodes a satisfying assignment of φ.

Other complexity results presented for DL-LiteA earlier in this section also carry
over for the EL DL.

4.2 Selection Functions
Clearly, not all repairs are equally useful or interesting for a certain scenario. For
instance, repairs that have no common assertions with the original ABox might be
unwanted; repairs that introduce assertions that are not in the initial ABox; repairs
that would cause non-minimal change etc. Formally, we model preferred repairs using a
selection function:

Definition 4.10. A selection function is a function σ : 2AB×AB → 2AB, where AB
is the set of all ABoxes, that given a set S of ABoxes and an ABox A, returns a set
σ(S,A) ⊆ S of preferred (or selected) ABoxes.

This notion captures a variety of selection principles, including minimal repairs ac-
cording to some preference relation, or some global selection property. We then define:

Definition 4.11. Given Π = 〈O,P〉, O= 〈T ,A〉, and a selection σ, we call rep(σ,x)(Π) =
σ(repx(Π),A) the (σ, x)-repairs of Π. An interpretation I ⊆ HBΠ is a (σ, x)-repair
answer set of Π, if repI(σ,x)(Π) 6= ∅, where repI(σ,x)(Π) = rep(σ,x)(Π) ∩ repIx(Π); by
RAS(σ,x)(Π) we denote the set of all such repair answer sets.

Example 4.12. Consider a DL-program Π = 〈∅,A,P〉, where A = {Child(john)} and
P is as follows:

P =


(1) male(john);
(2) pupil(john)← DL[; studiesAt](john, sch80 );
(3) boy(john)← DL[Child ] boy; Child](john),male(john);
(4) ⊥ ← boy(john),not pupil(john)


The interpretation I = {male(john), pupil(john), boy(john)} is a (σ,weak)-repair

answer set of Π with a possible (σ,weak)-repair A′ = {studiesAt(john, sch80 )}, i.e.
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I ∈ RASσ,weak(Π) and A′ ∈ repIσ,weak(Π), where σ chooses repairs A′, such that the
set difference between A and A′ contains at most 2 assertions. Indeed, we have that
PI,O′weak = {male(john); pupil(john); boy(john)}, and clearly I is its minimal model.

Moreover, I ∈ RASσ,flp(Π), and A′′ ∈ repIσ,flp(Π) is its (σ,flp)-repair, where A′′ =
{Child(john), studiesAt(john, sch80 )}. To verify this, observe that the reduct PI,O′′flp

contains the fact (1) and the rule (4), and I is a minimal model of 〈A′′,PI,O′′flp 〉, where
O′′ = 〈∅,A′′〉.

Note that while A′′ ∈ repIσ,weak(Π), we have that A′ 6∈ repIσ,flp(Π). More specifically,
I is not a minimal model of 〈PI,O′flp ,O′〉, where PI,O′flp = PI,O′′flp and O′ = 〈∅,A′〉, since
there is a smaller model I ′ = I \ {boy(john)}, which satisfies all rules of PI,O′flp .

The repair A′1 = {Male(john),Male(pat)} from Example 4.3 is in repI1σ1,x(Π) for I1 =
{boy(john), ischildof (john, alex)}, where x ∈ {weak,flp} and σ1 selects deletion repairs,
i.e. subsets of A. The ABox A2 = {hasParent(john, pat),Male(john),Female(pat)} is
also in repI1σ2,flp(Π), where x ∈ {weak,flp}, and σ2 selects repairs A′, which differ from A
only on assertions over gender predicates Male,Female, and |A| = |A′|. Consequently,
I1 ∈ RASσ1,x(Π) and I2 ∈ RASσ2,x(Π) for x ∈ {weak,flp}.

In general, even polynomially computable selections σ may incur intractability, like
e.g. selecting ABoxesA′ with set-minimal change toA, or with smallest Dalal (Hamming)
distance. Naturally, we aim at selections that are useful in practice and have benign
computational properties, which are pragmatic specifically for our problem.

4.2.1 Independence Property

Definition 4.13. A selection σ : 2AB×AB → 2AB is independent, if σ(S,A) = σ(S′,A)∪
σ(S \ S′,A) whenever S′ ⊆ S.

Example 4.14. All selection functions considered in Example 4.12 are independent.
The selection function σ, which seeks for repairs A′ that contain minimal number of
changes in assertions over Adopted predicate w.r.t. A is not independent, since to find
the preferred σ-repair one needs to compute all repair candidates first, and then choose
the best one among them.

Independence allows us to decide whether a given repair A′ ∈ S is selected by σ
without looking at other repairs, and composition works here easily. This makes the
introduced property valuable, since independent selection functions of different kind can
be conveniently combined without a major increase in the complexity. Formally,

Proposition 4.15. If σ1 and σ2 are independent selection functions then their compo-
sition σ1 ◦ σ2 is also independent.

Proof. We show that whenever S′ ⊆ S it holds that σ1(σ2(S,A),A) = σ1(σ2(S′,A),A)∪
σ1(σ2(S \S′,A),A). By independence of σ2 we have σ2(S,A) = σ2(S′,A)∪σ2(S \S′,A).
Hence, σ2(S′,A) ⊆ σ2(S,A), and thus by independence of σ1 we get σ1(σ2(S,A), A) =
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σ1(σ2(S′,A),A) ∪ σ1(σ2(S,A) \ σ2(S′,A),A). As σ2(S,A) \ σ2(S′,A) = σ2(S \ S′,A),
the result follows.

Clearly, set-minimal change and smallest Dalal distance are not independent, as to
decide whether A′ ∈ σ(S,A) one has to compare A′ with all other ABoxes from S.
On the other hand, selecting all ABoxes such that A′ ⊆ A, is obviously independent.
The latter, and several other independent selections that are useful in practice, will be
considered in the next section.

Independence leads to the following beneficial property.

Proposition 4.16. For every Π and selection σ, if σ is independent, then repI(σ,x)(Π) ⊆
rep(σ,x)(Π), for every I ⊆ HBΠ.

Proof. By definition rep(σ,x)(Π) = σ(repx(Π),A) and repI(σ,x)(Π) = σ(repIx(Π),A). Now
as repIx(Π) ⊆ repx(Π) and σ is independent, we obtain σ(repx(Π),A) = σ(repIx(Π),A)∪
σ(repx(Π)\repIx(Π),A), from which the result follows.

Proposition 4.16 implies that if we can turn an interpretation I into an answer set
of Π by a σ-selected repair from the repairs which achieve this for I, then I is a σ-repair
answer set of Π; that is, local selection is enough for a global σ-repair answer set. This
will be exploited in Section 4.4.

4.3 Ontology Repair Problem
In this section we introduce the Ontology Repair Problem (ORP), which is an important
subtask of repair answer set computation. We present here the general complexity results
for ORP.

Intuitively, an ORP is a problem of identifying an ABox under which a simultaneous
entailment and non-entailment of sets of queries under possible updates is guaranteed.
Let us now provide a formal definition for this repair problem.

Definition 4.17. An ontology repair problem (ORP) is a triple ORP = 〈O, D1, D2〉
where O = 〈T ,A〉 is an ontology and Di = {〈U ij , Qij〉 | 1≤ j≤mi}, i = 1, 2, are sets
of pairs where each U ij is an ABox and each Qij is a DL-query. A repair (solution) for
ORP is any ABox A′ such that

(i) the ontology O′ = 〈T ,A′〉 is consistent;
(ii) 〈T ,A′〉 ∪ U1

j |= Q1
j holds for 1 ≤ j ≤ m1;

(iii) 〈T ,A′〉 ∪ U2
j 6|= Q2

j holds for 1 ≤ j ≤ m2.

For the illustration of the ORP problem, we refer to the ontology from Example 4.1.

Example 4.18. Consider an ORP = 〈O, D1, D2〉, where O is as in Example 4.1, and
the sets D1 and D2 are as follows:
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• D1 = {〈U1
1 , Q

1
1〉, 〈U1

2 , Q
1
2〉, 〈U1

3 , Q
1
3〉}, where

– U1
1 = {Male(john)}, Q1

1 = Male(pat);

– U1
2 = ∅, Q1

2 = hasParent(john, pat);

– U1
3 = {Child(john)}, Q1

2 = Male(alex);

• D2 = {〈U2
1 , Q

2
1〉}, where

– U2
1 = ∅, Q2

1 = Adopted(john).

One of the possible solutions to the described ORP is the ABox A′ = {Male(alex),
hasParent(john, pat),Male(pat)}. Indeed, it easy to verify that

• 〈T ,A′〉 ∪ {Male(john)} |= Male(pat), 〈T ,A′〉 |= hasParent(john, pat), 〈T ,A′〉 ∪
Child(john) |= Male(alex);

• 〈T ,A′〉 6|= Adopted(john).

We now analyze the complexity of the ORP problem in the general setting.

4.3.1 Complexity Results

Non-surprisingly, the Ontology Repair Problem is intractable in general; however, this
holds already for very simple ontologies, which we show in the next proposition.

Proposition 4.19. Deciding whether an Ontology Repair Problem ORP = 〈〈T ,A〉,
D1, D2〉 has some repair A′ is NP-complete, and NP-hard even if T contains only positive
concept inclusions and A= ∅.

Proof. A guess for A′ is verifiable in polynomial time, as deciding all 〈T ,A′ ∪ Ui〉 |= Qi
is polynomial in DL-LiteA (see Table 2.7). NP-hardness is shown by a reduction from
SAT instances φ = χ1 ∧ · · · ∧χm over atoms x1, . . . , xn. We construct the ORP problem
ORP = 〈〈T , ∅〉, D1, D2〉, using concepts Xi, X̄i for the xi, Cj for the χj , and a fresh
concept A as follows:

• T = {Xj vCi, X̄j′ vCi | 1 ≤ i ≤ m,xj ∈ χi,¬xj′ ∈ χi}

• D1 = {〈∅, Ci(b)〉, 〈Ui,¬Ci(b)〉, 〈Vj , A(b)〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

where Ui = {X̄k(b), Xk′(b) |xk ∈ χi,¬xk′ ∈ χi},

Vj = {¬Xj(b),¬X̄j(b)},

• D2 = {〈∅,¬Ci(b)〉 | 1 ≤ i ≤ m} ∪ {〈∅, A(b)〉}.
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Intuitively, by D2 a repair A′ must not contain ¬Ci(b) nor A(b), and must be con-
sistent. By D1 the repair must entail Ci(b). Therefore, for each i, the ABox A′ must
contain some Xk (resp. X̄k), such that Xk v Ci (resp. X̄k v Ci). Moreover, adding
either Ui or Vj to A′ causes inconsistency. The former implies that A′ contains some
¬X̄k(b) (resp. ¬Xk(b)) such that xk ∈ χk (¬xk ∈ χk), and the latter implies that at least
one of ¬Xk(b) and ¬X̄k(b) must be in A′ for all 1 ≤ k ≤ n. Since in addition the ABox
is consistent as argued above, it can not contain both ¬X̄k and ¬Xk thus A′ represents
a consistent choice of literals that satisfies φ.

We formally show that φ is satisfiable iff ORP has a repair.
(⇒) Let A be a satisfying assignment for φ. We construct a repair ABox A′ for ORP

as follows: if a variable xk is set to true in the satisfying assignment of φ, then we add
Xk(b) and ¬X̄k(b) to the ABox A′, otherwise, i.e. if xk is set to false in A, we add X̄k(b)
and ¬Xk(b) to A′. We now verify whether the constructed ABox is indeed a repair for
ORP by checking whether it satisfies the conditions (i) to (iii) of Definition 4.17.

(i) T ∪ A′ is consistent, since A is a consistent set of literals not both Xk(b) and
¬Xk(b) (resp. X̄k(b),¬X̄k(b)) can be present in A′).

(ii) We check whether for all 〈U1
i , Q

1
i 〉 ∈ D1 it holds that T ∪ A′ ∪ U1

i |= Q1
i . Let us

first consider 〈∅, Ci〉, 1 ≤ i ≤ m. Observe that A is a satisfying assignment of φ,
therefore each clause of φ is satisfied under A. Thus, for each clause either there
exists a variable xj occurring as a disjunct in the clause Ci positively and being
set to true in the satisfying assignment A or occurring negatively as a disjunct in
Ci and being set to false in A. By construction of A′, we have that T ∪A′ |= Ci(b)
for all 1 ≤ i ≤ m due to the inclusion Xj v Ci (resp. X̄j v Ci). Similarly, we
have that for all Ui, A′ ∪ Ui is inconsistent and, therefore trivially entails ¬Ci(b).
Finally, since the assignment A is full, each xi has a truth value. Hence, due to
the form of updates Vj , we have that A′ ∪ Vj is inconsistent for all j, and thus the
queries A(b) are also entailed.

(iii) It is left to show that for all 〈U2
i , Q

2
i 〉 ∈ D2 we have that T ∪ A′ ∪ U2

i 6|= Q2
i . The

latter holds since the ontology 〈T ,A′〉 is consistent, and there is no way to derive
either ¬C(b) or A(b) by means of the TBox axioms and the facts in A′.

The above shows that the ABox A′ is indeed a solution to the ORP.
(⇐) Now assume that there exists an ABox A′ that is a solution to ORP. We

show that then the formula φ is satisfiable. First since T ∪ A′ ∪ Vj |= A(b) and T ∪
A′ 6|= A(b), it must be the case that T ∪ A′ ∪ Vj is inconsistent. Moreover, due to
T ∪ A′ 6|= ¬Ci(b), we know that the inconsistency must occur due to the facts Xj(b),
X̄j(b). Therefore, for each j either ¬Xj(b) or ¬X̄j(b) must be in A. Observe now, that
due to 〈∅, Ci(b)〉, 〈Ui,¬Ci(b)〉 ∈ D1, the ABox A′ must contain such Xj(b) (resp. X̄j(b)),
that xj (resp. ¬xj) is a disjunct in the clause χi. Moreover, due to 〈Ui,¬Ci(b)〉 for some
k such that xk ∈ χi (or ¬xk ∈ χi), it must hold that ¬X̄k(b) (resp. ¬Xk(b)) is in A′.
The above argument shows that the ABox A′ encodes a satisfying assignment A for φ:
if Xi(b) ∈ A′, then xi is true in A; if X̄i(b) ∈ A′, then xi is false in A.
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In fact, even if both TBox and ABox are empty, then the problem still stays in-
tractable, which is formally proved in the following proposition.

Theorem 4.20. Deciding if an Ontology Repair Problem ORP=〈〈T ,A〉, D1, D2〉 has
some repair is NP-hard even if T =A=∅.

Proof. NP-hardness of ORP holds by a reduction from SAT. Given φ=χ1∧ · · · ∧χm on
atoms x1, . . . , xn, we construct ORP = 〈〈∅, ∅〉, D1, D2〉, with concepts Xj , X̄j for the xj
and a fresh concept A, such that

• D1 = {〈Ui, A(b)〉, 〈Vj , A(b)〉 | 1 ≤ i ≤ m}, where

– Ui ={X̄j(b), Xj′(b) | xj ∈ χi,¬xj′ ∈ χi},
– Vj = {¬Xj(b),¬X̄j(b)},

• D2 = {〈∅, A(b)〉}.

Intuitively, by D2 a repair A′ must not contain A(b), and by D1 adding either (i) Ui
or (ii) Vj to A′ causes inconsistency. By (i) A′ must contain at least one ¬X̄j(b) (resp.
¬Xj(b)) such that xj ∈ χi (¬xj ∈ χi), and by (ii) at least one of Xj(b), X̄j(b) must be in
A. Furthermore, D2 forbids both Xj(b),¬Xj(b) (resp. X̄j(b),¬X̄j(b)) to be in A′. Thus
A′ encodes a consistent choice of literals that satisfies φ.

We note that ORP has two sources of NP-hardness, viz. the data part (as in the
proof above), and the taxonomy, which under σ-repairs may derive further assertions.
Furthermore, each ORP can be encountered in some DL-program setting; we show this
on an example.

Example 4.21. Consider the Ontology Repair Problem ORP = 〈O, D1, D2〉, where
D1 = {δ1}, D2 = {δ2}, such that δ1 = 〈{C(c),¬D(c)},¬E(c)〉, and δ2 = 〈{D(d), ¬S(d)},
C(d)〉. We introduce predicates pδ1C , p

δ1
D for δ1 and pδ2D , p

δ2
S for δ2 and construct Π =

〈O,PI ∪ PDL〉, where
PI = {pδ1C (c); pδ1D (c); pδ2D (d); pδ2S (d)},

PDL =



⊥ ← not DL[C ] pδ1C , D−∪pδ1D ; ¬E](c)︸ ︷︷ ︸
a1

; (1)

⊥ ← DL[D ] pδ2D , S−∪pδ2S ; C](d)︸ ︷︷ ︸
a2

} (2)


.

Then, the program Π has a single repair answer set candidate, in which the atom a1
has to evaluate to true and a2 to false respectively. This gives rise to ORP; the rule (1)
effects the pair δ1 in D1 and the rule (2) the pair δ2 in D2.
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Generalizing the above example, for each ORP = 〈O, D1, D2〉 one can construct
a DL-program Π = 〈O,P〉, such that solutions of ORP correspond to repairs of Π.
The construction of P proceeds as follows. A DL-atom aji is created for every pair
〈U ji , Qji 〉 ∈ Dj , such that the DL-query of aji is Qji , and the input signature λji encodes
the update U ji : for every C(~t) ∈ U ji (resp. ¬C(~t)) the signature λji contains a triple
C ] pi,jC (resp. C −∪ pi,jC ). Furthermore, for each such triple the fact pi,jC (~t) is added to P.

The rules of P ensure that all DL-atoms aji are true for j = 1 and false for j = 2.
That is, the logic program part P of Π contains

• a constraint ⊥ ← not a1
i1 , for every a

1
i1 , and

• a constraint ⊥ ← a2
i2 , for every a

2
i2 .

As there are no predicates in P apart from those occurring in facts, the only possible
repair answer set I of Π contains all facts of P. Therefore, the update λI(aji ) of every aji
corresponds exactly to U ji , and the constraints of P guarantee the simultaneous entail-
ment and non-entailment of sets of queries under possible temporary updates encoded
by the given ORP.

4.4 Tractable ORP Cases

As Theorem 4.20 demontrates, we obtain intractability results for ORP even if the
ontology is empty. In what follows we aim at finding tractable cases for the ORP
problem given that O is in DL-LiteA DL.

If there are few ground DL-atoms in the program then the ORP becomes tractable.
However, in real settings the ground program is normally obtained from a nonground
one, and it is often large with many DL-atoms. Therefore, the pairs D1 and D2 are
hard to control in practice, and to gain tractability for ORP, we consider restrictions
on repairs and the ontology. We present four tractable cases of σ-repairs with indepen-
dent selection function σ, which are arguably useful in practice. In what follows, let
ORP = 〈O, D1, D2〉, where O= 〈T ,A〉.

4.4.1 Bounded δ±-change

A natural restriction that one could exploit is to bound the distance from the original
ABox, i.e.

σδ±,k(S,A) = {A′ | |A′4A| ≤ k}1. (4.2)

The formal complexity results for this setting are stated in the following proposition.

Proposition 4.22. Deciding if an Ontology Repair Problem ORP = 〈O, D1, D2〉 has a
δ±, k-change repair is polynomial.

1A′4A = (A′ ∩ A) ∪ (A ∩A′)
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Proof. As the number m of possible ABox assertions is polynomial in the size of T and
A, traversing all O(

(m
k

)
) possible A′ and checking the repair condition can be done in

polynomial time.

We illustrate this type of a repair by the following example.

Example 4.23. For the DL-program from Example 4.1 one of δ±, k-change repairs
for k = 2 is A′ = (A\{Male(pat)}) ∪ {Female(pat)}. Another possible repair is A′ =
(A\{Male(pat)}) ∪ {Male(mat)} provided that mat is a constant from the ontology
signature.

The δ±-change repairs are arguably useful in practice. The repairs that restore
consistency by getting rid of such deficiencies as typos and syntactical inaccuracies fall
into this repair category. For instance, in Example 4.23 the fact Male(pat) was in
the ontology instead of Male(mat), as the letters p and m were confused at the data
engineering process. In such scenarios one can search for repairs by applying selective
changes to certain ontology assertions. These selective changes include modifications of
the predicate or constants occurring in the assertion, i.e. P (~t) could be changed to P (~t′)
or P ′(~t).

To ensure tractability, the number of constants or predicates with which the initial
facts can be modified is bounded by k. Under this restriction, an ABox A with at most
m assertions allowed for modification has ((k+1)2−1)m repair candidates. Since both k
and m are bounded, deciding whether the δ±-solution for ORP exists is polynomial. The
alternatives (i.e. constants and predicates) used for fixing initial facts can be created by
partitioning the elements of the ontology signature into subsets based on their syntactical
similarity. For example, the constants mat and pat differ just in a single letter, therefore
they will most likely be determined to the same partition. With such partitions at
hand for a certain fact there are just few possibilities for changing it. For creating
the mentioned partitions one could explore well-known metrics for measuring distances
between strings like Hamming or Levenshtein distance [Lev66].

Switching positions of constants in role assertions is another special setting with
obvious practical applications.

Example 4.24. For instance, A′ = A\{hasParent(john, pat)} ∪ {hasParent(pat, john)}
would be a plausible repair for the DL-program Π.

4.4.2 Deletion repair

Another important restriction is to allow only to delete assertions from the original ABox
i.e., use

σdel(S,A) = {A′ | A′ ⊆ A}. (4.3)

Example 4.25. In Example 4.1, each A′⊂A except {Male(pat), hasParent(john, pat)}
is a deletion repair.
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To achieve tractability, we exclude non-containment ( 6v) DL-queries, i.e., of the form
¬Q where Q is an inclusion or disjointness axiom, from P; let us call such ORPs 6v-
free. We now make a reasonable and necessary assumption that the original ontology is
consistent and for the deletion repair obtain the following results.

Theorem 4.26. Deciding whether a 6v-free Ontology Repair Problem ORP = 〈O, D1, D2〉
with consistent O has a σdel-repair is polynomial.

Proof. The proof exploits the following property of 6v DL-queries.

Lemma 4.27. If 〈T ,A〉 is consistent, then 〈T ,A〉 ∪U ij |= Qij iff 〈T ,A0〉 ∪U ij |= Qij for
some A0⊆A with |A0| ≤ 1.

That is, at most one assertion α from A is sufficient to derive the query. This follows
from a respective result for empty U ij and instance queries Qij (see Proposition 2.7).

Now if T ∪ U ij |= Qij , we can drop 〈U ij , Qij〉 from ORP if i=1, and stop if i = 2
as no repair exists. Otherwise, we let the set Suppij of Qij contain all assertions α
such that T ∪ {α} ∪ U ij |= Qij . Then, any repair A′ must fulfill A′ ∩ Supp1

j 6= ∅ for
each j (i.e., be a hitting set), and must be disjoint with each Supp2

j′ . Let then Sj :=
(Supp1

j ∩A) \⋃j′ Supp2
j′ . A σdel-repair A′ exists iff each Sj is nonempty; the hitting sets

of the Sj are all the σdel-repairs. The construction of the Sj and the check can be done
in polynomial time, thus the overall problem is tractable. Furthermore, the (possibly
exponentially many) σdel-repairs can be output in total polynomial time.

If non-containment queries are allowed in DL-atoms, then the problem of computing
deletion repairs for ORP stays NP-complete.

Theorem 4.28. Deciding whether an Ontology Repair Problem ORP = 〈D1, D2,O〉
with a consistent O has a σdel repair is NP-complete. NP-hardness holds even if either

(i) for all Uki ∈ Dj it holds that Uki = ∅, where k ∈ {1, 2} or
(ii) T = ∅, i.e. the TBox of the original ontology is empty.

Proof. To prove membership in NP we provide an algorithm for deciding whether a
solution for an ORP exists. Our algorithm proceeds as follows. We guess a repair ABox
A′ ⊆ A out of 2n repair candidates, where n = |A| is the number of assertions in the
original ABox A of O. We then check whether the guess that we made is correct, i.e.
A′ satisfies the conditions (i)-(iii) of Definition 4.17. This test is polynomial, since it
involves a bounded number of polynomial query evaluations over DL-LiteA ontology (see
Table 2.7). From this the membership in NP is obtained.

We prove NP-hardness for the cases (i) and (ii) separately.

(i) NP-hardness for (i) is shown by a reduction from SAT instances φ = χ1 ∧ · · · ∧χm
over atoms x1, . . . , xn. We construct the ORP problem ORP = 〈〈T , ∅〉, D1, D2〉,
where all Uki are empty for k ∈ {1, 2}. In our construction we use concepts
Xj , X̄j , X

′
j for the xj , Ci for the χi as follows:
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– T = {Xj v Ci, | xj ∈ χi, 1 ≤ i ≤ m}∪
{X̄j′ v Ci, | ¬xj′ ∈ χi, 1 ≤ i ≤ m}∪
{X̄k v ¬X ′k | 1 ≤ k ≤ n}

– A = {Xj(b), X̄j(b) | 1 ≤ j ≤ n}
– D1 = {〈∅, Ci(b)〉 | 1 ≤ i ≤ m}
– D2 = {〈∅,¬(Xj v X ′j)〉 | 1 ≤ j ≤ n}

Intuitively, the queries in D1 ensure that at least one Xj(b) (resp. X̄j(b)) is present
in the ontology ABox, such that xj (resp. ¬xj) is a disjunct in χi. The queries
in D2 forbid both Xj(b) and X̄j(b) to be in the ABox, which is expressed by the
non-containment query ¬(Xj v X ′j) and TBox axioms of the form X̄j v ¬X ′j .
Therefore, the solution to ORP encodes a satisfying assignment of φ.

We now formally prove that φ is satisfied iff σdel solution for ORP exists.

(⇒) Let φ be satisfiable, and let A be a satisfying assignment of φ. From this
we construct a solution A′ to ORP as follows: if A(xj) = true, then Xj(b) ∈ A′,
otherwise, X̄j(b) ∈ A′. The ontology O′ = 〈T ,A′〉 is clearly consistent. Assume
towards a contradiction that A′ is not a solution to ORP. That is, either (1) D1
contains a tuple 〈∅, Q1

i 〉, such that O′ 6|= Q1
i or (2) some 〈∅, Q2

j 〉 exists in D2, such
that O′ |= Q2

j . If (1) holds then Ci(b) is not entailed for some i from O′. That
means that there is a conjunct χi ∈ φ, such that for none of its disjuncts xj (resp.
¬xj) we have the corresponding assertion Xj(b) (resp. X̄j(b)) in A′. Hence by
construction none of the literals in χi is true under A, meaning that A(χi) = false
and thus A(φ) = false, i.e. contradiction. If (2) holds then for some j we have
that Xj(b) and ¬X ′j(b) are entailed by O′. Since by construction of A′ it holds
that A′ ⊆ A, the only scenario when both Xj(b) and ¬X ′j(b) are entailed is when
both Xj(b), ¯Xj(b) ∈ A′. This can not happen, since A′ is built from a satisfying
assignment A of φ, and thus it represents a consistent set of values for xj . Hence
we obtain a contradiction.

(⇐) Let A′ be a σdel solution to ORP. From this we construct a satisfying assign-
ment A for φ as follows:

A(xj) =
{
true, if Xj(b) ∈ A′ or Xj(b), X̄j(b) 6∈ A′
false, if X̄j(b) ∈ A′.

We show that A(φ) = true. Observe that for every Ci there must exist Xj (resp.
X̄j), such that Xj v Ci (resp. X̄j v Ci) due to the tuples 〈∅, Ci(b)〉 in D1 and the
fact that A′ ⊆ A. Thus by construction of A in each clause χi some disjunct is
true. It is left to show that A is well defined, i.e. it is not the case that (i) either
A(xj) = true or A(xj) = true is defined for every j, and (ii) it is not the case that
A(xj) = true and A(xj) = false for some j. In other words we need to show that
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A(xj) 6= A(¬xj). Towards a contradiction suppose that this is not the case. Then
for some i it holds that A(xj) and A(¬xj) have the same value. Then Xj(b) and
X̄j(b) are entailed from O for some j, and therefore X ′j(b) is also entailed from
O due to X̄j v X ′j ∈ T . However, this means that O′ |= ¬(Xj v X ′j), which is
forbidden by the respective tuple 〈,¬(Xj v X ′j)〉 in D2. The latter means that
A′ is not a solution to ORP, leading to a contradiction. Thus A is a satisfying
assignment of φ.

(ii) NP-hardness for (ii) is shown by a reduction from monotone not-all-equal SAT
(NAE-SAT) instances φ = χ1 ∧ · · · ∧ χm over atoms x1, . . . , xn [GJ79]. In mono-
tone NAE-SAT, all occurrences of literals in clauses are positive, but a formula is
“satisfied” only if there is an assignment under which both a literal assigned to
true and a literal assigned to false occur in each clause. We construct the ORP
problem ORP = 〈〈∅, ∅〉, D1, D2〉, using concepts Xj , X̄j for the xj , Ci for the χi
as follows:

– A = {Xj(b), X̄j(b) | 1 ≤ j ≤ n}
– D1 = {〈{¬Xj(b) | xj ∈ χi}, Ci(b)〉,

〈{¬X̄j′(b) | xj′ ∈ χi}, Ci(b)〉 | 1 ≤ i ≤ m}
– D2 = {〈∅,¬(Xj v ¬X̄j)〉, 〈∅, Ci(b)〉 | 1 ≤ j ≤ n, 1 ≤ i ≤ m}

Intuitively, queries Q1
i can be satisfied only if the repair ABox A′ is inconsistent

with the respective updates U1
i , since T = ∅ and explicit presence of Ci(b) in A′

is forbidden by tuples 〈∅, Ci(b)〉 ∈ D2. Therefore, for every χi there must be some
Xj(b) ∈ A′, such that xj is a conjunct in χi, which is ensured by 〈{Xj | xj ∈
χi}, Ci〉 ∈ D1. However, also some X̄j′(b) must be in A′, such that xj′ ∈ χi, which
is ensured by 〈{Xj′ | xj′ ∈ χi}, Ci〉 ∈ D1. By 〈∅,¬(Xj v X̄j)〉, the indices j and
j′ must be different, thus the repair ABox encodes a consistent choice of values for
variables in φ, corresponding to the satisfying assignment of φ.

We now formally show that φ is a positive instance of monotone NAE-SAT iff the
ORP has some solution.

(⇒) Let φ be a positive instance of monotone NAE-SAT, and let A be the wit-
nessing assignment. From this we construct the solution A′ to ORP as follows.
Xi(b) ∈ A′, if A(xj) = true, and X̄j(b) ∈ A′, if A(xj) = false. Since for every
clause χi some xj ∈ χi must be set to true, we have that some Xj(b) ∈ A′, and
hence the query of 〈{¬Xj(b) | xj ∈ χi}, Ci(b)〉 ∈ D1 is satisfied by inconsistency.
Similarly, queries of tuples 〈{¬X̄j(b) | xj ∈ χi}, Ci(b)〉 ∈ D1 are satisfied, as at
least one xj in χi is set to false, and by construction the respective X̄j(b) is in A′.
The queries in D2 are satisfied, since A represents a consistent choice of values for
xj , and thus both Xj(b) and X̄j(b) can not be present in A′.
(⇐) Let A′ be a solution to the ORP. From this we construct the assignment of
φ as follows.
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A(xj) =
{
true, if Xj(b) ∈ A′,
false, if X̄j(b) ∈ A′.

Since Ci can not be in A′ by 〈∅, Ci〉 ∈ D2 and T = ∅, we have that all queries in D1
are entailed by inconsistency introduced by the updates, and hence in every clause
at least one of xj must be true and at least one xj′ must be false. Furthermore,
the assignment A represents a consistent set of values for xj by construction, since
for all j not both Xj(b) and X̄j(b) can be in A′ due to 〈∅,¬(Xj v X̄j)〉 ∈ D2.

4.4.3 Deletion δ+

This selection combines deletion and small change in a prioritized way. First one deletes
assertions from A (assumed to be consistent) according to some polynomial method
µ (using domain knowledge etc.) until some A0 = µ(O) ⊆ A results that satisfies
Definition 4.17 (iii). If A0 is a repair, it is the result; otherwise, one looks for a close
repair with bounded δ+ change. That is

σdel,δ+(S,A) =
{
{µ(O)}, if µ(O) ∈ S
σδ+(S, µ(O)), if µ(O) 6∈ S.

(4.4)

Example 4.29. If µ(O) drops unreliable information about the gender of certain persons
in Example 4.1 (e.g. pat), A0={Male(john), hasParent(john, pat)} is a deletion repair.
If the constraint
⊥ ← DL[; hasParent](X,Y ),not DL[; Male](Y ),not DL[; Female](Y )

(the gender of parents must be known) were in P, one would have to add Female(pat)
to A0 to obtain a deletion-δ+ repair.

Then one can try all possible combinations of k assertions that can be added to the
ABox A′ such that along with condition (iii), also (ii) and (i) of the repair definition
hold. Observe that µ(O) is selected by an independent selection function σdel, which
chooses subsets of A. Furthermore, σδ+ is applied to µ(O), the selection σδ+ chooses an
ABox A′ ⊇ µ(O), such that A′ \µ(O) contains not more then k assertions. The selection
σδ+ is independent by Proposition 4.15, as it is a composition of σdel and σδ+ both of
which are independent. Since both σdel and σδ+ are realizable in polynomial time, the
tractability of the overall problem is obtained.
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4.4.4 Addition under bounded opposite polarity

Repairs by unbounded additions become tractable, if few of them are positive resp.
negative, i.e., the number of assertions with opposite polarity is bounded (which by
Theorem 4.19 is necessary). That is, if A+ (resp., A−) is the positive (negative) part of
an ABox A, then

σbop(S,A) = {A′ ⊇ A | |A′+\A|≤k or |A′−\A|≤ k}. (4.5)

The following result is instrumental.

Theorem 4.30. For a 6v-free Ontology Repair Problem ORP = 〈O, D1, D2〉, where
O = 〈T ,A〉 and T has no disjointness axioms 2 deciding whether some σbop-repair exists
is polynomial.

Proof. We prove the statement for the case when few negative assertions are added to
the ABox, i.e. A′− \ A ≤ k. The case when few positive assertion are added to the
ABox, i.e. A′+ \A ≤ k is completely symmetric, and our proof can be easily adapted to
treat is it as well.

We provide an extension of the method for deletion repairs. Assuming that 〈T ,A〉
is consistent (otherwise no σbop-repair exists), we proceed as follows:

1. Like for deletion repairs, we compute the sets Suppij . We simplify ORP, resp. quit
if no repair can exist, checking also whether Suppij∩A 6= ∅ (as then Qij is entailed).
More specifically, whenever U ij ∪ A ∪ T |= Qij or Suppij ∩ A 6= ∅

• we drop 〈U ij , Qij〉 from Di, if i = 1, and
• we quit, if i = 2.

2. We then let Sj = Supp1
j \(A∪⋃j′ Supp2

j′). Similar as in the proof of Theorem 4.26,
the σbop-repairs are then of the form A′ = A ∪ H where H is a hitting set of the
Sj , but we must ensure that 〈T ,A′〉 is consistent as H consists of new assertions.

3. We choose a set H− ⊆ ⋃j Sj of at most k negative assertions, which is a partial
hitting set, and check that 〈T ,A ∪ H−〉 is consistent. If yes, we remove Sj if it
intersects with H− and remove otherwise from Sj each positive assertion α such
that ¬α is entailed by 〈T ,A ∪H−〉, and all negative assertions.

4. Then, for every hitting set H+ of S ′j , the ABox A′ = A∪H−∪H+ is a σbop-repair.
On the other hand, some σbop-repair with few negative additions exists only if some
choice for H− succeeds.

The crucial point for the correctness of this method is that, if T has no disjointness
axioms, by adding to A ∪ H− positive assertions H+ we can not infer new negative

2Disregarding axioms F¬ v ¬F to compile negative assertions.
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assertions, unless inconsistency emerges; this is exploited in Step 3, which limits the
candidate space for positive hitting sets a priori.

We now show the correctness of the proposed algorithm formally. Suppose that given
the Ontology Repair Problem ORP = 〈O, D1, D2〉 as an input to the algorithm from
above, the ABox A′ was produced as the output after execution of the Steps 1-3. We
prove that the ABox A′ is indeed a σbop-repair for ORP, i.e. we prove that the conditions
that a σbop-repair needs to satisfy are indeed satisfied by A′.

(i) T ∪ A′ ∪ U1
j |= Q1

j for all 〈U1
j , Q

1
j 〉 ∈ D1.

Towards a contradiction, suppose that there is some 〈U1
ji
, Q1

ji
〉 ∈ D1, such that

A′ ∪ T ∪ U1
ji
6|= Q1

ji
. We know that by construction, it either holds that (1)

U1
ji
∪T |= Q1

ji
; (2)A∩Supp1

ji
, i.e. A∪T |= Q1

ji
; (3)H− ⊆ A′ hits Sji or (4)H+ ⊆ A′

hits Sji . For (1) and (2) we immediately get a contradiction. For (3) it holds that
H− ∩ Supp1

ji 6= ∅. Therefore, there is α ∈ A′, such that {α} ∪ U1
j ∪ T |= Q1

ji
.

(ii) T ∪ A′ ∪ U2
j′ 6|= Q′2j for all 〈U2

j′ , Q
2
j′〉 ∈ D2.

To the contrary, assume that there exists some j′i, such that T ∪ A′ ∪ U2
j′i
|= Q2

j′i
.

There are several possibilities: (1) U2
j′i
∪ T |= Q2

j′i
; (2) there is α ∈ A, such that

{α}∪U2
j′i
∪T |= Q2

j′i
; (3) there is α ∈ H−, such that {α}∪T ∪U2

j′i
|= Q2

j′i
; (4) there

is α ∈ H+, such that {α} ∪ T ∪ U2
j′i
|= Q2

j′i
. Observe that if (1) or (2) were the

case, then the algorithm would terminate at Step 1, and no repair A′ would be in
the output. For the case (3) we have that H− ∩ Supp2

j′i
6= ∅. However, according

to the Step 3 of our algorithm, it holds that H− ⊆ ⋃j(Supp1
j\(A ∪

⋃
j′ Supp

2
j′)),

meaning that H− ∩ Supp2
j′i

= ∅, which leads to a contradiction.

(iii) A′ ⊇ A | |A′−\A|≤k, i.e. there are at most k negative assertions in the ABox A′.
Finally, we show that the number of negative assertions in A′\A is indeed bounded
by k. Towards a contradiction, suppose that there are more then k negative asser-
tions in A′\A = H+ ∪H−. According to the Step 3 of our algorithm, it holds that
H− contains at most k negative assertions. Therefore, the rest of the negative as-
sertions must be in H+. The set H+ is constructed at Step 4 as a hitting set of sets
Sj , which due to the Step 3 contain only positive assertions. Therefore, there are
no negative assertions in the set H+, moreover T ∪H+ ∪H− infers only at most k
negative assertions, since T contains only positive inclusions and A∪H+∪H−∪T
is guaranteed to be consistent at Step 3.

The above shows that the output A′ is indeed a σbop-repair for the ORP with at most
k negative assertions. The case when few positive assertions are allowed for addition is
completely symmetric.

Finally, we show that if a given ORP has σbop repairs, then after executing the Steps
1-3 some σbop repair is guaranteed to be found, i.e. A′ = A ∪ H+ ∪ H−, such that
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|H−| ≤ k. Assume towards a contradiction that this is not the case. We distinguish the
cases based on states of the algorithm at which the computation could have terminated.

• Suppose that the computation terminated at (1). Then there is some 〈U2
j , Q

2
j 〉 ∈

D2, such that either (i) U2
j ∪ T |= Q2

j or (ii) A ∩ Supp2
j 6= ∅. If (i) holds then by

monotonicity we have that for any A′ the condition (iii) of Definition 4.17 is not
satisfied, i.e. ORP does not have any solutions, which contradicts our assumption.
If (ii) is the case, then there is some α ∈ A, such that α ∪ T |= Q2

j . Again due
to monotonicity, for any ABox A′ ⊇ A it is true that A′ |= Q2

j . Thus all repairs
A′ for ORP are such that A′ 6⊇ A. Therefore, no σbop repair exists for ORP,
contradicting our assumption.

• Assume that we have reached (2), and constructed the sets Sj . Suppose that the
computation stopped at (2), i.e. no hitting set H of Sj was found. This means that
some j1 exists, such that Sj1 = ∅. Therefore, by construction of Sj1 it holds that
Suppj1 \ (A ∪ ⋃j′ Supp2

j′) = ∅. Since all 〈U1
j , Q

1
j 〉, such that Supp1

j ∩ A 6= ∅ were
removed from D1 at (1), we have that for all α ∈ Supp1

j1 , it holds that α ∈ Supp2
k

for some k. Hence, for all ABoxes A′ = A ∪ α some 〈U2
k , Q

2
k〉 ∈ D2 exists, such

that 〈T ,A′〉 |= Q2
k, meaning that ORP does not have any solutions, which leads

to a contradiction.

• Suppose that the state (3) has been reached, i.e. some repair candidate A′ = A∪H
was identified at (2), where H is a hitting set of Sj . At (3) we picked some set H−
and updated every Sj by removing appropriate assertions from Sj . Computation
could not have stopped at (3), therefore, we are guaranteed to reach (4). Assume
that the algorithm terminated at (4). Then it must be the case that no hitting set
H+ of updated Sj has been found at (4); that is for all choices of H− at (3) some
j1 exists, such that Sj1 = ∅ at (4). Consider some particular H− ⊆ ⋃

j Sj of at
most k assertions computed at (3), such that 〈T ,A ∪H−〉 is consistent. We have
that Sj1 ∩H− = ∅ at (3), since otherwise Sj1 would have been removed and would
have not been considered in the computation of a hitting set H+ at (4). We have
that for all positive α ∈ Sj1 , the ontology 〈T ,A ∪ H− ∪ {α}〉 is inconsistent. As
〈U1

j1 , Q
1
j1〉 was not dropped at (1), we have that 〈T , U1

j1 ∪ A〉 6|= Q1
j1 . Therefore, it

follows by Lemma 4.27 that no σbop-repair exists, such that A′− \ A ≤ k, leading
to a contradiction.

We have shown that if ORP has solutions with at most k negative assertions, then some
such solution will be found by our algorithm. The argument can be accordingly adjusted
to prove the statement for few positive assertions are allowed for addition.

4.4.5 Applicability of independent selections

Like for relational databases, our tractable cases fit real applications, e.g. in case of
deletion repairs (observing that non-subsumption queries are insignificant for practical
DL-programs) and scenarios akin to key-constraint violations in databases. Restoring
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consistency by removing conflicting pieces of data is a common approach in data man-
agement.

Composability of independent selections adds to their applicability. Moreover, they
may be combined with DB-style factorization and localization techniques (see [Ber11]
and references therein) and with local search to compute closest repairs.

Bounding the number of changes, especially additions, is also compliant with practice,
where too many potential repairs suggest human intervention (cf. [Ber11]). Finally, one
may increase the bound in iterative deepening (assuming that not many changes are
needed).

4.4.6 ORP for DL-programs over EL DL

Unfortunately most of the tractable results presented earlier in this section will not be
inherited to the EL DL. The only polynomial case is the δ±-change repairs. For the rest
of the repairs the algorithms proving tractability for DL DL-LiteA that we provided,
do not work for the DL EL. All of the algorithms are based on small portions of the
data that are sufficient for the query entailment (support sets as we call them). The
attractive property of DL-LiteA states that these support sets are of bounded size (at
most of size 2) and there are polynomially many of them. Therefore, they can be easily
constructed. The ELDL does not have this property because of the range restrictions and
concept conjunctions allowed on the left-hand side of inclusion axioms. There might be
arbitrarily large and infinitely many support sets for instance queries in EL. In Chapter 5
we introduce the support sets formally and present optimized algorithms that allow to
still obtain reasonably good results in practice for repair computation of DL-programs
over EL DL.

4.5 Domain-based Restrictions on Repairs

In previous sections we have proposed several technical means for treating inconsistencies
in DL-programs. We have presented some repair forms that are practically usable and
computationally effective, but until now no domain knowledge has been incorporated
into the DL-program repair process. It is natural, however, to believe that the end users
of DL-programs will wish to contribute to the repair by sharing their subject expertise.

Qualitative and domain-dependent aspects of repairs are of crucial importance for
their practicability. These qualitative aspects formulated in terms of additional local
restrictions put on repairs help to effectively filter out the irrelevant repair candidates.
For example, availability of meta information about the trustfulness of certain ontology
pieces allows to instantly adjust the repair process accordingly.

Example 4.31. Being aware of the unreliability of ontology facts about the individual
john in Example 4.1 motivates one to consider the repair A′ = A\{hasParent(john, pat)}
for the DL-program Π in the first instance.
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Knowing additionally that the whole set of Adopted children is very likely to be
incomplete adds A′′ = A∪{Adopted(john)} to the set of the available repair possibilities.

In contrast to the solution that involves dropping certain data pieces, there might be
information stored in the ontology that is safe and should necessarily be kept unchanged.
In such cases one might naturally aim to leave the original set of safe facts in the ontology.

Example 4.32. For instance, in contrast to Example 4.31 we might want to avoid
dropping the data about those individuals who belong to the concept Child but not
known to be Adopted; then the repair A′ is no longer among the preferred options.

The guidelines on the operations that are allowed to be applied to the ontology could
clearly influence the repair process further.

Example 4.33. If in Example 4.31 additions to the ontology are strongly prohibited,
then the repair A′′ is automatically dropped from the set of leading candidates.

In some scenarios one could be aware of various dependencies among the data parts
stored in the ontology. Consequently, deletion of a certain fact might force the deletion
of another one. Additions in such settings might be likewise guided.

Example 4.34. Consider a variant of Example 4.1, in which each Adopted child stored in
the ontology is desired to have a certain identification number (ID) assigned to it through
the predicate hasID. This additional constraint could clearly be expressed by the TBox
axiom Adopted v ∃hasID. However, this restriction might not be a formal requirement,
but rather a wish of the user, for whom it is more convenient to track adopted children
by their IDs. Thus the TBox axiom might not be present in the ontology explicitly.
In such a setting the repair A′′ from Example 4.31 in which information about john’s
adoption is added, is not among the best repair candidates any longer, as together with
this new information, the additional knowledge about the ID of john should be available.

Similarly, if not only adopted children, but all the persons in the database are required
to have an ID, and they are indeed specified in the original version of the ontology, the
repair A′ = A\{Male(pat)} ∪ {Male(mat)} from Example 4.23 forces one to delete the
ID of pat and add the ID of mat; in case the latter is not known, such repair becomes
meaningless.

Integration of domain restrictions into repair computation process. The
wide spectrum of potential restrictions that could be applied to the repair candidates
motivates one to consider various possible ways of integrating additional domain knowl-
edge into the repair computation process. Three global modes of repairing inconsistent
DL-programs seem reasonable in this context:

(1). The first mode suggests the computation of repair candidates with some σ-function,
followed by a post-filtering of the candidates taking into account the domain knowl-
edge. If some of the protected ontology elements are no longer present in the repair
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candidate, and their reintroduction violates the repair conditions, then one pro-
ceeds with the analysis of a next repair candidate. Otherwise, the desired repair
is computed and the computation process terminates.

(2). The second mode assumes that the domain knowledge is encoded in the selection
function and consequently all identified repairs a priori satisfy the requirements
posed by the domain knowledge.

Example 4.35. Suppose we want to compute the δ± repairs with the desired
property expressed in Example 4.34, i.e. in the repairs for all Adopted children
their ID should be known. Then our problem converges to the problem of com-
puting δ± repairs of the original DL-program extended by the following rules that
conveniently encode the additional requirement:

(1) assigned(X)← DL[; Adopted](X),DL[; ID](Y ),DL[; hasID](X,Y );
(2) ⊥ ← DL[; Adopted](X),not assigned(X).

The repairs of the extended program correspond to the repairs of the original
program post-filtered by the respective domain-specific condition.

(3). The third mode is the combination of the first two, where some domain conditions
are incorporated into the repair search process, such that the computed repairs are
satisfied, but still post-filtering conditions can be applied.

(4). The mode (2) can be extended to support prioritized repair computation. That
is, first one aims at finding the best repairs that fully satisfy the domain specific
requirements, and then if such search does not bring any results, the requirements
are weakened accordingly or even dropped altogether. This mode is suitable for
the settings in which such requirements are not strict but rather reflect certain
preference criteria.

Example 4.36. Recall the setting from Example 4.35. We first aim at repairs,
such that IDs of all adopted children are known, i.e. we search for repair answer
sets of the original DL-program Π extended by the rule (1) and the constraint (2)
from Example 4.35 encoding this repair property. Once some repair answer set is
found, the computation terminates and the result is output. If no repair answer
set was identified, then one might want to relax the repair condition by allowing
some adopted children to be without IDs but bounding their number. For that
the constraint (2) might be changed to a rule (2’) with not_assigned(X) in the
head. We then aim at finding the best repair answer set I of the original DL-
program extended by the rules (1) and (2’). Here the best repair answer set will
be an interpretation I which contains a bounded number of facts over the predicate
not_assigned. Once such I is found, any repair A′ ∈ repIσ,x(Π) is guaranteed to
be preferred, where σ is a δ±-change selection function.

83



Note that clearly in some settings selecting preferred repairs with respect to certain
domain specific criteria (e.g. maximal number of adopted children whose ID is
known) might require non-independent σ-selections. E.g. in Example 4.36 one
would need to compute all repair answer sets and compare them with respect
to the number of atoms over the predicate not_assigned in order to identify the
preferred repair.

All of the discussed domain-specific repair preferences can be combined and ordered
in various ways. The techniques for their computation heavily depend on the application
scenario, and in different concrete settings could be adapted and extended.

4.6 Conclusion, Related Work and Outlook

Our main results presented in this chapter are summarized as follows. The general
framework for repairing inconsistent DL-programs has been introduced. The overall
complexity of DL-program repair has proved to be Σp

2-complete in the general case. As
a subproblem we have identified an interesting ontology repair problem ORP which non-
surprisingly turned out to be NP-complete. We, furthermore, established useful classes
of repairs in practice that are tractable for the well-known Description Logics DL-LiteA.

Managing inconsistent DL-programs has focused so far on inconsistency tolerance,
rather than on repair as we considered. Pührer et al in [PHE10] avoid unintuitive answer
sets caused by inconsistency in DL-atoms, and dynamically deactivate rules to discard
spoiled information; they pointed ontology repair out as an issue, but left it open. Fink
in [Fin12b] presented a paraconsistent semantics, based on the logic of here-and-there.

Repairing ontologies was considered in many works, often to deal with inconsistency.
In particular, Lembo et al [LLR++11] and Bienvenu [Bie12] studied consistent query
answering over DL-Lite ontologies based on the repair technique (see [Ber11]), using
minimal deletion repairs (which amount to non-independent σ-selections). Calvanese et
al [COSS12a] studied query answers to DL-LiteA ontologies that miss expected tuples,
and defined abductive explanations corresponding to repairs. They analyzed the com-
plexity of explanation existence for various preferences that amount to non-independent
σ-selections. While their problem can be viewed as a special ORP for atomic queries,
we deal–also in comparison to the aforementioned works–with a more general problem,
where mixed entailment and non-entailment of queries must be satisfied, and moreover
under ABox updates. Repairing inconsistent non-monotonic logic programs is less de-
veloped; Sakama et al [SI03] used extended abduction to delete minimal sets of rules
(but also adding rules can remove inconsistency).

Our sketched ideas on domain-dependent restrictions on repairs are related to the
inconsistency policy for databases discussed e.g. in [SCM12,MPP+14]. The authors
presented the preference-based techniques for repairing databases. To the best of our
knowledge this topic has not been considered before in the context of DL-programs.
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There are several issues for future work. One is extending the inconsistency frame-
work that we presented to more expressive DLs like Horn-SHIQ, SHIQ, or SROIQ.
Related to this is also to consider DL-programs with richer queries, e.g., with (unions
of) conjunctive queries (cf. [EIKS08]), or more generally to consider logic programs that
access multiple and perhaps also heterogeneous ontologies.

Orthogonal to this are further σ-selections for repairs, both independent and non-
independent ones. The latter may cause intractability in very simple settings, as they
open an exponential search space (e.g., subset-minimal or least, minimal Dalal distance
repair). However, neighborhood search on top of σ (bounding e.g. distance from the
original ABox) allows to compute locally optimal σ-repairs without loss of tractability.

Following approaches from database research, one can try to axiomatize repairs of a
DL-program by means of a logical theory, such that the models of the theory correspond
to the possible repairs of the DL-program. In other words, instead of explicitly com-
puting the possible repairs, we may attempt to characterize their formal properties, and
subsequently represent them in compact logical terms, all at once. This research direc-
tion is connected to the problem of identifying necessary and sufficient conditions for the
repair existence. These conditions give new insights into the repair process, and provide
with the new comprehensive understanding of repairs. For analysis of repair structures
in DL-programs conflict hypergraphs [ABC01,CM05] from the database theory can be
explored and adapted for DL-programs.

Another direction of research is the extension of the introduced repair semantics
for inconsistency tolerant cautious and brave query answering over DL-programs, and
complexity analysis of such an extension. Similar problems were studied in the context
of Description Logics, e.g. [LLR+11, BR13, BBG14], etc. The brave inconsistency tol-
erant reasoning, i.e. checking whether I |=O′ p(~t) for some repair answer set I with
a repair A′ could be roughly compared to the reasoning in DLs under the AR seman-
tics [LLR+11]. The cautious reasoning in DL-programs, i.e. checking whether I |=O′ p(~t)
for all I ∈ RAS(Π) is remotely related to the IAR semantics of DLs [LLR+11]. However,
an extensive study of the topic is left for future work.
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CHAPTER 5
Algorithms for Repair Answer

Set Computation

In this chapter we provide algorithms for repair answer set computation. In Section 5.1
we show how an algorithm that is used for evaluating DL-programs can be gracefully
extended to naively compute repairs resp. repair answer sets, with an optional selection
σ featuring independence. The support sets for DL-atoms as optimization means are
introduced in Section 5.2. We discuss the forms of support sets for DL-atoms accessing
DL-LiteA ontologies in Section 5.3. Section 5.4 presents an algorithm for repair answer
set computation based on complete support families, which is effective for DL-programs
over DL-LiteA ontologies. The construction of support sets for DL-atoms accessing EL
ontologies is discussed in Section 5.5. Due to range restrictions and concept conjunctions
on the left-hand side of inclusion axioms in EL, a DL-atom accessing an EL ontology
can have arbitrarily large and infinitely many support sets in general. Therefore, in
Section 5.6 we consider approaches for computing incomplete (partial) support families.
Moreover, we analyze the TBox structure ensuring bound on the size of support sets
and their number in Section 5.7. The extension of the algorithm for repair computation
to partial support families is described in Section 5.8. Finally, discussion of other op-
timization means for repair answer set algorithms is given in Section 5.9. The related
work and outline are presented in Section 5.10.

5.1 Naive Repair Answer Set Computation Algorithm

We first present the algorithm for evaluating DL-programs from [EFK+12] (given there
for HEX-programs). We then describe the core procedure of its extension that checks
whether a given interpretation of a DL-program is a (σ, x)-repair answer set, where x
stands for the semantics used.
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Algorithm 5.1: AnsSet: Compute ASx(Π)
Input: A DL-program Π, x ∈ {weak,flp}
Output: ASx(Π)
for Î ∈ AS(Π̂) do

(a) if CMP(Î ,Π) ∧ xFND(Î ,Π) then
output Î|Π

end
end

5.1.1 Evaluation of DL-programs

DL-programs can be seen as a special case of HEX-programs, whose evaluation was
briefly discussed in Chapter 2. Like for HEX-programs, the evaluation of DL-programs
builds on a rewriting Π̂ of Π, where DL-atoms a are replaced by ordinary atoms (replace-
ment atoms) ea, together with a guess on their truth by additional ‘choice’ rules. Given
an interpretation Î over this extended language, we use Î|Π to denote its restriction to
the original language of Π. A crucial notion is that of compatibility:

Definition 5.1. [EFK+12] A compatible set of a DL-program Π = 〈O,P〉 is an inter-
pretation Î, such that

(i) Î is an answer set of Π̂, and
(ii) ea ∈ Î iff Î|Π |=O a, for all a = DL[λ; Q](c) of Π.

Conversely, given an interpretation I of Π, we denote by Ic the interpretation of
Π̂, such that Ic coincides with I on nonreplacement atoms, and each replacement atom
ea is in Ic (i.e., true) iff I |=O a for the respective DL-atoms a. Clearly, from each
interpretation Î of Π̂ we can uniquely construct an interpretation Î|Π of Π.

With these concepts in place, we are ready to describe the basic algorithm AnsSet
(cf. Algorithm 5.1) for evaluating a DL-program Π = 〈O,P〉 adapted from [EFK+12].

First, Π̂ is evaluated by an ordinary ASP solver. For every answer set Î, in (a) the
function CMP checks for compatibility of every answer set Î against the values of the
DL-atoms, i.e. verifies the guess. The test xFND checks for foundedness, i.e., whether
Î|Π is a ⊆-minimal model of the reduct P Î|Π,Ox . In case of x = weak it just returns true,
otherwise (x = flp) it checks for disjointness with unfounded sets as defined in [EFK+12].

An important link between the answer sets of Π and Π̂ is:

Proposition 5.2. Let Π = 〈P,O〉 be a DL-program. If I ∈ ASx(Π) then Ic ∈ ASx(Π̂).

Proof. Suppose towards a contradiction that I ∈ ASx(Π), but Ic 6∈ ASx(Π̂). Then it
holds that Ic is not a ⊆-minimal model of Π̂Ic

x . There are two possibilities: either (i)
there exists a rule r in Π̂Ic

x , such that Ic 6|= r or (ii) there exists I ′ ⊂ Ic, which is a
model of Π̂Ic

x . Before considering these cases, let us compare the reducts PI,Ox and Π̂Ic
x .

Clearly, all normal rules r without replacement atoms that are in Π̂Ic
x are also in PI,Ox .
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Now the rules r′ that contain replacement atoms in Π̂Ic
x are also present in PI,Ox as rules

r′′, they coincide with r′ on normal atoms, do not contain any DL-atoms if x = weak
and contain all DL-atoms if x = flp.

First assume that the case (i) holds. We distinguish the following possibilities:

• r does not contain any replacement atoms. As I ∈ ASx(Π), I must satisfy r,
therefore r is also satisfied by Ic.

• r contains some replacement atoms. Since r is in Π̂Ic
x , its body must be satisfied

by Ic. That is all atoms in the positive part of the body of r are in Ic and those in
its negative part are not in Ic. The body of the same rule in PI,Ox is satisfied by I
too, which means that the head of r is in I and hence also in Ic. The latter means
that r is satisfied by Ic.

Now suppose that (ii) holds, i.e. there exists some I ′ ⊂ Ic, such that I ′ satisfies all
rules in Π̂Ic

x . First suppose that S = Ic\I ′. Observe that S must contain normal atoms.
Otherwise, there is a replacement atom ea, which is in Ic but not in I ′ and therefore
I |= a, but I\S 6|= a. The latter can not happen, as I\S = I. Therefore, S must contain
normal atoms. We now look at I ′′ = I\S. We know that I ′′ ⊂ I is not a model of PI,Ox
(otherwise I would not be an answer set of Π). This means that there is a rule r in
PI,Ox , such that I ′′ |= b(r), but h(r) 6∈ I ′′. Observe that the same rule must be present
in the reduct Π̂Ic

x with the only possible difference that it contains replacement atoms.
I ′ must satisfy this rule by our assumption. This, however, means that the head of this
rule is in I ′ and thus in I ′′. Therefore, I ′′ |= r, meaning that I ′′ is a model of PI,Ox , and
hence I 6∈ AS(Π), which leads to a contradiction.

While AnsSet is clearly sound, from the above result its completeness follows, i.e.
restricting the search to ASx(Π̂) does not yield any loss of answer sets.

5.1.2 Naive Repair Algorithm

In this subsection, we first aim at a procedure for computing (σ, x)-repairs of a DL-
program given an independent selection function σ. Then, we describe how its main
subroutine can be used for an extension of AnsSet that computes answer sets if some
exist, and (σ, x)-repair answer sets otherwise.

A first key observation is that Proposition 5.2 can be generalized to repair answer
sets, more precisely:

Proposition 5.3. If I ∈ RASx(Π) then Ic ∈ ASx(Π̂).

Proof. By definition of RASx(Π), we get that I ∈ AS(Π′), where Π′ = 〈O′, P 〉, O′ =
〈T ,A′〉 and A′ ∈ repx(Π). Since by Proposition 5.2 Ic ∈ ASx(Π̂′) and Π̂ = Π̂′, the result
immediately follows.

Thus, our approach is to traverse AS(Π̂) and check for each answer set Î whether it
is a (σ, x)-repair answer set of Π. The latter proceeds in two steps. In the first step we
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Algorithm 5.2: RepAns: Compute (σ, x)-repairs repÎ|Π(σ,x)(Π) of Π

Input: Π=〈O,P〉, O=〈T ,A〉, Î∈AS(Π̂), σ, x∈{weak,flp}
Output: repÎ|Π(σ,x)(Π)

(a) for A′ ∈ ORP(Î ,Π, σ) do
(b) if CMP(Î , 〈T ,A′,P〉) ∧ xFND(Î , 〈T ,A′,P〉) then

output A′
end

end

Algorithm 5.3: RepAnsSet: Compute a set RAS(σ,x)(Π) of (σ, x)-repair AS of Π
Input: Π=〈O, P 〉, O=〈T ,A〉, σ, x∈{weak,flp}
Output: I ∈ RAS(σ,x)(Π)
for Î ∈ AS(Π̂) do

if RepAns(Π,O, Î, σ, x) 6= ∅ then
output Î|Π

end
end

search for potential σ-repairs of the ontology such that the condition (ii) of Definition 5.1
is satisfied for Î. In the second step we check the minimality condition of Î with respect
to the given semantics x and the (σ, x)-repair that was found. Hence, our extension is
driven by the following idea: whenever Î turned out to be not compatible, we aim at
computing a (σ, x)-repair which will turn it into a compatible set. Otherwise, we follow
the further step of AnsSet and check the minimality of I w.r.t. semantics x.

Our approach is given in Algorithm 5.2, which computes the set repÎ|Π(σ,x)(Π) of all
ABoxes under which Î becomes a (σ, x)-repair answer set. A procedure RepAns calls
the subroutine ORP (Î ,Π, σ) to compute σ-repairs of the corresponding ORP. Further
on, RepAns re-uses functions CMP and xFND to check whether Î is an answer set of
Π̂′ and that it is founded w.r.t. Π′ = 〈O′,P〉, where O′= 〈T ,A′〉. It thus computes the
set of all ABoxes under which Î becomes a (σ, x)-repair answer set.

We demonstrate how the algorithm RepAns works on the following example

Example 5.4. Let Π = 〈O,P〉 be a DL-program, where

O =

A v ¬C D(c)
A v D ¬E(c)
A(c) C (c)
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P =
{
p(c); r(c); q(c)← DL[C−∪r; D](c);
⊥ ← DL[D ] p,E−∪r; ¬C](c)

}
.

Let a1 = DL[C−∪r; D](c) and a2 = DL[D ] p,E−∪r; ¬C](c), and consider the inter-
pretation Î = {p(c), r(c), q(c), ea1}, i.e., a1 is guessed true and a2 false. The corre-
sponding ORP is given by ORP = 〈O, D1, D2〉, where D1 = {〈{¬C(c)};D(c)〉} and
D2 = {〈{D(c),¬E(c)};¬C(c)〉}. Now if the selection function σ selects the repairs that
are subsets of the original ABox, i.e. we are interested in deletion repairs, then as a
possible solution to ORP we get A′ = {D(c),C (c)}. Since A′ is a solution to the ORP,
the compatibility check CMP(Î , 〈T ,A′,P〉) succeeds. Furthermore, the interpretation
Î|Π is a weak-repair answer set. For checking whether Î|Π is an FLP-repair answer sets,
we construct the reduct PI,O′flp = {p(c); q(c); q(c) ← DL[C−∪r; D](c)}. One can see
that Î|Π is a minimal model of the reduct, hence the check xFND(Î , 〈T ,A′,P〉) succeeds
and the repair A′ is output to the user.

Let then RepAnsSet (Algorithm 5.3) be the algorithm that iteratively calls RepAns
for every Î ∈ AS(Π̂), and that outputs any Î where the result of RepAns is nonempty,
i.e. some repair A′ was computed. We then get:

Theorem 5.5. RepAns and RepAnsSet are sound and complete for rep(σ,x)(Π) and
RAS (σ,x)(Π), respectively, for independent selection σ.

Proof. Soundness. Let A′ be an output of RepAns. Towards a contradiction, suppose
A′ 6∈ rep

Î|Π
(σ,x)(Π). Then Î|Π 6∈ AS(Π′), where Π′ = 〈T ,A′, P 〉 and A′ is σ-selected.

Clearly, A′ is σ-selected, since otherwise A′ 6∈ ORP(Î ,Π, σ) and A′ is not in the output.
As it holds that Î ∈ AS(Π̂), it must hold that either Î is not a compatible set of Π′ or
it is not x-founded. If either of these cases is true, then the corresponding procedure
CMP or xFND returns false and A′ is not in the output, which leads to contradiction.

Completeness. Let repÎ|Π(σ,x)(Π) be the set of all σ-selected repairs for Π that turn
Î|Π into an x-repair answer set. Towards a contradiction, assume that there exists some
A′ ∈ rep

Î|Π
(σ,x)(Π) which is not an output of the algorithm RepAns. Then either (1)

A′ 6∈ ORP(Î ,Π, σ); (2) CMP(Î , 〈T ,A′, P 〉) = false or (3) xFND(Î , 〈T ,A′, P 〉) = false.
If (1) holds, then A′ is not a solution of the ORP problem. Thus either 〈T ,A′〉 is
unsatisfiable (contradiction to A′ ∈ repÎ|Π(σ,x)(Π) by the definition of repair) or the actual
values of the DL-atoms do not coincide with the replacement atoms in Π̂ (contradiction
due to the failure of the compatibility check). Finally, if either (2) or (3) holds then
we obtain a contradiction, since A′ ∈ repÎ|Π(σ,x)(Π) implies Î|Π should be compatible and
x-founded.

From the argument above and Proposition 5.3 soundness and completeness of the
algorithm RepAnsSet is established.
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Similarly, RepAns could be intertwined with AnsSet for an extension that computes
answer sets if some exist, and repair answer sets otherwise: while iterating over Î ∈
AS(Π̂) and checking for compatibility and foundedness, also RepAns is called for every
Î, as long as no answer set is found.

A natural question is whether computing repair answer sets via compatible sets Î
of Π makes repair answer set checking for Î|Π easier than for arbitrary interpretations
I. Unfortunately, this is not the case, thus we obtain a strengthening of the results of
Theorems 4.5 and 4.7.

Theorem 5.6. For ground Π = 〈O,P〉 and I ⊆HBΠ, deciding whether I∈RASx(Π) is
NP-complete for x=weak and Σp

2-complete for x=flp; hardness holds even if I = Î|Π for
a compatible set Î of Π.

Proof. In the proofs of Theorems 4.5 and 4.7, both repair candidates I that we considered
are such that I = Î|Π for some compatible set Î of Π. From this observation the result
immediately follows.

In our algorithm we aim at finding repairs on the fly, i.e. we look at the first answer
set, check for its compatibility and in case if it is not compatible try to immediately find
a repair before checking the compatibility of the next answer set of Π̂. We proceed in
this way until we find some compatible answer set or until we go through all answer sets
of Π̂. The results of the calls to RepAns might be stored, and they could be partially
reused during further computation. E.g. if no repair was identified for Î then no repair
will be found for Î ′, if all values of DL-atoms and their respective updates in Î and Î ′
coincide. Eventually, all (σ, x)-repair answer sets or just a single best repair option could
be output.

A possible alternative approach would be to go through all answer sets of Π̂, and
only if none of them turned out to be compatible, aim at computing repairs for some of
them. This approach, however, is less effective in general, since answer set candidates
might need to be traversed more then once.

The realization of algorithms for repair answer set computation that we presented
in this section is very natural and flexible, as it can be applied to DL-programs over
ontologies in various DLs. However, the proposed algorithms turn out to be too naive
and do not scale for practical applications due to large number of ABoxes to be checked
in general. This calls for the development of suitable optimization techniques and more
effective algorithms, to which we devote the rest of this chapter.

Clearly, the possible optimizations often depend on the underlying DL, in which
the ontology accessed by the rules of the DL-program, is encoded. Motivated by the
complexity results shown in Chapter 4 and the observation that computing repairs for
DL-programs over lightweight DLs does not yield any complexity increase compared to
the standard answer set computation, we naturally focus on DL-LiteA and EL DLs.
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O =



(1) Blacklisted v Staff
(2) StaffRequest ≡ ∃hasAction.Action u ∃hasSubject.Staff u ∃hasTarget.Project
(3) BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject.Blacklisted
(4) StaffRequest(r1 ) (5) hasSubject(r1 , john) (6) Blacklisted(john)
(7) hasTarget(r1 , p1 ) (8) hasAction(r1 , read) (9) Action(read)



P =



(10) projfile(p1); (11) hasowner(p1 , john);
(12) chief (Y )← hasowner(X ,Y ), projfile(X);
(13) grant(X)← DL[Project ] projfile; StaffRequest](X),not deny(X);
(14) deny(X)← DL[Staff ] chief ; BlacklistedStaffRequest](X);
(15) ⊥ ← hasowner(Y, Z),not grant(X),

DL[; hasTarget](X,Y ),DL[; hasSubject](X,Z).


Figure 5.1: DL-program Π over a policy ontology

5.2 General Notion of Support Sets for DL-atoms

In this section we propose the notion of support sets for DL-atoms, which serve as
optimization means for repair computation. Intuitively, a support set for a DL-atom
d = DL[λ; Q](~t) is a portion of its input that, together with ABox assertions, is sufficient
to conclude that the query Q(~t) will evaluate to true, i.e, that given a subset I ′ ⊆ I of an
interpretation I and a set A′ ⊆ A of ABox assertions from the ontology, we can conclude
that I |=O Q(~t). The evaluation of d w.r.t. I reduces then to test whether some support
set S = I∪A exists; to this end, a sufficient collection of such sets S can be precomputed
and stored.

For repair as well as standard answer set computation the support sets can be ef-
fectively used, as they allow to reduce the number of ontology accesses in answer set
checking, and also to prune the candidate space of answer sets effectively. In particular,
if a rich enough collection of support sets is available, the ontology access can be entirely
eliminated. This approach is highly attractive and promises performance gains if a suit-
able representation of such a complete set of support sets is efficiently computable. As
we later see the DL-programs over DL-LiteA DL fortunately possess this property. Ex-
ploiting partial (i.e. incomplete) support families, however, also provides computational
gains; we present algorithms based on partial support families for DL-programs over EL
DL as well.

5.2.1 Ground Support Sets

Before introducing formal details of support sets, let us first present a DL-program over
an EL ontology, which will be referred to as our running example.
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Example 5.7. Consider the DL-program Π = 〈O,P〉 in Figure 5.1 formalizing an
access policy over an ontology O = T ∪ A [BFS10], which we have already seen in
Example 2.8. Besides facts (10), (11) and a simple rule (12), the rule part P of Π con-
tains defaults (13), (14) expressing that staff members are granted access to project files
unless they are blacklisted, and a constraint (15), which forbids that owners of project
information lack access to it. Both parts, P and O, interact via DL-atoms, such as
DL[Project ] projfile; StaffRequest](X). The latter specifies that additional assertions
Project(c) are considered for each individual c, such that projfile(c) is true in an interpre-
tation of P, before all instances X of StaffRequest are retrieved from O. Inconsistency
arises as john, the chief of project p1 and owner of its files, has no access to them.

We define support sets on the ground level as follows.

Definition 5.8 (Ground Support Sets). Let d(~c) = DL[λ; Q](~c) be a ground DL-atom of
a DL-program Π = 〈O,P〉. Then a ground support set for d is a subset of the Herbrand
Base S = {pi(~t) ∈ HBΠ | Pi ◦ pi ∈ λ, ◦ ∈ {], −∪}}, such that for all interpretations
I, I ′ ⊇ S, it holds that I |=O d iff I ′ |=O d. Moreover, S is positive (resp. negative), if
for every interpretation I ⊇ S it holds that I |=O d (resp. I 6|=O d).

By Sgr(d) we denote the set of all ground support sets for a ground DL-atom d; for
any S ⊆ Sgr(d), we denote by S+ (resp. S−) the set of all positive (resp. negative)
support sets S ∈ S for d.

Example 5.9. Recall Π and d(r1 ) = DL[Project ] projfile; StaffRequest](r1 ) from Ex-
ample 5.7. A positive ground support set for d(r1 ) is S = {projfile(p1 )}. Indeed, for all
interpretations I ⊇ {projfile(p1 )}, it holds that A ∪ T ∪ λI(d) |= StaffRequest(r1 ).

Example 5.10. Consider Π and a grounding d(john) = DL[Male ] boy; Male](john)
of the DL-atom from the rule (9) of Example 4.1. A positive ground support set for
d(john) is S = {boy(john)}, since for all I ⊇ boy(john), we have that A ∪ T ∪ λI(d) |=
Male(john).

Support sets are grouped into so-called support families.

Definition 5.11. A support family is a set of support sets.

An important notion is that of completeness for a support family. Informally, a
complete support family for a ground DL-atom is a support family that is sufficient for
determining the value of the DL-atom under all possible interpretations.

Definition 5.12. A support family S ⊆ Sgr(d) for a ground DL-atom d is complete, if
for each interpretation I some S ∈ S exists, such that I ⊇ S.

Given a complete support family S = S+ ∪S− for d, we can decide on the value of d
w.r.t. an interpretation I by simply checking if some S ∈ S “covers” I, i.e., S ⊆ I holds.
In fact, to decide this we need just one of S+ and S−; for space reasons, storing the
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smaller set is naturally preferable. A support family is +-complete (resp. −-complete)
for d, if it equals S+ (resp. S−) for some complete support family S ⊆ Sgr(d).

With a complete support family at hand, ontology accesses during DL-program eval-
uation and repair can be fully avoided, which promises significant performance improve-
ments. This beneficial property is now formally stated.

Proposition 5.13. Let d be a ground DL-atom, let O = 〈T ,A〉 be an ontology, and let
I be an interpretation. Then, I |=O d iff some S ∈ S+ exists, such that S ⊆ I, where
S+ is a +-complete support family for d.

Proof. (⇒) Towards a contradiction, suppose that I |=O d, but no S ∈ S+ exists, such
that S ⊆ I. As S+ is a +-complete support family for d by our assumption, it must be
the case that for all S ⊆ I, we have that S ∈ S−, where S− = S \S+ is some −-complete
support family for d. Since every support set in −-complete family is negative, it must
hold that I 6|=O d, leading to a contradiction.

(⇐) Suppose to the contrary that some S ⊆ I exists, such that S ∈ S+, but I 6|=O d.
Since S+ is +-complete, it must hold that all support sets in S+ are positive, hence S is
positive. Therefore, by definition, for all I ′ ⊇ S it is true that I ′ |=O d, and in particular,
I |=O d, which leads to a contradiction.

To simplify presentation, in this work we exploit only positive support sets, i.e.
portions of the ontology input, that ensure that the DL-atom will be true, thus +-
completeness is of a particular interest for us here. In what follows when we refer to
completeness, we mean +-completeness.

Example 5.14. Let us consider d(john) = DL[Male ] boy; Male](john) and the modi-
fied version of ontology from Example 4.1.

O =


(1) Child v ∃hasParent (4) Female(alex)
(2) Adopted v Child (5) ¬Male(pat)
(3) Female v ¬Male (6) hasParent(john, pat)


We have that the family S = {S1, S2, S3}, where S1 = {boy(john)}, S2 = {boy(alex)},

S3 = {boy(pat)} is complete for d. Indeed, d(john) evaluates to true only for interpreta-
tions I, such that I ⊇ Si for some 1 ≤ i ≤ 3.

5.2.2 Nonground Support Sets

Intuitively, support sets reflect the relevant part of an external source (ontology in our
case). Thus different ground support sets can be similar with respect to their structure.
With this motivation in mind we lift support sets to the nonground level. Given a
set of nonground atoms, in general, one can not decide on the value of the DL-atom
without any knowledge about the ontology that it accesses. Thus nonground support
sets are useful only if they work on a conditional basis and take ontology information
into account. In our framework this is served by so-called conditional guards (γ), which
allow to elegantly specify the support sets on a nonground level as follows:
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Definition 5.15 (Nonground Support Sets). Let Π be a DL-program and let d( ~X) =
DL[λ; Q]( ~X) be a DL-atom of Π. A positive nonground support set S for d( ~X) is a pair
〈N, γ〉, where

• N ⊆ {pi(~Y ) | Pi ◦ pi ∈ λ, ◦ ∈ {], −∪}} is a set of nonground atoms over the input
signature λ of d;

• γ : C| ~X| × grndC(N) → {0, 1} is a Boolean function (called the guard), such that
for all ~c ∈ C| ~X| and Ngr ∈ grndC(N) it holds that γ(~c,Ngr) = 1 only if Ngr is a
ground support set for d(~c).

By Sngr(d) we denote the set of all nonground support sets for d.

In this definition, grndC(N) is the support family, i.e. set of support sets constructed
from N by replacing all variables with constants from C in all possible ways. Intuitively,
the guard γ is an abstract function that checks a condition under which the ground
atoms over predicates in N form a ground support set. Definition 5.15 is generic, and it
allows to exploit support sets for answer set programs with arbitrary external sources,
as it is shown in [EFRS14].

Example 5.16. The DL-atom d(X) = DL[Project ] projfile; StaffRequest](X) has S1 =
〈∅, γ′〉 as a support set, where γ′ : C × ∅ → {0, 1} is such that γ′(c, ∅) = 1 only if
StaffRequest(c) ∈ A.

Another support set is S2 = 〈projfile(Y ), γ〉, where γ : C × grndC(projfile(Y )) →
{0, 1} is such that γ(c, projfile(c′)) = 1 only if the ABox A contains the assertions
hasAction(c, c1 ), Action(c1 ), hasSubject(c, c2 ), Staff (c2 ), and hasTarget(c, c′), where
c1 , c2 are arbitrary constants from C.

Example 5.17. The DL-atom d(X) = DL[Male ] boy; Male](X) from Example 5.10
has a nonground support set S1 = 〈boy(Y ), γ〉, where γ : C × grndC(boy(Y )) → {0, 1}
is such that γ(c, boy(c′)) = 1 only if the ABox A contains the assertion ¬Male(c′) or
Female(c′). The set S2 = 〈boy(X),>〉 is also a nonground support set for d(X), where
the guard > returns 1 for each grounding of boy(X); hence {boy(c)} is a ground support
set of d(c), for all c ∈ C.

The notion of completeness is now generalized for nonground support sets.

Definition 5.18. A family S ⊆ Sngr(d) of nonground support sets is said to be complete
for a (non-ground) DL-atom d( ~X), if for every ~c ∈ C| ~X| and ground support set S ∈
Sgr(d(~c)) of d(~c), some S′ = 〈N, γ〉 exists in S, such that S ∈ grndC(N) and γ(~c, S) = 1.

Example 5.19. Consider a nonground support family S = {S1, S2, S3} for d(X) =
DL[Male ] boy; Male](X), with S1 and S2 as in Example 5.17, and S3 = 〈∅, γ′〉, where
γ′ : C × {∅} → {0, 1} is such that γ′(c, ∅) = 1 only if the ABox A contains the assertion
Male(c). It is not difficult to check that S ⊆ Sngr(d) is a complete nonground support
family for d(X).
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Nonground support sets are compact representations of ground ones. Given a com-
plete nonground support family for a DL-atom d( ~X) and an interpretation I, one can
decide on the value of some grounding d(~c) of d( ~X) under I by applying syntactic match-
ing. We now state this formally.

Proposition 5.20. Let S ⊆ Sngr(d) be a complete nonground support family for a DL-
atom d( ~X). Then for every ~c ⊆ C| ~X|, and every interpretation I we have that I |=O d(~c)
iff there exists some S ⊆ I and some S′ ∈ S, such that S ∈ grndC(S′), and γ(~c, S) = 1.

Proof. (⇒) Towards a contradiction, suppose that there exists some ~c ∈ C| ~X| and some
interpretation I, such that I |=O d(~c), but for all S ⊆ I and all Si ∈ S it holds that
either S 6∈ grndC(Si) or γ(~c, S) = 0. Consider a set of all ground support sets Sgr(d(~c))
for d(~c). Since I |=O d(~c), it must hold that some S′ ⊆ I exists, such that S′ ∈ Sgr(d(~c)).
However, then by Definition 5.18, it holds that for ~c and Ngr some nonground support
set Sk = 〈N, γ〉 in S exists, such that S′ ∈ grndC(Sk) and γ(~c, S′) = 1, which leads to a
contradiction.

(⇐) Consider some ~c and some interpretation I. To the contrary, assume that for
some Ngr ⊆ I and Si = 〈N, γ〉 in S, we have that Ngr ∈ grndC(Si) and γ(~c,Ngr) = 1, but
I 6|=O d(~c). Since Si is a nonground support set and γ(~c,Ngr) = 1, by Definition 5.15 we
have that Ngr is a ground support set for d(~c); but then since Ngr ⊆ I by our assumption,
it must hold that I |=O d(~c), i.e. contradiction.

The abstract definition of nonground support sets leaves room for flexible realization
of the conditional guard γ. A natural one is by (unions of) conjunctive queries (UCQs)
over the ontology ABox viewed as a database. In Example 5.16, the guard γ of S1
takes as input a constant c ∈ C and a ground instance of form projfile(c′), and returns
1 if the Boolean CQ q(c) ← ∃X,X ′ φ(X,X ′) evaluates to true, where φ(X,X ′) =
hasAction(c,X) ∧Action(X) ∧ hasSubject(c,X ′) ∧ Staff (X ′) ∧ hasTarget(c, c′).
The UCQ q(c) ← ∃X,X ′ φ(X,X ′) ∨ ψ(X,X ′), where ψ(X,X ′) = hasAction(c,X)∧
Action(X) ∧ hasSubject(c,X ′) ∧Blacklisted(X ′) ∧ hasTarget(c, c′), is more general; even
more general guards are possible (e.g. nonrecursive datalog programs).

Further we provide methods for constructing support sets for DL-programs over
DL-LiteA and EL ontologies that allow us to just work with ontology predicates. To
simplify matters, we first show how the lp-input of DL-atoms can be shifted to the
ontology.

5.2.3 Shifting Lemma

Let us define input assertions for a DL-atom as follows.

Definition 5.21. Given a DL-atom d = DL[λ; Q](~t) and P ◦ p ∈ λ, ◦ ∈ {], −∪}, we call
Pp(c) an input assertion for d, where Pp is a fresh ontology predicate and c ∈ C. By Ad
we denote the set of all such assertions.
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For a TBox T and a DL-atom d, we let Td = T ∪ {Pp v P | P ] p ∈ λ} ∪ {Pp v ¬P |
P −∪p ∈ λ}, and for an interpretation I, we let OId = Td ∪ A ∪ {Pp(~t) ∈ Ad | p(~t) ∈ I}.
We then have:

Proposition 5.22. For every O = 〈T ,A〉, DL-atom d = DL[λ; Q](~t) and interpretation
I, it holds that I |=O d iff I |=OI

d DL[ε; Q](~t) iff OId |= Q(~t).

Proof. We prove each “if” direction of the statement separately.

• We first show that if I |=O d then I |=OI
d DL[ε; Q](~t). Let I |=O d. That means that

O∪λI(d) |= Q(~t). By definition, we have that λI(d) = {P (~t) | p(~t) ∈ I andP ] p ∈
λ}∪{¬P (~t) | p(~t) ∈ I andP −∪ p ∈ λ}. Therefore, T ∪{Pp v P | P ] p ∈ λ}∪{Pp v
¬P | P −∪ p ∈ λ} ∪A∪ {Pp(~t) ∈ Ad | p(~t) ∈ I} |= λI(d), i.e. OId |= λI(d), and hence
OId |= Q(~t). Therefore, we get that I |=OI

d DL[ε; Q](~t).

• We now prove the opposite direction, i.e. if I |=OI
d DL[ε; Q](~t) then I |=O d, where

d = DL[λ; Q](~t). Let I |=OI
d DL[ε; Q](~t). Then we have that Td ∪ A ∪ {Pp(~t) ∈

Ad | p(~t) ∈ I} |= Q(~t). By construction of OId, λ must be as follows: P ] p ∈ λ iff
Pp v P ∈ Td; P −∪ p ∈ λ iff Pp v ¬P ∈ Td. Therefore, for all P ′ ∈ sig(A∩ (Ad\A)),
we have that if Td ∪ A ∪ {Pp(~t) | p(~t) ∈ I} |= P ′(~t′) then T ∪ A ∪ λI(d) |= P ′(~t′).
As Q 6∈ sig(Ad\A), we obtain that O ∪ λI(d) |= Q(~t), and hence I |=O d.

• The last implications, i.e. I |=OI
d DL[ε; Q](~t) iff I |=OI

d Q(~t) are immediate from
the definition of a DL-atom’s satisfaction by an interpretation.

Unlike O ∪ λI(d), in OId there is a clear distinction between native assertions and
input assertions for d w.r.t. I (via facts Pp and axioms Pp v P ), mirroring its lp-input.
The shifting lemma allows us to work only with ontology predicates when constructing
support sets for DL-atoms, as we see next.

5.3 Support Sets for DL-atoms over DL-LiteA Ontologies
We now discuss exact forms of support sets and their computation for ontologies in
DL-LiteA. In view of the property that in DL-LiteA a single assertion is sufficient to
derive a query from a consistent ontology [CLLR07], we obtain that ground support sets
can be at most of size 2. Therefore, given a DL-atom d = DL[λ; Q](~t) over a DL-LiteA
ontology, each of its support sets has one of three predetermined forms, which we now
formalize.

Proposition 5.23. Let d = DL[λ; Q](~t) be a ground DL-atom over a consistent DL-
LiteA ontology O = 〈T ,A〉, and let S ⊆ Sgr(d) be a complete ground support family for
d. Then for each S ∈ S one of the following must hold:

(1) S = ∅, and some P (~c) ∈ A exists, s.t. P (~c) ∪ T |= Q(~t);
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(2) S ⊇ {p(~c)}, such that Pp(~c) ∪ Td is consistent and Pp(~c) ∪ Td |= Q(~t);
(3) S ⊇ {p(~c)}, and some P ′(~d) ∈ A exists s.t. Pp(~c) ∪ P ′(~d) ∪ Td is inconsistent;
(4) S ⊇ {p(~c), p′(~d)}, such that Pp(~c) ∪ P ′p′(~d) ∪ Td is inconsistent.

Proof. As at most one assertion α is needed to derive an instance query from a consistent
O, we get that if α ∈ A, then the support set encoding this knowledge is empty. The
support set is of form (1) if α is in the update. At most two ABox assertions are needed
to make a DL-LiteA ontology inconsistent. Given that O is originally consistent, we get
support sets of forms (2) and (3).

The shifting lemma allows one to rewrite an lp-input of a DL-atom to ontology
assertions. Therefore, every support set for a DL-atom d containing ground atoms over
the logic program signature can be rewritten to a set of ontology assertions from Ad.
Viewing such rewriting as a normalization step one can express support set information
conveniently and succinctly using only ontology predicates. Exploiting Proposition 5.23
we define such normalized support sets for DL-atoms accessing a DL-LiteA ontology as
follows:

Definition 5.24 (Normalized Ground DL-LiteA Support Sets). Given a ground DL-
atom d = DL[λ;Q](~t), a set S of assertions from A∪Ad is a normalized ground DL-LiteA
support set for d w.r.t. a DL-LiteA ontology O = 〈T ,A〉, if either

• S = {P (~c)} and Td ∪ S |= Q(~t), or
• S = {P (~c), P ′(~c′)} such that Td ∪ S is inconsistent.

By SuppDL-LiteA
O (d)1 we denote a family of all normalized ground support sets for d.

Let us illustrate the normalization of support sets by an example.

Example 5.25. Consider the DL-atom d(john) = DL[Male ], boy; Male](john) and its
support sets from Example 5.14. The support set S = {boy(john)} corresponds to the
normalized support set {Maleboy(john)}. Similarly the support sets S2 and S3 correspond
to the normalized support sets {Maleboy(pat)}, {Maleboy(alex)} respectively.

Apart from the maximal number of assertions that participate in support sets for
DL-atoms accessing DL-LiteA ontologies, there is also a limit on the number of constants
that can occur in such support sets. In fact, in Definition 5.24 ~c∪ ~c′ can involve at most
3 constants, which we now formally show.

Proposition 5.26. Let d = DL[λ;Q](~t) be a ground DL-atom, and let S be its ground
normalized support set w.r.t. a DL-LiteA ontology O = 〈T ,A〉. Then S involves at most
3 constants.

1We omit the superscript DL-LiteA in SuppDL-LiteA
O (d) when it is clear from the context that O is a

DL-LiteA ontology.
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Proof. By Definition 5.24 there are two possibilities: either (i) S is unary or (ii) it is
binary. In case of (i) we have that S is either a concept or a role assertion, and therefore,
it involves at most two constants. For the case (ii) it holds that S ∪ Td is inconsistent.
Hence S represents a binary conflict set. It has been shown in [LLR+11] that S can be
a binary conflict set only due to one of the following reasons:

• T |= C v ¬D, and S = {C(a), D(a)}, in which case S involves only 1 constant;

• T |= R v ¬R′, and S = {R(a, b), R′(a, b)}, thus S involves at most 2 constants;

• T |= C v ¬∃R or C v ¬∃R−, and S = {C(a), R(a, b)} resp. S = {C(a), R(b, a)},
i.e. S involves at most 2 constants;

• T |= ∃R v ¬C or ∃R− v ¬C, and S = {R(a, b), C(a)} resp. S = {R(b, a), C(a)},
in which case S involves 2 constants maximum;

• T |= ∃R v ¬∃R′, and S = {R(a, b), R′(a, c)}, thus there are 3 constants occurring
in S (similarly for the cases T |= ∃R− v ¬∃R′−, T |= ∃R v ¬∃R′−, T |= ∃R− v
¬∃R′−);

• funct(R) ∈ T , and S = {R(a, b), R(a, c)} with b 6= c, in which case again at most
3 constants appear in S (the case when funct(R−) ∈ T is analogous).

As we have considered all possibilities for binary conflict sets, the statement is proved.

Normalized support sets are linked to interpretations by the following notion.

Definition 5.27. A normalized support set S of a DL-atom d is coherent with an
interpretation I, if for each Pp(~c) ∈ S it holds that p(~c) ∈ I.

The evaluation of d w.r.t. I reduces to the search for coherent normalized support
sets.

Proposition 5.28. Let d be a ground DL-atom, let O = T ∪A be a DL-LiteA ontology,
and let I be an interpretation. Then, I |=O d iff some S ∈ SuppO(d) exists such that S
is coherent with I.

Proof. (⇒) Suppose d=DL[λ;Q](~t) evaluates w.r.t. O and I to true, i.e., λI(d) ∪ O |=
Q(~t). Towards a contradiction, assume no S ∈SuppO(d) is coherent with I. There are
two cases:

(1) λI(d) ∪ O is consistent. Proposition 2.7 implies that an assertion α ∈ λI(d) ∪ A
must exist such that T ∪ {α} |= Q(t). If α ∈ A then SuppO(d) contains {α} by (i) of
Definition 5.8, which trivially is coherent with I and thus contradicts the assumption.
If α ∈ λI(d), then α is an input assertion for d. For αd ∈ Ad, we then obtain that
{αd} ∈ SuppO(d) according to (i) of Definition 5.8, again a contradiction due to coherence
with I.

100



(2) λI(d) ∪ O is inconsistent. From Proposition 2.7 and consistency of O, it follows
that some δ ∈ λI(d) exists such that either (a) T ∪ {δ} is inconsistent, or (b) some
γ ∈ A ∪ λI(d) exists such that T ∪ {δ, γ} is inconsistent. In case a), we obtain {δd} ∈
SuppO(d), for the corresponding input assertion δd ∈ Ad. by (i) of Definition 5.8; this is
a contradiction, as {δd} is coherent with I. In case b), we similarly conclude that either
{δd, γ} ∈ SuppO(d) or {δd, γd} ∈ SuppO(d), depending on whether γ ∈ λI(d), according
to (ii) of Definition 5.8. Again this is a support set coherent with I, contradiction.

(⇐) Suppose some S ∈ SuppO(d) is coherent with I. Assume towards a contradiction
that I 6|=O d. Again we consider two cases:

(1) Td ∪S is consistent. Then, Td ∪S |= Q(~t) by item (i) of Definition 5.8. Since S is
coherent with I, we conclude that OId |= Q(~t) which implies I |=O d by Proposition 5.22.
Contradiction.

(2) Td∪S is inconsistent. Then, due to coherence with I, so is OId, and trivially OId |=
Q(~t); again we arrive at a contradiction by concluding that I |=O d from Proposition 5.22.

As a simple consequence, we get:

Corollary 5.29. Given a ground DL-atom d and a DL-LiteA ontology O, there exists
an interpretation I such that I |=O d iff SuppO(d) 6= ∅.

We now present the normalized nonground support sets for DL-LiteA ontologies.

Definition 5.30 (Normalized Nonground DL-LiteA Support Sets). Let T be a DL-LiteA
TBox, and let d( ~X) = DL[λ; Q]( ~X) be a DL-atom. Suppose that V = {X,Y, Z} is a
set of distinct variables, such that ~X ⊆ V , and C = {a, b, c} is a set of constants. A
normalized nonground DL-LiteA support set for d w.r.t. T is a set S = {P (~Y )} resp.
S = {P (~Y ), P ′( ~Y ′)} such that

(i) ~Y , ~Y ′ ⊆ V and
(ii) for each substitution θ : V → C, the instance Sθ = {P (~Y θ)} (resp. Sθ = {P (~Y θ),

P ′(~Y ′θ)}) is a support set for d( ~Xθ) w.r.t. OC = T ∪ AC , where AC is the set of
all possible assertions over C.

By SuppDL-LiteA
O (d)2 we denote the family of all normalized nonground DL-LiteA sup-

port sets for d.

Here AC takes care of any possible ABox, by considering the maximal ABox (as
O⊆O′ implies SuppO(d)⊆SuppO′(d)); three variables suffice as at most three different
constants are involved.

Example 5.31. The support set S1 for a DL-atom d(X) = DL[Male ] boy; Male](X)
from Example 5.19 corresponds to normalized support sets {Maleboy(Y ),¬Male(Y )} and
{Maleboy(Y ), F emale(Y )}, while support sets S2 and S3 correspond to {Maleboy(X)}
and {Male(X)} respectively.

2Similarly as for normalized ground support families the superscript DL-LiteA may be omitted.
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Normalized nonground support sets S for DL-LiteA that we presented are sound,
i.e. each instance Sθ that matches with A∪Ad is a support set of the ground DL-atom
dθ w.r.t. O = T ∪ A. They are also complete, i.e., every normalized support set S of
a ground DL-atom d w.r.t. O = T ∪ A results as such an instance, and thus can be
determined by syntactic matching.

Clearly, normalized support sets as defined above may be subsumed by other support
sets; e.g., S = {A(X), R(X,Y )} is subsumed by {A(X)}. To keep the support set
information succinct, removal of such S is desired.

Definition 5.32. A family S ⊆ SuppO(d) of normalized nonground support sets for
a (non-ground) DL-atom d( ~X) w.r.t. a DL-LiteA ontology O is complete, if for every
θ: ~X → C and S ∈ SuppO(d( ~Xθ)), some S′ ∈ S exists such that S = S′θ′, for some
extension θ′ : V → C of θ to V , where V = {X,Y, Z} is a set of distinct variables, such
that ~X ⊆ V .

Example 5.33. Reconsider the nonground support family S = {S1, S2, S3} from Ex-
ample 5.19 for the DL-atom DL[Male ] boy; Male](X). The support set S1 corresponds
to the normalized support sets {Maleboy(Y ),¬Male(Y )} and {Maleboy(Y ),Female(Y )},
S2 to {Maleboy(X)}, and S3 to {Male(X)}.

5.3.1 Determining Normalized Nonground Support Sets

Our technique for computing the normalized3 nonground support sets for DL-atoms over
DL-LiteA ontologies is based on TBox classification, which is one of the main ontology
reasoning tasks. This reasoning service computes complete information about the TBox
constraints specified at the conceptual level.

More formally, given a TBox T over a signature Σo, the TBox classification Clf (T )
determines all subsumption relations P v (¬)P ′ between concepts and roles P, P ′ in
Σo that are entailed by T . This can be exploited for our goal to compute nonground
support sets, more precisely a complete family S of such sets.

TBox classification is well studied in Description Logics [BCM+07]. For example,
[KKS13] discusses it for EL w.r.t. concept hierarchy, and [LSS13a] studies it for the
OWL 2 QL profile. Respective algorithms are thus suitable and also easily adapted for
the computation of (a complete family of) nonground support sets for a DL-atom d( ~X)
w.r.t. O. In principle, one can exploit Proposition 5.22 and resort to Td, i.e., compute the
classification Clf (Td), and determine nonground support sets of d( ~X) proceeding similar
as for computing minimal conflict sets [RRGM12]. To determine inconsistent support
sets, perfect rewriting [CLLR07] can be done over Pos(T ), i.e., the TBox obtained from
T by substituting all negated concepts (roles) ¬C (¬R, ¬∃R, ¬∃R−) with positive
replacements C (R, ∃R, ∃R−).

In practice (and as in our implementation), it can nonetheless be worthwhile to
compute Clf (T ) first, as it is reusable for all DL-atoms. The additional axioms in Td,

3In further exposition of our results in this section we deal only with normalized support sets, and
the word “normalized” is often omitted.
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Algorithm 5.4: SupRAnsSet: all deletion repair answer sets
Input: Π=〈T ∪ A,P〉
Output: flpRAS(Π)

(a) compute a complete set S of nongr. supp. sets for the DL-atoms in Π
(b) for Î ∈ AS(Π̂) do

Dp ← {d | ed ∈ Î}; Dn ∈ {d | ned ∈ Î}; SÎ
gr ← Gr(S, Î,A);

(c) if SÎ
gr(d) 6= ∅ for d ∈ Dp and every S ∈ SÎ

gr(d) for d ∈ Dn fulfills S ∩ A 6= ∅ then
(d) for all d ∈ Dp do
(e) if some S ∈ SÎ

gr(d) exists s.t. S ∩ A = ∅ then pick next d

else remove each S from SÎ
gr(d) s.t. S ∩ A ∩

⋃
d′∈Dn

SÎ
gr(d′) 6= ∅

(f) if SÎ
gr(d) = ∅ then pick next Î

end
(g) A′ ← A \

⋃
d′∈Dn

SÎ
gr(d′);

(h) if flpFND(Î , 〈T ∪ A′,P〉) then output Î|Π
end

end

i.e., those of form Pp v (¬)P (according to the update operators), are handled when
determining the nonground support sets for a particular DL-atom from Clf (T ).

Example 5.34. Consider the DL-atom d = DL[Male ] boy; Male](X) from Exam-
ple 5.17. For computing a complete family S of nonground support sets for d w.r.t.
O, we may refer to Td = T ∪ {Maleboy vMale} and its classification Clf (Td). Hence,
S1 = {Male(X)} and S2 = {Maleboy(X)} are the only unary nonground support sets of d.
Further nonground support sets are obtained by computing minimal conflict sets, yield-
ing {P (~Y ),¬P (~Y )} for each P ∈ C∪R, as well as {Maleboy(Y ),¬Male(Y )}, {Male(Y ),
Female(Y )}, and {Maleboy(Y ),Female(Y )}. However, since we are interested in com-
pleteness w.r.t. O and O is consistent, pairs not involving input assertions can be
dropped (as they will not have a match in A). We call the remaining two sets S3 and S4
respectively. Hence, S = {S1, S2, S3, S4} is a complete support family for d w.r.t. O.

5.4 Repair Computation Based on Complete Support
Families

Complete support families can be fruitfully exploited for the DL-atom evaluation only if
the support sets are small and easily computable. Luckily for DL-LiteA as we have shown
the support sets are of size at most 2, and their computation can be done efficiently.

Using support sets, we can completely eliminate the ontology access for the evaluation
of DL-atoms. In a naive approach, one precomputes all support sets for all ground DL-
atoms with respect to relevant ABoxes, and then uses them during the repair answer set
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computation. This does not scale in practice, since support sets may be computed that
are incoherent with all candidate repair answer sets.

An alternative is to fully interleave the support set computation with the search
for repair answer sets. Here we construct coherent ground support sets for each DL-
atom and interpretation on the fly. As the input to a DL-atom may change in different
interpretations, its support sets must be recomputed, however, since reuse may not be
possible; effective optimizations are not immediate.

A better solution, and the one that we exploit in this work, is to precompute support
sets on a nonground level, that is, schematic support sets, prior to repair computation.
Furthermore, in that we may leave the concrete ABox open; the support sets for a
DL-atom instance are then easily obtained by syntactic matching.

We are now ready to describe our optimized algorithm SupRAnsSet (see Algo-
rithm 5.4), which avoids multiple interface calls and merely needs to access the ontology
once. Given a (ground) DL-program Π for input, SupRAnsSet proceeds as follows.

We start (a) by computing a complete family S of nonground support sets for each
DL-atom. Afterwards the replacement program Π̂ is created and its answer sets are
computed one by one. Once an answer set Î of Π̂ is found (b), we first determine the
sets of DL-atoms Dp (resp. Dn) that are guessed true (resp. false) in Î. Next, for all
ground DL-atoms in Dp∪Dn, the function Gr(S, Î,A) instantiates S to relevant ground
support sets, i.e., that are coherent with Î and match with A ∪ Ad. We then check in
(c) for atoms in Dp (resp. Dn) without support (resp. input only support). If either is
the case, we skip to (b), the next model candidate, since no repair exists for the current
one. Otherwise, in a loop (d) over atoms in Dp—except for those supported input only
(e)—we remove support sets S that are conflicting w.r.t. Dn. Intuitively, this is the
case if S hinges on an assertion α ∈ A that also supports some atom d′ ∈ Dn (hence α
needs to be deleted; note that due to consistency of A, even inconsistent support of d′
leaves no choice). If this operation leaves the atom from Dp under consideration without
support (check at (f)), then no repair exists and the next model candidate is considered.
Otherwise (exiting the loop at (g)), a potential deletion repair A′ is obtained from A by
removing assertions that occur in any support set for some atom d′ ∈ Dn. An eventual
check (h) for foundedness (minimality) w.r.t. A′ determines whether a deletion repair
answer set has been found.

Example 5.35. Suppose {ea, neb}⊆ Î for the DL-atom a= DL[; hasParent](john, pat)
and the DL-atom b= DL[Male ] boy; Male](pat) from Example 4.1. Then, we get
SÎgr(a)= {{hasParent(john, pat)}} we reach the else part of Step (e) where nothing is
removed from SÎgr(a), since SÎgr(b) = {{Male(pat)}} and SÎgr(a) ∩ SÎgr(b) = ∅. Hence, at
Step (g) we must drop Male(pat) from A to make Î a deletion repair answer set.

As can be shown, algorithm SupRAnsSet correctly computes the deletion repair
answer sets of the input DL-program. For the completeness part, i.e., that all deletion
repair answer sets are indeed produced, the following proposition is crucial.
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Proposition 5.36. Given a DL-program Π, let Î be an answer set of Π̂ such that I = Î|Π
is an answer set of Π = 〈T ∪ A,P〉. If Î is a compatible set for Π′ = 〈T ∪ A′,P〉 where
A′ ⊇ A, then I is an answer set for Π′ = 〈T ∪ A′,P〉.
Proof. Assume that I is an answer set of Π = 〈O,P〉, where O = T ∪ A and that
Î is a compatible set for Π′ = 〈O′,P〉 where O′ = T ∪ A′ and A′ ⊃ A. Towards
contradiction, suppose I is not an answer set of Π. Hence, I = Î|Π is not a minimal
model of Π′I,Oflp = 〈T ∪A′,PI,Oflp 〉. That is, some I ′ ⊂ I exists such that I ′ |=O′ P I,Oflp . We
then obtain that also I ′ |=O PI,Oflp ; this contradicts that I is an answer set of Π. Indeed,
suppose that I ′ 6|=O PI,Oflp . Then some rule r ∈ PI,Oflp of form (2.2) is violated wrt. I ′

and O, i.e., (i) I ′ |=O bi for each 1 ≤ i ≤ k, (ii) I ′ 6|=O bj for each k < j ≤ m, and (iii)
I ′ 6|=O ah for each 1 ≤ h ≤ n. By monotonicity of I |=O a w.r.t. I and O, we conclude
I ′ |=O′ bi, I ′ 6|=O′ bj (as Î is a compatible set for both Π̂ and Π̂′), and I 6|=O bj , and
I ′ 6|=O′ ah. But then I ′ 6|=O

′ PI,Oflp , which is a contradiction. Hence, I ′ does not exist and
I is an answer set of Π′.

Armed with this result, we establish the correctness result.

Theorem 5.37. SupRAnsSet is sound and complete w.r.t. deletion repair answer sets.

Proof. Soundness. Suppose SupRAnsSet outputs I = Î|Π. We can get to (h) only if
Î is an answer set of Π̂; furthermore, by setting SÎgr to Gr(S, Î,A) in (b) and by the
further modifications, it is ensured at (h) that each DL-atom a ∈ Dp has some coherent
support set that matches with A′ (i.e., Gr(S, Î,A′)(a) 6= ∅), while no DL-atom a′ ∈ Dn

has such a support set. Thus from Proposition 5.28, it follows that Î is a compatible set
for Π′ = 〈T ∪ A′, P 〉; hence I |= Π′. Furthermore, as flpFND(Î , T ∪ A′, P ) succeeds, I
is a minimal model of Π′I,Oflp . Hence I is an answer set of Π′, and thus a deletion repair
answer set of Π.

Completeness. Suppose I is a deletion repair answer set. That is, for someA′ ⊆ A, we
have that I is an answer set of Π′ = 〈T ∪A′, P 〉. This implies Proposition 5.2 that Î is an
answer set of Π̂ and thus will be considered in (b), withDp andDn reflecting the (correct)
guess for I |=O′ a for each DL-atom a, where O′ = T ∪ A′. From Proposition 5.28
and completeness of S, we obtain that each a ∈ Dp has Gr(S, Î,A′)(a) 6= ∅ and each
a ∈ Dn has Gr(S, Î,A′)(a) = ∅. The initial SÎgr is such that Gr(S, Î,A′)(a) ⊆ SÎgr =
Gr(S, Î,A)(a) holds for each DL-atom a; in further steps, the algorithm removes all
support sets S ∈ Gr(S, Î,A)(a) for a ∈ Dp from SÎgr(a) such that such that S∩S′∩A 6= ∅
for some support set S′ ∈ Gr(S, Î,A)(a′) and a′ ∈ Dn, and removes all assertions in
S′ ∩ A from A. Importantly no removed S is in Gr(S, Î,A′)(a), since by the assertion
that T ∪A is consistent, |S′ ∩A| = 1 must hold. Thus step (g) will be reached, and the
variable A′ is assigned an ABox A′′ such that A′ ⊆ A′′ ⊆ A. Since Î is a compatible
set for Π′′ = 〈T ∪ A′′,P〉 and I is an answer set of Π′, by Proposition 5.36 I is also an
answer set of Π′′, and thus I is a minimal model of Π′′I,Oflp = 〈T ∪ A′′,PI,Oflp 〉. Hence, the
test flpFND(Î , T ∪A′,P) in step (h) (where A′ has value A′′) succeeds, and ÎΠ, i.e, I is
output.
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5.5 Support Sets for DL-atoms over EL Ontologies
The DL-atoms accessing EL ontologies can have arbitrarily large support sets of no par-
ticular structure. Moreover, there can be infinitely many such support sets in general.
While for acyclic TBoxes (which is a property often met in practice) the latter is ex-
cluded, complete support families can anyway be very large and constructing them as
well as managing might be impractical. Despite this observation, we still make use of
support families, but omit the requirement for their completeness.

We now provide a method for support set construction that like in the DL-LiteA case
allows us to just work with ontology predicates when constructing nonground support
sets. As negation is not available nor expressible in EL (⊥ is unavailable), here we
restrict our attention to DL-atoms DL[λ; Q](~c) with positive updates, i.e. ◦ ∈ {]} for
all P ◦ p ∈ λ.

For construction of support sets for DL-atoms over EL ontologies, it is natural to
exploit (conjunctive) query answering methods in EL (e.g., [Ros07, LTW08, KLT+10,
SMH12]). Most of them are based on rewriting the query and the TBox into a datalog
program over the ABox; to construct guard functions that use a datalog rewriting of the
TBox seems thus suggestive.

Suppose we are given a DL-program Π = 〈O,P〉, where O = 〈T ,A〉 is an EL ontology
and a DL-atom d( ~X) = DL[λ; Q]( ~X). Our method for constructing nonground support
sets for d( ~X) consists of the following three steps.

Step 1. DL-query Rewriting over the TBox. The first step exploits the rewriting
of the DL-query Q of d( ~X) over the TBox Td = T ∪ {Pp v P | P ] p ∈ λ} into a
set of datalog rules, see e.g. Figure 5.2. At the preprocessing stage, the normalization
technique is first applied to the TBox Td. This technique restricts the syntactic form
of TBoxes by decomposing complex axioms into syntactically simpler ones. For this
purpose, a minimal required set of fresh concept symbols is introduced. Given a TBox
Td, its normalized form Tdnorm is computed in linear time4 [BBL05]. We then rewrite the
part of the TBox, relevant for the query at hand, into a datalog program ProgQ,Tdnorm

using the translation given in Table 5.1, which is a variant of [PUMH10,ZPR09]. When
rewriting axioms of the form A1 v ∃R.A2 (fourth axiom in Table 5.1) we introduce fresh
constants (oA2) to represent “unknown” objects. A similar rewriting is exploited in the
REQUIEM system (where function symbols are used instead of fresh constants). As a
result we obtain:

Lemma 5.38. For any data part, i.e., ABox A over sig(Td), and any ground assertion
Q(~c), it holds that ProgQ,Tdnorm

∪ A |= Q(~c) iff Tdnorm ∪ A |= Q(~c) iff Td ∪ A |= Q(~c).

Step 2. Query Unfolding. The second step proceeds with the standard unfolding
of the rules of ProgQ,Tdnorm

w.r.t. the target DL-query Q. We start with the rule that
4Linear complexity results are obtained under the standard assumption in DLs that each of the

atomic concepts is of constant size, i.e., the length of a binary string representing an atomic concept
does not depend on the particular knowledge base.
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Axiom Datalog rule
A1 v A2 A2(X)← A1(X)

A1 uA2 v A3 A3(X)← A1(X), A2(X)
∃R.A2 v A1 A2(X)← R(X,Y ), A3(Y )
A1 v ∃R.A2 R(X, oA2)← A1(X)

A2(oA2)← A1(X)

Table 5.1: EL TBox rewriting

ProgQ,Tdnorm
=



(1′) Staff (X)← Blacklisted(X);
(2′) C∃hasA.A(X)← hasAction(X ,Y ),Action(Y );
(3′) C∃hasS.St(X)← hasSubject(X ,Y ),Staff (Y );
(4′) C∃hasT.P(X)← hasTarget(X ,Y ),Project(Y );
(5′) C∃hasA.Au∃hasS.St(X)← C∃hasA.A(X),C∃hasS.St(X);
(6′) StaffRequest(X)← C∃hasA.Au∃hasS.St(X),C∃hasT.P(X);
(7′) Project(X)← Projectprojfile(X).


Figure 5.2: DL-query rewriting for DL[Project ] projfile; StaffRequest](X) over Tdnorm

has Q in the head and expand its body using other rules of the program ProgQ,Tdnorm
.

By applying this procedure exhaustively, we get a number of rules which correspond to
the rewritings of the query Q over Tdnorm. Note that it is not always possible to obtain
all of the rewritings effectively, since in general there might be infinitely many of them
(exponentially many for acyclic T ). We discuss possible restrictions in the next section.

Step 3. Support Set Extraction. The last step is devoted to the extraction of
nonground support sets from the rewritings computed in Step 2. We select those that
contain only predicates from Td and obtain a set of rules r of the form

Q( ~X)← P1(~Y1), . . . Pk(~Yk), Pk+1pk+1
(~Yk+1), . . . , Pnpn

(~Yn), (5.1)
where each Pi is a native ontology predicate if 1 ≤ i ≤ k, and a predicate mirroring
lp-input of d otherwise. From such rules r, we construct pairs S = 〈N, γ〉, where

• N = {pi(~Yi) |Pipi
(~Yi) ∈ B(r), k + 1 ≤ i ≤ n};

• γ : C| ~X| × grndC(N) → {0, 1} is such that γ(~c,Ngr) = 1 only if Q(~c) follows from
r ∪ A ∪ {Pipi

(~t) ∈ Ad | pi(~t) ∈ Ngr}.

Then the following holds.

Proposition 5.39. Let d( ~X) = DL[λ; Q]( ~X) be a DL-atom of a program Π = 〈O,P〉,
where O = 〈T ,A〉, is an EL ontology. Every set S constructed following Step 1-3 is a
nonground support set for d( ~X).
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Proof. Towards a contradiction assume that S is not a nonground support set for d( ~X).
This means that either (1) N is not a set of nonground predicates from λ or (2) the
function γ of Definition 5.15 is not correct.

The predicates of the form PP in the TBox Td are obtained from λ of d( ~X) by
construction and clearly so are the predicates Pjpj

of each rule r. Thus the predicates
in N are indeed nonground predicates from the input signature of d( ~X), therefore (1)
can not hold.

Assume that (2) is true, that is the function γ is not correct, i.e. some ~c ∈ C|X|,
and Ngr ∈ grndC(N) exist, such that γ(~c,Ngr) = 1, but Ngr is not a positive ground
support set for d(~c). The latter means that some interpretation I ′ ⊇ Ngr exists such that
I ′ 6|=O d(~c). Therefore, by Proposition 5.22 we have thatOI′d 6|= Q(~c), i.e. Td∪A∪{Pp(~t) ∈
Ad | p(~t) ∈ I ′} 6|= Q(~c). Observe that by Step 3 of our algorithm for every rule r, that
contains only predicates from Td and that is obtained from standard rules unfolding
of ProgQ,Tdnorm

w.r.t. Q, it holds that r ∪ A ∪ {Pipi
(~t) ∈ Ad | pi(~t) ∈ Ngr} |= Q(~c).

However, then we also have that ProgQ,Tdnorm
∪A∪{Pipi

(~t) ∈ Ad | pi(~t) ∈ Ngr} |= Q(~c),
and thus by Lemma 5.38 and monotonicity of O, it holds that Td ∪ A ∪ {Pp(~t) ∈ Ad |
p(~t) ∈ I ′} |= Q(~c), leading to a contradiction. Therefore, γ is correct, and S = 〈N, γ〉 is
indeed a nonground support set for d( ~X).

We now illustrate the computation of nonground support sets for DL-atoms over EL
ontologies on the following example.

Example 5.40. Consider a DL-atom DL[Project ] projfile; StaffRequest](X) accessing
an EL ontology O = 〈T ,A〉 from Figure 5.1. The datalog rewriting for d computed at
Step 1 is given in Figure 5.2. In Step 2 we obtain the following query unfoldings for
StaffRequest:

(1) StaffRequest(X)← StaffRequest(X);
(2) StaffRequest(X)← hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),

Staff (Y ′), hasTarget(X,Y ′′),Projectprojfile(Y ′′);
(3) StaffRequest(X)← hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),

Staff (Y ′), hasTarget(X,Y ′′),Project(Y ′′);
(4) StaffRequest(X)← hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),

Blacklisted(Y ′), hasTarget(X,Y ′′),Project(Y ′′);
(5) StaffRequest(X)← hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),

Blacklisted(Y ′), hasTarget(X,Y ′′),Projectprojfile(Y ′′).

Finally, at Step 3 we extract support sets from the unfoldings (1)-(5). For example,
support sets S1 and S2 as in Example 5.16 are obtained from the unfoldings (1) and (2)
respectively. From the rule (3) we get the support set S3 = {∅, γ}, where γ : C × {∅} →
{0, 1} is such that γ(c, {∅}) = 1 only if the ABox A contains the following assertions:
hasAction(c, c1 ),Action(c1 ), hasSubject(c, c2 ),Staff (c2 ), hasTarget(c, c3 ),Project(c3 ),
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where c1 , c2 , c3 are arbitrary constants from C. From the rules (4) and (5) the support
sets are similarly determined.

Like in the DL-LiteA case when working with support sets for DL-atoms over EL
DL, we can restrict ourselves to the ontology predicates and operate only on them.
More specifically, rules of the form (5.1) fully reflect nonground support sets as given in
Definition 5.15, and ground instantiations of such rules over constants from C implicitly
correspond to ground support sets. We, therefore, present EL support sets similar as it
is done in Definitions 5.24 and 5.30 for DL-LiteA.

Definition 5.41 (Normalized Ground EL Support Sets). Given a ground DL-atom
d = DL[λ; Q](~t), a set S of assertions from A ∪ Ad is a normalized ground EL support
set for d w.r.t. an ontology O = 〈T ,A〉 in EL, if S ∪ Td |= Q(~t).

By SuppELO (d) we denote the family of all normalized ground EL support sets.

Example 5.42. In Example 5.9, the support set S = {projfile(p1 )} for the DL-atom
DL[Project ] projfile; StaffRequest](r1 ) corresponds to the normalized support set S′ =
{hasAction(r1 , read), hasTarget(r1 , p1 ),Projectprojfile(p1 ), hasSubject(r1 , john),
Staff (john),Action(read)}.

Definition 5.43 (Normalized Nonground EL Support Sets). Suppose that d( ~X) =
DL[λ; Q]( ~X) is a DL-atom and T is an EL TBox. Any unfolding of the DL-query Q( ~X)
in ProgQ,Tdnorm, which contains only atoms over predicates from sig(Td) is a normalized
nonground EL support set for d w.r.t. T .

We denote by SuppELO (d) a set of all normalized nonground EL support sets for d.

Like in the DL-LiteA case we often omit the superscript EL in SuppELO (d) (resp. in
SuppELO (d)), if it is clear from the context that O is in EL.

Example 5.44. The nonground support sets S1 and S2 from Example 5.16 for the DL-
atom DL[Project ] projfile; StaffRequest](X) correspond to the normalized support sets
S′1 = {StaffRequest(X)} and S′2 = {hasAction(X ,Y1 ),Action(Y1), hasSubject(X,Y2),
Staff (Y2), hasTarget(X,Y3),Project(Y3)} respectively.

Furthermore, the support set S3 from Example 5.40 maps to the following normalized
support set: S′3 = {hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),Project(Y ′′),
Staff (Y ′), hasTarget(X,Y ′′)}.

From every normalized support set one can easily reconstruct a support set in the
sense of generic Definition 5.15. When referring to support sets we often mean normalized
support sets, i.e. DL-query unfoldings.

According to novel results [HLSWar], complete support families can be computed
for large classes of ontologies. However, in general there might be exponentially many
unfoldings produced at Step 2 (see below). Thus, to cope with exponentiality, one might
often want to apply reasonable restrictions on the support families.
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5.5.1 Partial Support Families

In this section we discuss restrictions on the size, structure and number of support
sets, which are of interest for practical applications. We provide methods for effective
computation of restricted support families and analyze conditions put on the TBox,
under which the partial support family is complete.

In general, unlike for the DL-LiteA case, due to possible cyclic dependencies of the
form ∃r.C v C allowed in EL, the explanations of an instance query can be of infinite
size and so are the support sets for DL-atoms accessing an EL ontology. An analysis of
a vast number of ontologies has revealed that in many realistic cases they do not contain
(or imply) cyclic axioms [GTH06]; we thus assume that the TBox of the ontology in a
given DL-program is acyclic (i.e., does not entail inclusion axioms of form ∃r.C v C).
However, even under this restriction support sets can be large in general.

Clearly, any support set S′ ⊇ S is a support set for d, if S is a support set for d.
Therefore, when estimating the maximal support set size for a given DL-atom, we always
consider only subset-minimal support sets.

Definition 5.45. Given a DL-atom DL[λ; Q]( ~X) and an ontology O, the maximal
support set size maxsup(d) for d is the size of the largest ⊆-minimal support set for d
over O.

Example 5.46. Consider the TBox T , which contains the following axioms:

(1) ∃r.B0 u ∃s.B0 v B1
(2) ∃r.B1 u ∃s.B1 v B2

. . .

(n) ∃r.Bn−1 u ∃s.Bn−1 v Bn
For the DL-atom d1 = DL[λ; B1](X1), the maximal support set size is 4, which is
witnessed by

S1 = {r(X1, X2), B0(X2), s(X1, X3), B0(X3)}.

For the DL-atom d2 = DL[λ; B2](X1), it holds that maxsup(d1) = 10.

S2 = {r(X1, X2), r(X2, X3), B0(X3), s(X2, X4), B0(X4),
s(X1, X5), r(X5, X6), B0(X6), s(X5, X7), B0(X7)}

One can verify that the maximal support set size for dn = DL[λ; Bn](X) is calculated
as follows:

maxsup(dn) = maxsup(dn−1)× 2 + 2.

Note that the maximal support set for dn involves n + 3 predicates. Therefore, if the
TBox contains only axioms of the form from above and |sig(T )|= k, i.e. the TBox is
over the signature of k predicates, we obtain that the lower bound for the worst case
support set size for d is 2k−1 + 2, i.e. O(2k), which is single exponential in the number
of predicates in T .
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It is difficult to control the size of support sets over an EL TBox in general, and it is
not clear which TBox criteria guarantee that support sets for DL-atoms accessing a given
ontology are of a limited size. These challenges motivate us to investigate reasonable
restrictions on support families. In particular, we are interested in the following problem:
provided that the computation of all support sets is computationally expensive, which
exactly support sets should be computed and which methods should be exploited for
that. Another issue that we investigate in this chapter is analysis of criteria on the
TBox that ensure effective construction of complete support families.

A natural approach for computing a partial support family is the restriction of the
target support set size. We may put a certain bound k on the size of support sets
that we want to compute for a given DL-atom d = DL[λ; Q](~t) and proceed using, for
example, limited program unfolding. That is we aim at controlling the rule unfoldings
of the program ProgQ,Tdnorm

, constructed in the Step 1 of our algorithm for support
set computation. When a certain unfolding branch reaches the predefined size limit k,
we stop its further expansion and choose a different branch. Similarly, we can compute
a limited number k of support sets by stopping the rules unfolding of the program
ProgQ,Tdnorm

once the k-th support set is identified.
An alternative approach for partial support family computation, and the one we

exploit in what follows, is based on the TBox approximation techniques.

5.6 TBox Approximation Techniques for Partial Support
Family Construction

Approximation of DL ontologies specified in a source language D using a less expressive
target language D′ is a well-known and important optimization technique in ontology
management. Several approaches have been proposed in this regard. They can be
divided into two major groups: syntactic and semantic approaches. Methods from the
former group, e.g. [TRKH08,WGS05] focus on the syntactic form of the axioms of the
original ontology, they appropriately rewrite the axioms not complying with the syntax
of the target ontology language. Syntactic approaches are rather effective in general,
but they can produce unsound answers [PT07]. Methods from the latter group focus
on the entailments from the original ontology, rather then on its syntactic structure.
They aim at preserving the maximal amount of these entailments by transforming the
original ontology into the target language. Therefore, in general they are sound, but
might require more computational power [CMR+14].

Ontology approximation techniques are of relevance for our task of computing partial
support families. More specifically, given an EL ontology one can approximate its TBox
to DL-LiteA DL, and construct complete support families for DL-atoms with respect to
the latter, which is efficiently possible. If the approximation is sound then as a result
we obtain partial support families over the original EL ontology in an effective way.

Most of the works on ontology approximation focused on rewriting ontologies over
some expressive language into simpler DLs (often lightweight ones). E.g. the work
[CFR+14] deals with rewritings of SHOIQ to EL, the work [CDR98] proposes a trans-
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formation approach from ALCFI knowledge bases to ALC. In our setting, however,
we already have a TBox in the lightweight DL EL, and we aim at approximating it to
DL-LiteA, which has better properties for our particular problem of support set com-
putation. Therefore, for the purpose of approximation in our setting, exploiting logical
difference between EL TBoxes [KLWW12] seems suggestive.

The idea behind the logical difference is to decide whether two ontologies give the
same answers to queries over a given vocabulary (called signature) Σ, and compute
a succinct representation of the difference if it is not empty. Typical queries include
subsumption queries between concepts, instance and conjunctive queries. For our setting
of computing nonground support sets for a given DL-atom d, the concept subsumption
queries are of a particular interest. More specifically, we exploit the following idea.
After elimination of axioms that do not fall into DL-LiteA DL from the EL TBox Td we
obtain a simplified TBox T ′d . We then set the signature Σ =sig(Ad ∪ A ∪ Q), where A
is an ABox of the original ontology, and Q is a DL-query. We then compute the logical
difference between T and T ′ w.r.t. Σ. From the succinct representation of this difference
we extract a set of axioms A that falls into the DL-LiteA fragment, and then we add
A to the TBox T ′. In such a way we reintroduce the redundantly eliminated axioms,
and thus obtain an approximation T ′ of T . By restricting the relevant vocabulary to Σ
we minimize the computation of the logical difference only to those parts of the TBox
that actually influence support sets for d. This approximation approach is particularly
attractive, as the logical difference between EL-terminologies was intensively studied in
many works, e.g. [GHKS07,LWW07,KLWW12], and available effective algorithms can
be reused for our needs.
EL-terminologies are restricted forms of TBoxes, defined as follows.

Definition 5.47. An EL-terminology is a general EL TBox T , satisfying the following
conditions:

(1) T consists of concept equivalences of the form A ≡ C and A v C, where A is
atomic and C is an arbitrary EL concept;

(2) No concept name occurs more then once on the left hand side of axioms in T .

To make use of the available tractable algorithms for computing logical difference
we restrict ourselves in this section to EL-terminologies, that is we assume that the
ontology TBox satisfies the conditions (1) and (2) from above. Under the restriction to
EL-terminologies logical difference w.r.t. a given signature becomes tractable. To exploit
the approach formally, let us first recall some of the existing notions in this context.

Definition 5.48 (cf. [KLWW12]). The Σ-concept difference between EL-terminologies
T1 and T2 is the set cDiffΣ(T1, T2) of all EL-inclusions α over Σ, such that T1 |= α and
T2 6|= α.

Example 5.49. Let T1 = {B v E;E v ∃r.>;C v A u B} and T2 = {C v A;D v
B;D ≡ C} be two terminologies. It is not difficult to verify that cDiffΣ(T1, T2) = ∅ for
Σ = {A,B,C}, while cDiffΣ′(T1, T2) = {B v ∃r.>} for Σ′ = {B, r}.
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If two EL-terminologies entail the same concept subsumptions built over the pred-
icates from the given signature, then they may be considered as logically equivalent
with respect to the relevant information regardless of their syntactic or structural form.
Formally, such equivalent terminologies are defined as follows.

Definition 5.50 (cf. [KLWW12]). The terminologies T1 and T2 are Σ-concept insepa-
rable, in symbols T1 ≡CΣ T2, if cDiffΣ(T1, T2) = cDiffΣ(T2, T1) = ∅

Example 5.51. Reconsider Example 5.49. The terminologies T1 and T2 are Σ-concept-
inseparable for Σ = {A,B,C}.

The logical difference in terms of instance queries is defined as follows.

Definition 5.52 (cf. [KLWW12]). The Σ-instance difference between terminologies T1
and T2 is the set iDiffΣ(T1, T2) of pairs of the form (A, α), where A is a Σ-ABox and α a
Σ-instance assertion, such that T1 ∪A |= α and T2 ∪A 6|= α. We say that T1 and T2 are
Σ-instance inseparable, in symbols T1 ≡iΣ T2 if iDiffΣ(T1, T2) = iDiffΣ(T2, T1) = ∅.

It is not difficult to verify that T1 ≡iΣ T2 implies that T1 ≡CΣ T2 holds. The other
direction is not that obvious; however, it has also been proven in [LW10].

Theorem 5.53 (cf. [LW10]). For any EL-terminologies T1 and T2 and signature Σ, it
holds that T1 ≡CΣ T2 iff T1 ≡iΣ T2.

Before showing that a DL-atom has the same set of support sets under Σ-concept
inseparable terminologies, we first prove the following preliminary lemma.

Lemma 5.54. Let d = DL[λ; Q](~t) be a DL-atom, let O = 〈T1,A〉 be an EL on-
tology, and let T2 be a TBox. Then if T1 and T2 are Σ-concept inseparable, where
Σ =sig(A)∪{Q} ∪ {P | P ◦ p ∈ λ} then T1d and T2d are Σ′-concept inseparable w.r.t.
Σ′ = Σ∪ sig(Ad).

Proof. Towards a contradiction, assume that T1d and T2d are not Σ′-concept inseparable.
W.l.o.g. suppose that T1d |= P1 v P2, but T2d 6|= P1 v P2, where P1, P2 ∈ Σ′. Observe
that the signatures Σ and Σ′ differ only on predicates Pp, such that P ◦ p occurs in λ
of d. Furthermore, the TBox T ′ = T1d\T1 = T2d\T2 consists only of simple inclusions
Pp v P , such that Pp does not occur in T1 or T2.

There are two possibilities: either P1 ∈ Σ or P1 ∈ Σ′\Σ.

(i) Suppose that P1 ∈ Σ. It holds that P2 ∈ Σ, as otherwise P2 6∈ Σ′, contradicting
our assumption. Due to Σ-concept inseparability of T1 and T2 we have that, if
T1 |= P1 v P2 then it must hold that T2 |= P1 v P2. However, then T2d |= P1 v P2
due to monotonicity, which leads to a contradiction.
Therefore, we have that T1 6|= P1 v P2, but T1d |= P1 v P2. There are two
possibilities: either T ′ |= P1 v P2 or T ′ 6|= P1 v P2. In the former case we get
that P1 6∈ Σ, i.e. contradiction. In the latter case it must hold that T1 |= P1 v P
for some concept P and T ′ |= P v P2, which means that P ∈ sig(Ad), and thus
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P ∈ Σ \ Σ′, but then T1 |= P1 v P can not hold. Therefore, it must be the case
that T1 |= P1 v P2, and hence due to Σ-concept inseparability of T1 and T2, we
have that T2 |= P1 v P2, from which by monotonicity T2d |= P1 v P2 follows.

(ii) Assume now that P1 ∈ Σ′ \Σ. Then P1 must be of the form Pp, where P ◦p occurs
in λ of d. We have that either P1 v P2 ∈ T ′ or P1 v P2 6∈ T ′. The former case
immediately leads to a contradiction, since T ′ ⊆ Td2. In the latter case we have
that T ′ |= P1 v P and T1 |= P v P2. As T ′ |= P1 v P , we have that P ∈ Σ;
moreover, P2 ∈ Σ. Hence, due to Σ-concept inseparability of T1 and T2, it must
be true that T2 |= P v P2, and consequently T2d |= P v P2.

Armed with the above results, we now establish the following:

Proposition 5.55. Suppose that d = DL[λ; Q]( ~X) is a DL-atom, and Σ = sig(A ∪
Ad} ∪ {Q} ∪ {P | P ◦ p ∈ λ}), where Ad is the set of all input assertions for d. If
EL-terminologies T1 and T2 are Σ-concept inseparable, then complete nonground support
families for d w.r.t. O1 = 〈T1,A〉 and O2 = 〈T2,A〉 coincide.

Proof. Towards a contradiction, suppose that d has different complete nonground sup-
port families w.r.t. O1 and O2. Let us call them ST1 and ST2 respectively. Assume
w.l.o.g. that there is some nonground support set S, such that S ∈ ST1 , but S 6∈ ST2 .

Since S is not in ST2 , it holds that there exist some ~c and Ngr, such that γ(~c,Ngr) = 1,
but Ngr is not a ground support set for d(~c) with respect to O2. Therefore, there exists
an interpretation I ⊇ Ngr, such that I 6|=O2 d(~c), but I |=O1 d(~c). Applying the shifting
lemma, we have T1d ∪A ∪ {Pp(~t) ∈ Ad | p(~t) ∈ I} |= Q(~c), and T2d ∪A ∪ {Pp(~t) ∈ Ad |
p(~t) ∈ I} 6|= Q(~c).

By Lemma 5.54 we know that T2d and T1d are Σ-concept inseparable. Thus, by
Theorem 5.53 they must be Σ-instance inseparable as well. By definition of Σ-instance
inseparability, we have that for all Σ-ABoxes A′ and Σ-assertions α, such that T1d∪A′ |=
α, it holds that T2d∪A′ |= α. Hence, it must be true that T2d∪A∪{Pp(~t) ∈ Ad | p(~t) ∈
I} |= Q(~c), and therefore, I |=O2 d, leading to a contradiction. This shows that S is a
nonground support set for d w.r.t. O2, which proves the statement.

It has been shown in [KLWW12], that every inclusion C v D in the Σ-concept
difference of T1 and T2 “contains” a basic witness inclusion that has a concept name
either on the left or on the right hand side. More formally,

Theorem 5.56 (cf. [KLWW12]). Let T1 and T2 be EL-terminologies and Σ a signature.
If φ ∈ cDiffΣ(T1, T2), then either C v A or A v D is a member of cDiffΣ(T1, T2), where
A ∈ sig(φ) is a concept name and C and D are EL-concepts occurring in φ. The sets of
such inclusions are called left and right witnesses and denoted as cWTnrhsΣ (T1, T2) and
cWTnlhsΣ (T1, T2) respectively.

The logical difference between two EL-terminologies in its compact representation
consists only of inclusions which have an atomic concept name either on the left or on
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the right hand side. Among them there might be some inclusions with atomic concepts
on both sides or role restrictions of the form ∃r.>, which fall into our target language
of DL-LiteA DL. This succinct representation of the logical difference is very beneficial
for our needs, as it ensures that for some TBoxes the simplification of the EL axioms to
DL-LiteA can be expected.

To sum up, our approach of computing support families, for which each support set
is of a bounded size is as follows: Given a DL-atom d = DL[λ; Q]( ~X) and an ontology
O = 〈T ,A〉, where T is an EL-terminology,

(1). Construct the TBox Td;
(2). Construct a simplified TBox Tsimp by removing from Td all axioms of the form

C v D, where C or D is a concept not belonging to DL-LiteA language;
(3). Compute right-hand side and left-hand side witnesses RH = cWTnrhsΣ (Td, Tsimp)

and LH = cWTnlhsΣ (Td, Tsimp) between Td and Tsimp, where Σ = sig(A) ∪{Q}∪{P |
P ◦ p ∈ λ};

(4). Obtain the TBox T ′simp by adding to the TBox Td all witnesses of the form A v B,
where either (i) A and B are atomic, or A resp. B is a role restriction of the form
∃r.>;

(5). Compute a complete support family S for d over T ′simp. The family S is a partial
support family for d over Td.

If in (3) we get that RH and LH are empty or they contain only inclusions falling into
the DL-LiteA language, then by the results of Proposition 5.55 the computed support
family is guaranteed to be complete.

5.7 EL TBox Restrictions Ensuring Bounded Support
Families

It is a relevant and an interesting quest to decide what are the syntactic conditions
that ensure that maximal support set size for a given DL-atom is bounded by a certain
constant n. Similarly, an important issue is to estimate the number of support sets in
the smallest complete support family. In what follows we analyze these problems.

5.7.1 Support Set Size

To start with, recall from [KLWW12], that an atomic concept A is primitive in T , if it
does not occur on the left-hand side of axioms in T . Moreover, A is pseudo-primitive, if
it is either primitive or occurs on the left hand side of axioms of the form A v C, where
C is an arbitrary EL concept.

Proposition 5.57. Let d = DL[λ; Q](~t) be a DL-atom, and let T be an EL-terminology.
Then if Q is pseudo-primitive in T , then maxsup(d) = 1.
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Proof. The proof of this proposition is based on the following theorem [KLWW12].

Theorem 5.58. Let T be a normalized EL-terminology, and let A be a concept name.
Assume that T |= D v A, where D =

d
1≤i≤nAi u

d
1≤j≤m ∃rj .Cj and A is a pseudo-

primitive concept. Then some 1 ≤ i ≤ n exists, such that T |= Ai v A, where Ai is
atomic.

Intuitively, the theorem states that regardless of how complex the expression D in
the inclusion D v A is, if A is pseudo primitive and T |= D v A, then there is always
an atomic conjunct A′ involved in D, such that T |= A′ v A. This essentially means
that all ⊆-minimal support sets for A are then unary, which proves the statement.

Proposition 5.57 puts some restrictions on the structure of the TBox (it must be an
EL-terminology) as well as on the DL-query Q for a DL-atom d. It exploits a specific
case, in which the support set size bound is 1. For providing more liberal syntactic
conditions on T that ensure a certain bound n on the size of support sets, we use the
notion of an ontology hypergraph [NBM13,ELW13].

Ontology hypergraphs have been widely studied for extracting reachability based
modules of ontologies [NBM13], determining concept difference between EL terminolo-
gies [ELW13]), efficient reasoning [LSS13a]in OWL 2 QL and other important tasks.

First let us recall the notion of a directed hypergraph, which is a natural generaliza-
tion of the concept of a directed graph, first proposed in [ADS83] to represent functional
dependencies in relational data base schemata. Directed hypergraphs are often used to
model general types of functional relations, such as many-to-one (one-to-many) relations.

Definition 5.59. A directed hypergraph is a tuple G = (V, E), where E is a set of
directed hyperedges of the form e = (H,H ′), such that H,H ′ ⊆ V are nonempty sets
called hypernodes.

Given a hyperedge e = (H,H ′), we call H the tail of e, and H ′ the head of e, denoted
by tail(e) and head(e) respectively. In this work we restrict ourselves to hypergraphs,
which contain only hypernodes H, such that |H| ≤ 2. We call a hypernode a singleton,
if |H| = 1, and a binary hypernode, if |H| = 2.

We now recall the definition of an ontology hypergraph for DL EL introduced in
[ELW13].

Definition 5.60 (cf. [ELW13]). Let T be an EL TBox in a normal form, and let Σ ⊆
C ∪R. The ontology hypergraph GΣ

T of T is a directed hypergraph GΣ
T = (V, E) defined

as follows:
V = {xA |A ∈ C ∩ (Σ ∩ sig(T ))} ∪ {xr | r ∈ R ∩ (Σ ∩ sig(T ))} ∪ {x>}

E = {({xA}, {xB}) |A v B ∈ T , 1 ≤ i ≤ n}
∪ {({xA}, {xr, xY }) |A v ∃r.Y ∈ T , Y ∈ C ∪ {>}}
∪ {({xr, xY }, {xA}) | ∃r.Y v A ∈ T , Y ∈ C ∪ {>}}
∪ {({xB1 , xB2}, {xA}) |B1 uB2 v A ∈ T }

116



xr3 xA3 xr2 xA2

xr1 xA1 xC2

xC1

xD xr4

xA4

Figure 5.3: Hypergraph GΣ
T

A node of the form {x, y} in a hypergraph corresponds to an unordered pair x, y.
Thus {x, y} and {y, x} refer to the same node.

Example 5.61. Consider the following TBox in a normal form:

T =


(1) ∃r1 .A1 v C1 (4) C1 u C2 v D
(2) ∃r2 .A2 v C2 (5) A3 v A2
(3) ∃r3 .A3 v A1 (6) D v ∃r4 .A4


Suppose that Σ=sig(T ). The ontology hypergraph GΣ

T is depicted in Figure 5.3.

We now define the notion of an incoming path to a singleton node in an ontology
hypergraph, which is a natural generalization of a path in a standard graph.

Definition 5.62. Suppose that T is an EL TBox in a normal form, GΣ
T = (V, E) is an

ontology hypergraph, and xQ ∈ V is a singleton node occurring in GΣ
T . Then an incoming

path to xQ is a sequence path = 〈e1, e2, . . . , en〉 of hyperedges of GΣ
T , such that:

• head(ei) 6= head(ei′) and tail(ei) 6= tail(ei′) for all pairs ei, ei′ , where i 6= i′,
• head(en) = {xQ},
• for every ei, where i < n one of the following holds:

– tail(ei) = {xP1}, head(ei) = {xP2}, and either tail(ej) = {xP2} or tail(ej) =
{xP2 , xP3};

– tail(ei) = {xP1}, head(ei) = {xP2 , xP3}, and tail(ej) = {xP2 , xP3};
– tail(ei) = {xP1 , xP2}, head(ei) = {xP3}, and either tail(ej) = {xP3} or

tail(ej) = {xP3 , xP4},
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where Pk ∈ Σ, and j is some index, such that i < j ≤ n.

Intuitively, hyperedges in an ontology hypergraph GΣ
T model inclusion relations be-

tween (complex) concepts over the signature Σ in the TBox T . Consequently, an incom-
ing path to a singleton node xC in GΣ

T models a chain of inclusions that logically follow
from T , such that C is the most right element of the chain.

We now demonstrate this observation by the following example.

Example 5.63. Let us look at the ontology hypergraph GΣ
T depicted in Figure 5.3. As

an example of an incoming path to xC1 in GΣ
T consider the following sequence of edges:

path1 = 〈({xr3 , xA3}, xA1), ({xr1 , xA1}, xC1)〉.

The path path1 reflects inclusions:

• ∃r1.A1 v C1;
• ∃r1.(∃r3.A3) v C1.

For a singleton node xD we have that an incoming path in GΣ
T to xD is as follows:

path2 = 〈({xr3 , xA3}, xA1), ({xr1 , xA1}, xC1), ({xr2 , xA2}, xC2), ({xC1 , xC2}, xD)〉.

The following set of inclusions can be extracted from path2:

• C1 u C2 v D;

• ∃r2.A2 u C1 v D;

• ∃r2.A2 u ∃r1.A1 v D;

• ∃r2.A2 u ∃r1.(∃r3.A3) v D.

We now introduce our novel notion of a support hypergraph for a DL-atom.

Definition 5.64. A support hypergraph GΣ
T ,sup(d) for a DL-atom d = DL[λ; Q](~t) over

an ontology O = 〈T ,A〉 is a hypergraph constructed in the following way:

• build an ontology hypergraph GΣ
Td
, where Σ = sig(A ∪Ad) ∪ {Q};

• leave nodes and edges participating in incoming paths to xQ, and remove all other
nodes and edges;

• for all xC in the obtained graph, such that C 6∈ Σ check if there are any incoming
paths to xC . If there are no such paths, then remove xC from the graph together
with the edges in which xC participates. If there are incoming paths to xC , then
check whether at least one of the incoming paths contains a hypernode N , such
that for all xP ∈ N , it holds that P ∈ Σ; if this is the case, then leave the node
xC , otherwise remove it with its corresponding edges.
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xr3 xA3 xr2 xA2

xr1 xA1 xC2

xC1

xD

xAp3

Figure 5.4: Support hypergraph GΣ
T ,sup(d) from Example 5.65

Let us illustrate the notion of a support hypergraph on the following example:

Example 5.65. Let the TBox T from Example 5.61 be accessed by the DL-atom d =
DL[A3 ] p3; D]( ~X). The TBox Td then contains axioms from T and the inclusion
A3p3 v A3 mimicking the update of d. The support graph GΣ

T ,sup(d) for d with Σ = sig(Td)
is presented in Figure 5.4. The edge ({xD}, {xr4 , xA4}) is not present in GΣ

T ,sup(d), since
it does not lie on the incoming path to xD. The node xD is marked with a blue color,
to highlight its correspondence to the DL-query of d.

The support graph GΣ
T ,sup(d) = (V, E) for a DL-atom d = DL[λ; Q](X) contains all

incoming paths to xQ, which start from nodes corresponding to predicates in A∪Ad by
construction. Therefore, the graph GΣ

T ,sup(d) reflects all inclusions with Q on the right-
hand side and predicates over Ad ∪ A on the left hand-side that are entailed from Td.
Hence, by traversing edges of every incoming path path to xQ in GΣ

T ,sup(d) = (V, E) we
can construct all query rewritings of Q over the TBox Td which are of relevance for an
ontology at hand, and which correspond to support sets. Thus, we obtain:

Lemma 5.66. All nonground support sets over sig(A ∪ Ad ∪ Q) for a DL-atom d can
be constructed from the hypergraph GΣ

T ,sup(d) for d = DL[λ; Q]( ~X) w.r.t. the ontology
O = 〈T ,A〉.

Proof (sketch). To prove the statement we provide an approach for constructing non-
ground support sets from a given hypergraph GΣ

T ,sup(d) for d w.r.t. the ontology O =
〈T ,A〉.

The approach is based on annotation of nodes of the hypergraph with variables Xi,
such that i ∈ N. We start from the node xQ, which we annotate with X0; then we
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traverse the hypergraph backwards, going from a head of an edge to its tail. For every
edge e that we encounter we annotate tail(e) based on its form and on the annotation of
head(e), with variable names that occur in annotation of head(e) and/or fresh variable
names Xi, such that i ∈ N in the following way:

(1) if |tail(e)| = 1 then

(1.1) if head(e) = {xC1}, then tail(e) is annotated with the same variable name as
head(e);

(1.2) if head(e) = {xr1 , xC1} and it is annotated with {〈Xi1 , Xi2〉, Xi3}, then tail(e)
is annotated with Xi1 ;

(2) if |tail(e)| = 2 and head(e) = {xC}, such that head(e) is annotated with {Xi},
then

(2.1) if tail(e) = {xC1 , xC2}, where C1, C2 ∈ C, then the hypernode {xC1 , xC2} is
annotated with {Xi, Xi};

(2.2) if tail(e) = {xr1 , xC1}, where r1 ∈ R, C1 ∈ C, then {xr1 , xC1} is annotated
with {〈Xi, Xi′〉, Xi}, where Xi′ is a fresh variable name not yet used in anno-
tating hypernodes.

From every annotated hypernode N one can create a set of nonground atoms by
identifying predicate names from labels of hypernodes and variable names from their
annotations. The nonground support sets for d = DL[λ; Q](X0) can then be extracted
from all subpaths of incoming paths to xQ. We pick some subpath path1 to xQ containing
n edges. We start from the edge en, such that head(en) = {xQ}. The support set S1
for d is extracted from the annotated tail of en. We then pick an edge ek, such that
head(ek) ⊆ tail(en), and obtain further support sets by substituting nonground atoms
that correspond to head(ek) ∩ tail(en) in S1 with the nonground atoms extracted from
tail(ek). This process continues, and at each stage we pick a new edge from the subpath,
such that its head intersects with a tail of at least one edge that has already been
processed, and the new support sets are extracted accordingly.

The construction that we have presented mimics the DL-query unfolding over the
TBox Td. We now formally show that (i) the sets extracted in the way as described
above are indeed nonground support sets for d, and (ii) all nonground support sets for
d can be constructed following our procedure.

We first prove (i) by induction on the length n of an incoming path, from which the
support sets are extracted.

Base: n=1. Let us pick some path path in the hypergraph GΣ
T ,sup(d). Assume that

there is a single (hyper-)edge e in path. By construction this hyperedge must have xQ
as a head node, i.e. head(e) = xQ. There are four possibilities: (1) tail(e) = {xC},
(2) tail(e) = {xr, xC}, (3) tail(e) = {xC , xD} or (4) tail(e) = {xr,>}. We annotate the
nodes of a path by variables as described above, and extract the nonground atoms from
labels and annotations of the nodes. As a result for the case (1) we obtain {C(X0)},
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for (2): {r(X0, X1), C(X1)}, for (3): {C(X0), D(X0)}, and for (4): {r(X0, X1)}, where
X1 is a fresh variable. By construction of the hypergraph the edges of the forms (1)-(4)
correspond to the TBox axioms C v Q, ∃r.c v Q, CuD v Q and ∃r.> v Q respectively.
Therefore, the sets that have been constructed in all of the considered cases naturally
reflect the DL-query unfoldings of d, and hence they represent nonground support sets
for d.

Induction hypothesis: Suppose that the statement is true for n, that is from a path
of length n all sets extracted in the way as described above are nonground support sets
for d. Consider a path path of length n + 1. Pick the first edge e on path. By the
induction hypothesis, we have that all sets extracted from the path path \ {e} following
our approach are support sets for d. There are several possibilities for the form of e:
(1) tail(e) = {xC} and head(e) = {xD}, (2) tail(e) = {xr, xC} and head(e) = {xD}, (3)
tail(e) = {xC , xD} and head(e) = {xB}, (4) tail(e) = {xr,>} and head(e) = {xC}, or
(5) tail(e) = {xC} and head(e) = {xr, xD}.

For (1) it holds that by construction xC and xD are annotated with the same variable
Xi. Let S be a family of sets extracted from path\{e}. We pick a set S, in which C(Xi)
occurs. We substitute C(Xi) in S with D(Xi), and obtain a set S′. It must hold that S
is a support set for d, since it has been extracted from a path of length n in GΣ

T ,sup(d).
However, then clearly S′ is a support set too, as it mimics an additional unfolding step,
which takes into account the rule C(X)← D(X) of the datalog rewriting of Td.

Let us look at (2). Assume that there is a set of nonground atoms S, such that
D(Xi) ⊆ S, and such S has been constructed using our procedure. It must hold that
Xi is an annotation for xD. According to our construction {xr, xD} is annotated with
{〈Xi, Xj〉, {Xj}}, where Xj is a fresh variable. The sets S′ that we get from path, are
obtained by substitution of D(Xi) in some S by {r(Xi, Xj), C(Xj)}. The latter mimics
the unfolding step for Q that takes into account the rule D(Xi) ← r(Xi, Xj), C(Xj) of
the rewriting Td. As S is a support set for d by our induction hypothesis, S′ must be a
support set for d as well. The cases (3)-(5) can be analyzed analogously. Therefore, all
sets that are extracted from path of size n+ 1 are support sets for d.

It is left to prove (ii). Towards a contradiction assume that some support set S for
d exists, such that S was not identified during our procedure for extracting support sets
from GΣ

T ,sup(d). Since S is a support set, it must correspond to some query unfolding
of Q, obtained from some inclusion C v Q, which logically follows from Td, where C
is a possibly complex concept. If we have that C v Q ∈ Td then by construction of
a support hypergraph, there is a path path consisting of a single edge e in GΣ

T ,sup(d),
reflecting this inclusion. Since head(e) = xQ, it must hold that some support set S′
is extracted from e as a result of our procedure. Observe now that the inclusion that
we consider corresponds only to a single query unfolding. Therefore, S and S′ must
coincide, leading to a contradiction.

Suppose now that Td |= C v Q, but C v Q 6∈ Td. The inclusion C v Q is reflected
by some incoming path path to xQ in GΣ

T ,sup(d), such that for every P ∈ sig(C) there is
a node N ∈ path with xP occurring in the label of N . Since our construction mimics
unfolding steps for the query Q, there must be some set computed by our procedure,
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which reflects the query unfolding to which S corresponds, i.e. contradiction.

According to Lemma 5.66 one can determine all relevant nonground support sets for
a DL-atom d w.r.t. ontology O = 〈T ,A〉 by just looking at the support hypergraph of d.
We now illustrate the construction exploited in the proof of the lemma by the following
example.

Example 5.67. Consider the hypergraph GΣ
T ,sup(d) from Figure 5.4, which contains the

following path to xD:

path = 〈(xA3p3
, xA3)︸ ︷︷ ︸

e1

, ({xr3 , xA3}, xA1)︸ ︷︷ ︸
e2

, ({xr1 , xA1}, xC1)︸ ︷︷ ︸
e3

, ({xr2 , xA2}, xC2)︸ ︷︷ ︸
e4

, ({xC1 , xC2}, xD)︸ ︷︷ ︸
e5

〉,

We annotate xD with X0 and traverse the path backwards starting from xD. We
consider the edges of path in the reverse order as follows: e5, e4, e3, e2, e1 and arrive at
the following annotation of path:

〈(
{X3}︷ ︸︸ ︷
xA3p3

,

{X3}︷︸︸︷
xA3 )︸ ︷︷ ︸

e1

, (
{〈X2,X3〉,X3}︷ ︸︸ ︷
{xr3 , xA3} ,

{X2}︷︸︸︷
xA1 )︸ ︷︷ ︸

e2

, (
{〈X0,X2〉,X2}︷ ︸︸ ︷
{xr1 , xA1} ,

{X0}︷︸︸︷
xC1 )︸ ︷︷ ︸

e3

, (
{〈X0,X1〉,X1}︷ ︸︸ ︷
{xr2 , xA2} ,

{X0}︷︸︸︷
xC2 )︸ ︷︷ ︸

e4

, (
{X0,X0}︷ ︸︸ ︷
{xC1 , xC2},

{X0}︷︸︸︷
xD )︸ ︷︷ ︸

e5

〉.

The nonground support sets for d can now be read from the annotated path.

• We start with the subpath path1 = 〈e5〉 and extract from path1 the first support
set S1 = {C1(X0), C2(X0)}.
• We pick the next subpath path2 = 〈e4, e5〉, as head(e4) ⊆ tail(e5), and obtain the

following additional support set: S2 = {r2(X0, X1), A2(X0, X1), C2(X0)}.
• S3 = {C1(X0), r1(X0, X2), A1(X2)} is then extracted from path3 = 〈e3, e5〉.
• path4 = 〈e5, e4, e3〉 yields S4 = {r2(X0, X1), A2(X1), r1(X0, X2), A1(X2)}.
• We get S5 = {r1(X0, X2), r3(X2, X3), A3(X3), C2(X0)} from path5 = 〈e2, e3, e5〉.
• S6 = {r1(X0, X2), r3(X2, X3), A3(X3), r2(X0, X1), A2(X1)} is then extracted from

path6 = 〈e2, e3, e4, e5〉.
• The support set S7 = {r1(X0, X2), r3(X2, X3), A3p3(X3), C2(X0)} is determined
from path7 = 〈e1, e2, e3, e5〉.
• Finally, S8 = {r1(X0, X2), r3(X2, X3), A3p3(X3), r2(X0, X1), A2(X1)} is constructed
from the subpath path8 = 〈e1, e2, e3, e4, e5〉.

Lemma 5.66 allows one to reason about the structure and size of support sets by
analyzing only parameters of the hypergraph GΣ

T ,sup(d). As a possible such parameter,
one can consider, for instance, the number of hyperedges with a singleton head node.
Then we obtain:
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Proposition 5.68. Let O = 〈T ,A〉 be an EL ontology, where T is in normal form,
and let d = DL[λ; Q]( ~X) be a DL-atom with a support hypergraph GΣ

T ,sup(d). Then
maxsup(d) ≤ n + 1, where n is the maximal number of hyperedges with a binary tail
node and a singleton head node located on an incoming path to xQ, excluding hyperedges
of the form ({xr,>}, xC).

Proof. We prove the statement by induction on the number n of hyperedges with a
singleton head node in the support graph.

Base: n = 0. We show that if there are no hyperedges of the required form in the hy-
pergraph, then maxsup(d) = 1. By definition there are several possibilities for GΣ

T ,sup(d):
(i) either it does not contain any hyperedges, or (ii) all hyperedges that occur in GΣ

T ,sup(d)
are of the form ({xr,>}, xC), or (iii) there are hyperedges of the form (xC , {xr, xD}) in
the hypergraph.

For (i) and (ii) we have that by construction the TBox T contains only concept
inclusions C v D, such that C,D are either atomic or of the form ∃r.>. These axioms
fall into the DL-LiteA fragment, for which support sets are either unary or binary.
Observe, that according to Definition 5.24 all binary support sets in the DL-LiteA case
can only occur, if inconsistency arises in the updated ontology. Since the negation is
neither allowed nor expressible in EL, we get that the support sets must be maximum
of size 1.

Finally, it is left to analyze the case (iii). Consider a hyperedges ei in GΣ
T ,sup(d), such

that head(ei) = {xr, xC}. By definition of an incoming path we have that some ej must
exist such that tail(ej) = head(ei). The latter, however means that ej is a hyperedge
with a singleton head node, which contradicts our assumption.

Induction Step: Suppose that the statement is true for n, we prove it for n+1. Let p =
e1, . . . , en, en+1 be an incoming path to xQ in the hypergraph GΣ

T ,sup(d) with a maximal
number n+ 1 of hyperedges with singleton head nodes. We have that head(en+1) = xQ.
Assume that ei is the first hyperedge of the required form occurring on the path p.
Let us split the path p into two parts: e1, . . . , ei and ei+1, . . . , en. Consider the graph
G′′ = {V, E ′′}, where E ′′ = E \{e1, . . . , ei}. The maximal number of hyperedges occurring
on an incoming path to xQ in G′′ is n by construction. Therefore, by the induction
hypothesis, maxsup(d) w.r.t. O′′ = 〈T ′′,A〉 is bounded by n + 1. Consider the graph
G′ = (V, E ′), where E ′ = E ∪ {ei}, and let T ′ be a TBox corresponding to G′. We have
that head(ei) = xA, since by our assumption ei is a hyperedge with a singleton node.
There are two possibilities: either A = Q or A 6= Q. In the former case we have that
ei is a single hyperedge of the required form on the path p. It either corresponds to
C uD v Q or to ∃r.C v Q. In both cases the support sets for d are bounded by 2.

If A 6= Q, then by definition of an incoming path there exists a single (hyper)edge
ej , such that either (i) head(ei) = tail(ej) or (ii) head(ei) ⊆ tail(ej) for some j > i. If
head(ei) = tail(ej) then ej must correspond to an axiom with an atomic concept on the
left hand side, i.e. some inclusion of the form A v . . . occurs in T ′. If head(ei) ⊆ tail(ej)
for some j > i then ej corresponds either to A u B v . . . or to ∃r.A v . . . . In all of
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these cases, the query unfolding for Q w.r.t. T ′′, which involves atoms over A is of size at
most n+ 1 by our induction hypothesis. We can obtain a query unfolding U for Q w.r.t.
T ′ by rewriting atoms over A to the respective atoms over C and D, if ei = {xC , xD}
or over r and C, if ei = {xr, xC}. This will result in a query unfolding of size at most
n+ 2. This means that the support set size in G′ is bounded by n+ 2.

Finally, let us look at GΣ
T ,sup(d) = G′ ∪ {e1, . . . , ei−1}. We know that the rewritings

for all of the concepts in T corresponding to the hypernodes of the path e1, . . . , ei−1 are
of size 1, which follows from the base case. That means that the support sets for d w.r.t.
T can not be larger then those with respect to T ′, and hence they will be bounded by
n+ 2.

The bound provided by the above proposition is not tight, which is obvious from the
following example.

Example 5.69. Consider the DL-atom d(X) = DL[; Q](X) accessing the TBox Td:

Td =


(1) A uD v F (4) E u F v L
(2) A u C v K (5) E uK v M
(3) A u B v E (6) M u L v Q


Let Σ = sig(Td). The support hypergraph for d is depicted in Figure 5.5. There are

6 hyperedges with single head nodes, but the maximal support set size for d(X) is 4,
e.g. S = {A(X), B(X), D(X),K(X)}.

Before providing a more accurate upper bound on the support set size, we first define
the notion of a hyper outdegree for a node as follows:

Definition 5.70. Given a support hypergraph GΣ
T ,sup(d) and a node x, we say that x

has a hyper out-degree k, denoted by hd+(x) = k, if it has k outgoing hyperedges of the
form ({x, y}, z). We denote by HN (GΣ

T ,sup(d)) the set of nodes x in a graph, such that
hd+(x) ≥ 1.

Example 5.71. All nodes X ⊆ V\{xA3p
, xA3} in the graph GΣ

T ,sup(d) depicted in Fig-
ure 5.4 have hyper out-degree 1. For GΣ

T ,supp(d) ∪ ({xC2 , xA2}, xD), we have hd+(xC2) =
hd+(xA2) = 2. For the graph in Figure 5.5 one can see that hd+(xE) = 2 and
hd+(xA) = 3.

Let us now denote a set of incoming paths to a node x in a hypergraph G by
Inpaths(x), and let smax(x) = maxpath∈Inpaths(x)(n(path)−m+ 1), where

• n(path) is the number of hyperedges on path with a singleton head node excluding
those of the form ({>, xr}, xC), and

• m =
∑
xC∈HN(path)(hd+(xC) − 1), where xC lies on path, and hd+(xC) is the

number of hyperedges of the form ({xC , xC′}, xC′′), which are outgoing from xC
and located on path.
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Figure 5.5: Support hypergraph GΣ
T ,supp(d) from Example 5.69

Example 5.72. Consider the hypergraph GΣ
T ,sup(d) from Figure 5.4. The set Inpaths(xD)

contains a single path: path = 〈({xr2 , xA2}, xC2), ({xr1 , xA1}, xC1), ({xC1 , xC2}, xD)〉.
There are 3 hyperedges with a singleton head node occurring in path, hence n(path) =
3. Furthermore, m = 0, as all nodes have a hyper outdegree at most 1, therefore
smax(xQ) = 3− 0 + 1 = 4. The hypergraph in Figure 5.5 contains also a single incoming
path to Q. It holds that n(path) = 6, m = (hd+(A)− 1) + (hd+(E)− 1) = 3, and thus
smax(Q) = 6− 3 + 1 = 4.

Using the defined parameter smax(x) for a node x corresponding to the DL-query
of a DL-atom d, we tighten the bound on the maximal size of support sets for d from
Proposition 5.68 as follows:

Proposition 5.73. Let O = 〈T ,A〉 be an EL ontology, where T is in normal form, and
let d = DL[λ; Q](~t) be a DL-atom. Let, moreover, GΣ

T ,sup(d) be its support hypergraph.
Then the maximal support set size of d is bounded by smax(xQ), i.e. maxsup(d) ≤
smax(xQ).

Proof (sketch). We sketch a general idea of the proof. Consider a path path of the
support graph, for which n(path) +m− 1 is maximal and yields smax(xQ). Let us look
at some node xCn on path, such that hd+(xCn) = k, where k > 1, i.e, there are k
hyperedges outgoing from xCn : ({xCn1

, xCn}, xCn′1
) . . . ({xCnk

, xCn}, xCnk′
).

These hyperedges lie on path. That means that the subgraphs induced by the nodes
xCn′1

and xCnk′
at some point must be connected by a hyperedge. We illustrate our

observation in Figure 5.6.
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Figure 5.6: Fragment of a hypergraph used for illustration in proof of Proposition 5.73

According to the hypergraph, there must be the following axioms present in the TBox
T : Cn1 u Cn v Cn′1 , . . . , Cnk

u Cn v Cn′
k
. It must be the case that all of Cn′1 . . . Cn′k

participate in a certain support set of size m, where m is the number of hyperedges in
the graph below the elements xCni

, xCn , xC′ni
. The intuitive meaning of the hyperedges

in which xCn participates is as follows: if there is a support set S for d that contains Cn′1 ,
then there is a support set S′ where Cn′1 is substituted by Cn and Cn1 . Note that since we
consider a single path of a hypergraph, there must be a support set in which all Cn′1 and
Cn′

k
appear together. The size of S is at mostm, wherem is the number of hyperedges in

the graph below xCn′1
, . . . , xC′nk

. By Proposition 5.68 for the size of S′ we get m+ k+ 1,
due to the hyperedges k hyperedges: ({xCn1

, xCn}, xCn′1
), . . . , ({xCnk

, xCn}, xCn′
k

). Now
observe that the support set S′ involves Cn k times, thus the size of S′ in fact should
be m+ 1 instead, this is exactly due to hd+(xCn) = k. The generalization of the above
argument to multiple nodes like xCn brings us to the result.

Example 5.74. Reconsider the hypergraph in Figure 5.4. It has 3 hyperedges, and for
all nodes x ∈ V, hd+(x) ≤ 1. Thus, smax(Q) = 4, which coincides with the maximal size
of support sets for d. For the graph in Figure 5.5 we have smax(Q) = 4, and 4 is indeed
the maximal support set size.

Observe that it is important that in Proposition 5.73 we considered the outdegree
of nodes xC that participate in hyperedges of the form ({xC , xD}, xE), where C,D,E
are concepts. Indeed, if there is a role involved in some of the hyperedges, then the
situation changes. For instance, let ({xr, xC}, xD), ({xC , xs}, xM ), ({xD, xM}, xQ) be
present in a support hypergraph for a DL-atom d = DL[λ; Q](X). The hyperedges
reflect the axioms ∃r.C v D, ∃s.C vM and M uD v Q. The largest support set for d
is S = {r(X,Y ), C(Y ), s(X,Z), C(Z)}, i.e. it is of size 4, and corresponds to n+1, where
n is the number of hyperedges. This means that the number of nodes with the outdegree
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greater then 1 plays a role on the size of support sets only when the hyperedges in which
these nodes participate involve concepts.

5.7.2 Number of Support Sets

Another restriction relevant in practice regards the number of support sets. In general,
determining the exact number of support sets that is needed to form a complete family
for a DL-atom is a hard problem. It is tightly related to counting minimal explanations
for an abduction problem, which was analyzed in [HP10] for propositional theories under
various restrictions; there it was shown that counting all smallest solutions (explanations)
for an abduction problem over a Horn theory is #OptP [logn]-complete. #Optp[logn] is
a relatively new complexity class for counting optimal solutions to counting problems
introduced in [HP08]; we refer the reader to this work for further details. Moreover,
meaningful conditions such that a fixed number n of support sets suffices to obtain a
complete family are non-obvious (bounded tree-width [GPW07] might be useful, as for
efficient datalog abduction); a careful analysis of real world ontologies is needed to ensure
practical relevance.

Like for the size of support sets, for estimating the maximal number of support sets
for a given DL-atom, the support hypergraph might be of relevance. Given a DL-atom
DL[λ; Q](X) accessing an ontology with the TBox T , the number of support sets for d
can be accurately measured in terms of the size of the hypergraph GΣ

T ,supp(d). Intuitively,
the bound on the number of support sets should be obtained by summing up all lengths
of paths leading to xQ in the hypergraph. Each path in the hypergraph, corresponds to
a certain set of support sets, while every edge symbolizes a transition from one support
set to another, obtained by substituting the predicate in the head node by the tail
predicate(s). Therefore, summing up the lengths of paths in the hypergraph should be
sufficient for measuring the maximal number of support sets. Extensive investigation of
this issue remains for future work.

5.8 Repair Computation Based on Partial Support
Families

In this section we present our algorithm SoundRAnsSet (see Algorithm 5.5) for com-
puting deletion repair answer sets. As in SupRAnsSet we also exploit support families,
but do not require that they are complete. If the families are complete (which may be
known), then SoundRAnsSet is guaranteed to be complete; otherwise, it may miss repair
answer sets (an easy extension ensures completeness though).

We start at (a) by computing a family S of nonground support sets for each DL-
atom. Next the replacement program Π̂ is created, whose answer sets Î are computed
one by one in (b). For Î, we first determine the sets Dp (resp. Dn) of DL-atoms that are
guessed true (resp. false) in it and then use the function Gr(S, Î,A) which instantiates
S for the DL-atoms in Dp ∪Dn to relevant ground support sets, i.e., those compatible
with Î. In (d) we check whether some DL-atom in Dn has a support set S consisting
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Algorithm 5.5: SoundRAnsSet: compute deletion repair answer sets
Input: Π=〈T ∪ A,P〉
Output: a set of deletion repair answer sets of Π

(a) compute a set S of nongr. supp. sets for the DL-atoms in Π
(b) for Î ∈ AS(Π̂) do
(c) Dp ← {a | ea ∈ Î}; Dn ∈ {a | nea ∈ Î}; SÎgr ← Gr(S, Î,A);
(d) if every S ∈ SÎgr(a′) for a′ ∈ Dn fulfills S ∩ A 6= ∅ then
(e) for all min. hitting sets H ⊆ A of

⋃
a′∈Dn

SÎgr(a′) do
(f) if for every a ∈ Dp some S ∈ SÎgr(a) exists s.t. S ∩H = ∅;

then rep← evaln(Dn, Î, T ∪ A\H) else
rep← evaln(Dn, Î, T ∪ A\H) ∧ evalp(Dp, Î, T ∪ A\H)

(g) if rep and flpFND(Î , 〈T ∪ A\H,P〉) then output Î|Π
end

end
end

just of input assertions; if so we move to the next answer set Î of Π̂. Otherwise, we
(e) loop over all minimal hitting sets H ⊆ A of the support sets for DL-atoms in Dn,
formed by ABox assertions only. For each H we check whether every atom in Dp has at
least one support set disjoint from H. If yes (f), i.e. removing H from A does not affect
the values of DL-atoms in Dp, then we evaluate in a postcheck the atoms from Dn over
T ∪ A\H w.r.t. Î. Otherwise, we evaluate the DL-atoms from Dn and Dp. A Boolean
flag rep stores the evaluation result of a function evaln(resp. evalp). More specifically,
given Dn (resp. Dp), Î and T ∪A\H, the function evaln (resp. evalp) returns true, if all
atoms in Dn (resp. Dp) evaluate to false (resp. true). If rep is true and the foundedness
check flpFND(Î ,A \H,P) succeeds, then in (g) Î|Π is output as repair answer set.

We remark that in many cases, the foundedness check might be trivial [EFK+14]; if
we would consider weak FLP-answer sets [EFS13a], it can be skipped.

Example 5.75. Consider Π from Example 5.7 with equivalence (≡) in axioms (2) and
(3) substituted by w. Let Î = {projfile(p1 ), hasowner(p1 , john), chief (john), ea,neb} be
returned at (b), where a= DL[Project ] projfile; Staffrequest](r1 ) and
b= DL[Staff ] chief ; BlacklistedStaffRequest](r1 ). At (c) we obtained

• SÎgr(a) = {S1, S2}, where S1 = {hasAction(r1 , read), hasSubject(r1 , john),
Action(read),Staff (john), hasTarget(r1 , p1 ),Projectprojfile(p1 )}
and S2 = {StaffRequest(r1 )};

• SÎgr(b) = {S′1, S′2} with S′1 = {StaffRequest(r1 ), hasSubject(r1 , john),
Blacklisted(john)} and S′2 = {BlacklistedStaffRequest(r1 )}.
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At (e) we got a hitting set H = {StaffRequest(r1 ),BlacklistedStaffRequest(r1 )},
which is disjoint with S1. Thus we get to the if branch of (f) and check whether b
is false under A\{StaffRequest(r1 )}. This is not true, hence rep = false and we pick a
different hitting set H ′, e.g {Blacklisted(john),BlacklistedStaffRequest(r1 )}. Proceeding
with H ′, we get to (g), since at (f) evaln(b, Î, T ∪ A ∩H) = true.

Proposition 5.76. SoundRAnsSet is sound, i.e. it outputs only deletion repair answer
sets.

Proof. Suppose SupRAnsSet outputs I = Î|Π. We can get to (g) only if Î is an answer
set of Π̂, and if the foundness check of I with respect to the ontology T ∪ A′, where
A′ = A\H succeeded. It is thus left to show that Î is a compatible set for T ∪ A′.
Towards a contradiction, suppose that this is not the case. In (c) we partitioned the
DL-atoms into two sets: Dp and Dn, corresponding to DL-atoms a guessed to be true
and false in Î respectively and set SÎgr to Gr(S, Î,A). Since we assume that Î is not
compatible, one of the following must hold:

(1) There is a DL-atom a in Dn, such that I |=O′ a. There are two possibilities: either
there is a support set S ∈ SÎgr for a or no support sets for a were identified. If
the former is the case, then by the check (d) we are guaranteed that all support
sets S for a are such that S ∩ A 6= ∅. Hence there must exist a support set
which has a nonempty ABox part, which is in A′. However, according to (e) some
minimal hitting set H of all support sets for DL-atoms in Dn is not in A′, thus
S 6∈ Suppa(O′). Now since rep = true at (g), postevaluation of a must have
succeeded in (f), i.e. I 6|=O′ a must hold. This is a contradiction.

(2) There is a DL-atom a in Dp, such that I 6|=O′ a. Therefore, there are no support
sets for a in SÎgr. We thus get to the else part of (f), where post-evaluation is
performed. The latter, however, must have succeeded, as rep = true at (g),
leading to a contradiction. Hence Î is a compatible for Π′, and thus a deletion
repair answer set of Π.

If we know in addition that the support families are complete, then the postchecks at
(f) are redundant. In case the if-condition of (f) is satisfied, we set rep = true, otherwise
rep = false.

Proposition 5.77. If for all DL-atoms in Π the support families in S are complete,
then SoundRAnsSet is complete, i.e., it outputs every deletion repair answer set.

Proof. Suppose I is a deletion repair answer set. That is, for some A′ ⊆ A, we have that
I is an answer set of Π′ = 〈T ∪A′,P〉. This implies that Î is an answer set of Π̂ and thus
will be considered in (b), with Dp and Dn reflecting the (correct) guess for I |=O′ a for
each DL-atom a, where O′ = T ∪ A′. From Proposition 5.28 and completeness of S, we
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obtain that each a ∈ Dp hasGr(S, Î,A′)(a) 6= ∅ and each a ∈ Dn hasGr(S, Î,A′)(a) = ∅.
The initial SÎgr is such that Gr(S, Î,A′)(a) ⊆ SÎgr = Gr(S, Î,A)(a) holds for each DL-
atom a; in further steps, the algorithm removes all support sets S ∈ Gr(S, Î,A)(a) for
a ∈ Dp from SÎgr(a) such that S ∩ S′ ∩ A 6= ∅ for some support set S′ ∈ Gr(S, Î,A)(a′)
and a′ ∈ Dn, and removes all assertions in S′ ∩ A from A. Importantly no removed S
is in Gr(S, Î,A′)(a), since by the assertion that T ∪ A is consistent, |S′ ∩ A| = 1 must
hold. Thus step (g) will be reached, and the variable A′ is assigned an ABox A′′ such
that A′ ⊆ A′′ ⊆ A. Since Î is a compatible set for Π′′ = 〈T ∪A′′,P〉 and I is an answer
set of Π′, by Proposition 5.36 I is also an answer set of Π′′, and thus I is a minimal
model of Π′′I,O

′′

flp = 〈T ∪ A′′,PI,O′′flp 〉. Hence, the test flpFND(Î , T ∪ A′,P) in step (h)
(where A′ has value A′′) succeeds, and ÎΠ, i.e, I is output.

We easily can turn SoundRAnsSet into a complete algorithm, by modifying (e) to
consider all hitting sets and not only minimal ones. In the worst case, this means a
fallback to almost the naive algorithm (note that all hitting sets can be enumerated
efficiently relative to their number).

5.9 Optimization Techniques
The algorithms provided in this chapter admit various optimizations. Research in repair-
ing databases (see [Ber11] for overview) suggests several techniques, which could be of
potential interest for DL-program repairs. One of such techniques deals with localization
of repairs [EFGL07]. The set of repair candidates can be narrowed to a part which is
touched by inconsistency of the DL-program. The ontology ABox can be split into the
two parts: the one that is safe, will not be touched by any repair and the one that is the
matter of change. The general approach of repair localization is to isolate the part of
the ABox which should not be changed, and to aim at finding the repair by eliminating
assertions from the rest of the ABox. After following this procedure, the obtained repair
can be combined with the safe part for getting the final result. The important task
that naturally arises in this context is related to effective identification of the safe and
affected parts of the ABox. This is clearly a difficult problem in general; however, the
meta knowledge about the ontology (e.g. modules, domain knowledge), if available, can
be fruitfully exploited for solving it.

Another common approach for tackling an inconsistency problem, which proved to
be effective for databases, is called decomposition [EFGL07]. This approach tries to
decompose the available knowledge into parts, such that the reasons for inconsistency
can be identified in each part separately, and then the repairs for each of the parts can be
conveniently combined. Even for databases decomposition is natural, for DL-programs it
is far nontrivial whether there are possibilities to effectively exploit this technique. One
way to approach this problem is by analyzing the values of the DL-atoms. Given the
program Π̂ and a replacement atom ea, one might perform brave reasoning to identify
whether all answer sets of the replacement program must entail ea or nea. Given a set
of DL-atoms which must have the same value under all answers sets, we can first try to
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find repairs that satisfy these values, and then aim at extending the solution to obtain
the final repair. Finally, modules of the DL-program can be exploited for decomposing
the repair problem.

5.10 Conclusion, Related Work and Outlook

We have provided algorithms and optimization techniques for repairing inconsistent DL-
programs over DL-LiteA and EL ontologies. It turns out that the naive algorithm, that
traverses all possible ABoxes that satisfy a certain σ selection criteria and aims at finding
an ABox which is suitable as a repair is not effective in practice. For that reason we
introduced the notion of support sets. We exploited support sets for optimizing the naive
repair approach. Support sets reduce the evaluation of DL-atoms to constraint matching,
providing a base for effective deletion repair answer set computation under weak or flp-
semantics. Our results, and in particular algorithms SupRAnsSet and SoundRAnsSet,
can be extended to other semantics, e.g. well-founded, and to other notions of repairs,
e.g. bounded addition.

Note that algorithm SupRAnsSet for DL-LiteA ontologies constructs in its search
all maximal deletion repairs, i.e., ⊆-maximal repairs A′ ⊆ A that admit an answer set
(however, it also may construct non-maximal repairs). In this regard it is similar to work
on ABox cleaning [MRR11,RRGM12]. There, an inconsistent ontology (with consistent
TBox) is repaired by identifying and eliminating minimal conflict sets causing, i.e.,
explaining, the inconsistency, thus resulting in maximal deletion repairs. However, our
setting and work differ fundamentally: (i) the ontology is consistent and inconsistency
arises only through the interface of DL-atoms, and (ii) several DL-atom queries have to
be considered (entailment or non-entailment) under different potential ABox updates.

More remotely related to our work are approaches for explaining positive and negative
answers to conjunctive queries in DL-Lite [COSS12a,BCRM08], as they apply the perfect
reformulation algorithm [CLLR07] and then extract explanations in a nontrivial way.
Unary explanations for instance queries relate to our support sets for DL-atoms without
updates. For arbitrary DL-atoms our support sets are more general, since they can also
represent minimal set of assertions that make the updated ontology inconsistent, and
thus the DL-query trivially derivable from it.

For DL-programs over EL ontologies, we generalized the support set approach for
DL-LiteA to work with incomplete families of supports sets; this advance is needed
since in EL complete support families can be large or even infinite. We discussed how
to generate support families, by exploiting query rewriting over ontologies to datalog
[LTW08,Ros07,SMH12], which is in contrast to our approach for computing support sets
in the DL-LiteA case, where TBox classification is invoked. We presented an algorithm
to compute deletion repair answer sets which trades answer completeness for scalability.

Our support sets are related to solutions of abduction problems for EL [Bie08],
and correspond in the ground case to support sets for query answering over first-order
rewritable ontologies [BR13]; nonground computation naturally links to TBox classifi-
cation [KKS13]. Abduction had been studied for DL-Lite in [BCRM08] and for datalog
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e.g. in [GPW07,HP08]. The use of incomplete support families for DL-atoms is related
in spirit to approximate inconsistency-tolerant reasoning on DLs using restricted sup-
port sets [BR13]; however, we target repair computation while [BR13] targets inference
from all repairs.

Furthermore, support sets are used in a companion work to compute answer sets of
HEX-programs [EFRS14]. As external atoms lack an explicit data part (ABox), support
sets ought to be more abstract, which makes direct efficient usage less clear; repair is an
open issue.

It remains an issue for further research to extend the work to other members of the
EL family. To increase usability in practice, real world ontologies need to be analyzed to
develop good heuristics and strategies for computing incomplete support families. The
work on determining syntactic conditions put on the TBox that ensure that all support
sets are of bounded size can be further extended by considering various parameters in a
hypergraph, that can influence the support set size and number. We have studied acyclic
EL TBoxes, but it is also possible to look at cyclic TBoxes and consider for instance
such parameter, as hypertree width [HOSG08].
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CHAPTER 6
Optimization Techniques for

DL-programs

In this chapter we propose optimization techniques that allow one to simplify the rule
part P of a DL-program Π = 〈O,P〉 before computing its answer sets if they exist, and
repair answer sets otherwise.

For computing answer sets of DL-programs over ontologies in arbitrary DLs in prac-
tice individual DL-atoms may often need to be evaluated under varying input in general.
Thus, the possible ontology updates specified by a DL-atom define respective contexts for
their evaluation, and many different such contexts need to be considered. Moreover, even
for one context evaluating the query specified by the DL-atom in this context may be
costly. Therefore, developing optimization techniques, e.g. caching techniques [EIST04],
partial evaluation and atom merging [EIKS08], is necessary for the development of ef-
fective solvers.

Caching techniques, for instance, aim at memorizing the value of a DL-atom for some
inputs, such that its value on a new input can be concluded. However, the very question
whether its value is on all inputs the same has not been considered so far; we call DL-
atoms with this property independent. The identification of independent DL-atoms has
immediate applications in optimizations, as such atoms respectively rules involving them
can be removed from the DL-program.

Information about independent DL-atoms is certainly also of use in repair answer
set computation. Once the repair answer set candidate is identified together with the
guesses on the values of DL-atoms, we aim at modifying the ontology data part in such
a way that the real values of DL-atoms coincide with the guessed ones. However, the
value of a DL-atom can be independent of the underlying ontology; thus some candidate
interpretations can never become repair answer sets regardless of the changes applied
to the ontology at hand. Identifying independent DL-atoms and subsequently faulty
answer set candidates at early stages of the repair answer set computation should bring
potential performance gains.
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However, it is not always obvious that a certain DL-atom is independent, for instance
tautologic. Let us illustrate this by an example.

Example 6.1. Consider the following DL-program representing information in the fruit
domain: Π = 〈O,P〉 with underlying ontology O and the rules part

P =


(1) so(pineapple, chile); (2) vi(X)← ex(X);
(3) sw(X)← ex(X), not bi(X); (4) ex(X)← so(X,Y );
(5) no(X)← DL[H ] vi,H −∪ sw,A −∩ ex; ¬A](X).

 ,
where predicate so stands for Southern fruit with its country of origin, vi for vitamin, ex
for exotic, bi for bitter, sw for sweet, and no for non-African fruit, respectively. Moreover,
H stands for the concept of healthiness and A for the concept of African fruit. Here (1) is
the fact that pineapple is a Southern fruit possibly from Chile, rule (2) states that exotic
fruits are rich of vitamin and rule (3) that exotic fruits are sweet, unless they are known
to be bitter. Rule (4) says that Southern fruits are exotic. Finally, rule (5) contains a
DL-atom in its body. Informally, it selects all objects o into no such that ¬A(o), i.e., o is
proved to be not an African fruit from the ontology O, upon the (temporary) assertions
that vitamin objects are healthy, sweet ones are unhealthy, and the restriction that only
fruit known to be exotic may be African.

It is not straightforward for this DL-atom, nor for any of its instances, that it is
tautologic; this however will be shown in Section 6.2.

If we adopt the reasonable assumption that the underlying ontology is satisfiable,
another kind of independence is possible: DL-atoms which are contradictory, i.e., always
evaluate to false.

Our contributions on identifying independent DL-atoms briefly are as follows:

• Based on a semantic notion of independence, we provide a syntactic characteri-
zation of independent DL-atoms in Section 6.1. While tautologic DL-atoms have
a rich structure, contradictory DL-atoms are simple and only possible without
ontology update prior to query evaluation.

• We also consider relaxed forms of tautologies, relative to additional information
on rule predicates (acting as constraints on the possible updates to the ontology).
In particular, we study inclusion among rule predicates in Section 6.2.

• We develop a complete axiomatization for deriving all tautologies by means of
simple rules of inference, in the general case as well as under separable inclusion
constraints, i.e., without projective input inclusions.

• We determine the complexity of the calculus in Section 6.3. It turns out that tautol-
ogy checking is feasible in polynomial time (more precisely, in NLogSpace in general,
and in LogSpace, in fact it is first-order expressible, for non-negative queries), also
relative to separable inclusion constraints (in this case, it is NLogSpace-complete).
Thus, we establish that checking whether a given DL-atom is independent can be
done efficiently.
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Our results provide further insight into the nature of DL-programs. In particular,
they might be useful for DL-programs that are automatically constructed (like the ones
encoding a fragment of Baader and Hollunder’s terminological default logic over ontolo-
gies [DTEK09]). They can be applied to simplify DL-programs, as well as to optimize
the algorithms for repair answer set computation that we have proposed in Chapter 5.

6.1 Independent DL-atoms
We call a DL-atom a independent, if it always has the same truth value, regardless of
the underlying ontology and the context in which it is evaluated, i.e, the interpretation
I of the rules. This means that a amounts to one of the logical constants ⊥ (false, i.e.,
is a contradiction) or > (true, i.e., is a tautology).

In formalizing this notion, we take into account that independence trivializes for
unsatisfiable underlying ontologies, and thus restrict to satisfiable ones.

Definition 6.2 (independent DL-atom). A ground DL-atom a is independent, if for all
satisfiable ontologies O,O′ and all interpretations I, I ′ it holds that I |=O a iff I ′ |=O′ a.

Furthermore, we call a tautologic (resp., contradictory), if for all satisfiable ontologies
O and all interpretations I, it holds that I |=O a (resp., I 6|=O a).

Example 6.3. A DL-atom of the form a = DL[; ¬(C v C)]() is contradictory. Indeed,
the query ¬(C v C) is unsatisfiable, hence there does not exist any satisfiable ontology
O, such that O |= ¬(C v C). Therefore, regardless of I, always I 6|=O ¬(C v C).

On the other hand consider a DL-atom b = DL[C −∩ p, C −∪ p; ¬C](c). It is tautologic,
because under any interpretation I of p, it holds that ¬C(c) ∈ λI(b). Hence, it is true
that I |=O ¬C(c) for any ontology O (and any interpretation I).

In the following, we aim at a characterization of independent DL-atoms.

6.1.1 Contradictory DL-atoms

We defined above contradictory DL-atoms relative to satisfiable ontologies (otherwise,
trivially no contradictory DL-atoms exist).

An obvious example of a contradictory DL-atoms is DL[; > v ⊥](), where ⊥ and >
are the customary empty and full concept, respectively. Indeed, the DL-query ⊥ v > is
false in every interpretation, i.e., a logical contradiction. As it turns out, contradictory
DL-atoms are characterized by such contradictions, and have a simple input signature.

We call a DL-query Q(~t) satisfiable, if there exists some satisfiable ontology O such
that O |= Q(~t), and unsatisfiable otherwise. Then we have the following result.

Proposition 6.4. A ground DL-atom a = DL[λ; Q](~t) is contradictory if and only if
λ = ε and Q(~t) is unsatisfiable.

Proof. (if) If λ = ε, then for every I, I |=O a iff O |= Q(~t); as Q(~t) is unsatisfiable, we
have for every satisfiable O that O 6|= Q(~t). Thus a is contradictory.
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(Only If). Suppose a is contradictory, i.e., I 6|=O a for every satisfiable ontology O
and every interpretation I, i.e., O ∪ λI(a) 6|= Q(~t). It follows that Q(~t) is unsatisfiable.
To show λ = ε, assume towards a contradiction that λ 6= ε. Then there exists some
interpretation I0 such that λI0(a) 6= ∅, i.e., contains some assertion B. Consider an
arbitrary satisfiable ontology L. As L ∪ λI0(a) 6|= Q(~t), it follows that L 6|= ¬.B, where
¬.B is the opposite of B. However, it is not difficult to see that satisfiable ontologies L0
exist such that L0 |= ¬.B.1 This, however, raises a contradiction. Thus λ = ε.

By this result, contradictory DL-atoms have a simple form. As concept and role
instance queries are always satisfiable, Q must be a (possibly negated) concept inclusion
query and of the form ¬(C v C), ¬(C v >), ¬(⊥ v C), ¬(⊥ v >), or > v ⊥.

6.1.2 Tautologic DL-atoms

For tautologic DL-atoms, the situation is more complex. First of all, clearly a DL-atom
is tautologic if it has a tautologic query (i.e., it is satisfied by the empty ontology). This
is, however, only possible for concept inclusion queries; instance queries (¬)C(t), resp.
(¬)R(t1, t2), are clearly not tautologic.

DL-atoms with tautologic queries are of the form DL[λ; C v >](), DL[λ; ⊥ v C](),
DL[λ; C v C](), or DL[λ; > 6v ⊥](), where λ is an arbitrary input signature.

However, there are also tautologic DL-atoms whose query is not tautologic.

Example 6.5. Consider in the fruit scenario the DL-atom
a = DL[EF −∩ fr, S −∪ fr, S ] fr; ¬EF ](c),

where EF stands for exotic fruit, S for sweet, fr for fruit.
Intuitively, we restrict here the concept ¬EF and extend the concepts S and ¬S

by the predicate fr. Then we ask whether c is not an exotic fruit. No matter which
interpretation I of the DL-program we consider and irrespective of O, we will always get
that O ∪ λI(a) |= ¬EF (c). Indeed, if fr(c) ∈ I, then λI(a) is unsatisfiable; otherwise
¬EF (c) is explicitly present in λI(a). Hence in both cases, λI(a) |= ¬EF (c). This
means that a is tautologic.

In the rest of this section, we identify for each query type those forms of the input
signature for which the DL-atom is tautologic, or prove nonexistence of such forms.
We first consider concept queries, i.e., queries (¬)C(~t) and (¬)(C v D), and then role
queries, for which similar results hold.

1If B is a negative (resp., positive) assertion, then ¬.B is a positive (resp. negative) assertion and
we can take L0 = {¬B}. If ¬B is not an admissible assertion, we can effect ¬B by a set of possible
more restrictive axioms (e.g. we can enforce a negative role assertion ¬R(a, b) in basic DL-Lite e.g.
by L0 = {∃R v C,∃R v ¬C} and in EL++ (EL with some additional constructs and ⊥ [BBL05])
by L0 = {∃R v ⊥}). Note that if negative assertions were not explicitly available in the DL and the
operators −∪, −∩ disallowed in DL-atoms, still the above construction may be used as e.g. in case of DL-Lite
and EL++, and thus the same characterization of contradictions holds.
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Concept queries

Concept instance. To start with, let us consider the query C(~t). No matter what
input signature is considered for this type of the DL-atom, it can never be tautologic.

Proposition 6.6. For no input signature λ, a ground DL-atom a of the form DL[λ; C](~t)
is tautologic.

Proof. Consider a ground DL-atom a = DL[λ; C](~t). Towards a contradiction, suppose
that λ is a signature such that a is tautologic. Thus by definition, for all ontologies O
and for all interpretations I it holds that O ∪ λI(a) |= C(~t). Thus in particular, for
L = ∅ it holds that λI(a) |= C(~t).

We consider two cases, according to the satisfiability of λI(a). (1) Suppose λI(a) is
unsatisfiable. Then there must exist some S, such that S(~t) ∈ λI(a) and ¬S(~t) ∈ λI(a).
The presence of S(~t) in λI(a) can only be ensured if some S]p occurs in the input
signature λ of a for some p. Now consider the interpretation I = ∅. As p(~t) 6∈ I, we can
not get S(~t) ∈ λI(a), which leads to contradiction.

(2) Now suppose λI(a) is satisfiable. Then C(~t) must be in λI(a). Similar to the
previous case, this requires that C]p occurs in λ for some p. Again I = ∅ does not allow
us to obtain C(~t)∈λI(a), hence λI(a) 6|= C(~t). This contradicts our assumption.

Concept inclusion. For DL-atoms with concept queries of the form C v D and
C 6v D, where C 6=D and neither concept is > or ⊥, we get the same result as for
positive instance queries.

Proposition 6.7. For no input signature λ, a ground DL-atom of the form DL[λ; C v D]()
or DL[λ; C 6v D](), where C 6= D are different concept names, is tautologic.

Proof. Consider a ground DL-atom a = DL[λ; C v D](), and suppose a is tautologic.
Then for every ontology O and interpretation I, it holds that O ∪ λI(a) |= C v D.
Let O = ∅ and I = ∅. Observe that λI(a) is satisfiable, as it contains only negative
assertions. Let c be a fresh constant; then O′ = O∪λI(a)∪{C(c),¬D(c)} is satisfiable,
and O′ 6|= C v D. By monotonicity of |=, it follows O ∪ λI(a) 6|= C v D. Thus a is not
tautologic, which is a contradiction.

The proof for a = DL[λ; C 6v D]() is similar.

Out of the remaining concept queries, only the following (straightforwardly) give rise
to tautologic DL-atoms.

Proposition 6.8. A ground DL-atom of the form DL[λ; Q]() is a tautology iff Q=C v
C, Q=C v >, or Q=> 6v ⊥, for any C ∈ C ∪ {⊥,>}.

Negative concept instance. Finally, we investigate the forms of tautologic DL-atoms
with a query ¬C(~t).

Proposition 6.9. A ground DL-atom a with the query ¬C(~t) is tautologic if and only
if it has one of the following forms:
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c1. DL[λ, C −∩ p, C −∪ p; ¬C](~t),

c2. DL[λ, C −∩ p,D] p,D −∪ p; ¬C](~t),

c3. DL[λ,C−∩p0,C
0 ] p0, C

0−∩p′0,
C1 ] p1, C

1−∩p′1, . . . , Cn ] pn, Cn−∩p′n, C−∪pn+1; ¬C](~t),

c4. DL[λ,C−∩p0,C
0 ] p0, C

0−∩p′0,
C1 ] p1, C

1−∩p′1, . . . , Cn ] pn, Cn−∩p′n, D ] pn+1D−∪p′n+1; ¬C](~t),

where for every i = 0, . . . , n + 1, pi = p′j for some j < i or pi = p0, and p′n+1 = p′ij for
some j ≤ n or p′n+1 = p0.

Proof. Informally, the lists of (c3) and (c4) include a “chain” p = p0 ⊆ pj1 ⊆ pj2 ⊆ pjk =
pn+1 resp. p = p0 ⊆ pj′1 ⊆ pj′2 ⊆ pj′k′ = p′n+1.

(Only If) Consider a tautologic ground DL-atom a of the form (2.3) where Q = ¬C.
By definition of tautologic DL-atom, for all ontologies O and for all interpretations I it
holds that O ∪ λI(a) |= ¬C(~t). In particular, it holds for O = ∅ and I0 = ∅. Note that
λI0(a) must be satisfiable. Indeed for unsatisfiability, some concept D or role R must
occur both positively and negatively in λI0(a). However, as all predicates in I0 are empty,
λI0(a) contains only negative assertions, and thus is satisfiable. As λI0(a) |= ¬C(~t), it
follows that (*) C −∩ p occurs in λ for some p ∈ Pp, (i.e., Si = C, opi = −∩ and pi = p).
Now consider the interpretation I ′ = {p(~t)} and whether λI′(a) is satisfiable or not.

1.) λI′(a) is satisfiable. Then C −∪ p ∈ λ; therefore a is of the form (c1).

2.) λI′(a) is unsatisfiable. Hence S(~t),¬S(~t) ∈ λI′(a) for some S ∈ Po. As S(~t) ∈ λI′(a),
it follows that (**) S ] p occurs in λ. The presence of ¬S(~t) in λI

′(a) is due to some
Si opi pi in λ where Si = S, for which we have the following cases.

2.a opi = −∪. Then pi = p and (***) Si = C, and a is of the form c1.

2.b opi = −∩. As pi(~t) /∈ I ′, we have pi 6= p. Consider now I ′′ = {p(~t), pi(~t)}. If λI′′(a)
is satisfiable, then C −∪ pi ∈ λ. As we have S]p, S−∩pi in λ, we conclude that a is
of the form (c3) (where n = 0, p0 = p, C0 = S, p′0 = pi and p1 = pi).
Otherwise, λI′′(a) is unsatisfiable, i.e., S′(~t),¬S′(~t) ∈ λI′′(a) for some S′. That is,
S′] p′ ∈ λ for some p′ ∈ {p, pi} and either

(i) S′ −∪ q′ ∈ λ for some q′ ∈ {p, pi} or
(ii) S′ −∩ q′ ∈ λ for some q′ (/∈ {p, pi}).

In case (i), the DL-atom a is of the from (c4) where n = 0, p0 = p, C0 = S, p′0 = pi
and p1 = p′ and p′1 = q′.
In case (ii), we can continue the argument, by considering the increased interpreta-
tion I ′′ = I ′∪{q′(~t)}, such that either λI′′(a) is satisfiable and the query is satisfied
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by some element C−∪q′ in λ, or λI′′(a) is unsatisfiable and contains some contra-
dictory pair S′′(~t),¬S′′(~t) etc. Eventually, this case is not encountered again, and
we must have arrived at a list either of the form

C−∩p, S0 ] p0, S
0−∩p′0, S1 ] p1, S

1−∩p′1, . . . , Sn ] pn, Sn−∩p′n, C−∪pn+1 (6.1)

or of the form

C−∩p, S0 ] p0, S
0−∩p′0, . . . , Sn ] pn, Sn−∩p′n, Sn+1 ] pn+1, S

n+1−∪p′n+1 (6.2)

where p0 = p, n ≥ 0, and each pi = p′j for some j < i or pi = p0 and p′n+1 = p′j for
some j ≤ n or p′n+1 = p0 as in (c3) resp. (c4).

(If) Now we show that the forms (c1) – (c4) are indeed tautologic. For any interpre-
tation I, there are two possible cases, where p0 = p: either p(~t) /∈ I or p(~t) ∈ I. In the
former case, as C −∩ p is in the input signature of each form (c1) – (c4), ¬C(~t) is in λI(a)
and thus I |=O a holds. In the case p(~t) ∈ I, consider the forms:

c1. a = DL[λ, C −∩ p, C −∪ p; ¬C](~t). As C −∪ p occurs in the input signature, ¬C(~t) ∈
λI(a) and thus I |=O a.

c2. a = DL[λ, C −∩ p,D] p,D −∪ p; ¬C](~t). Then λI(a) is unsatisfiable as D(~t),¬D(~t) ∈
λI(a).

c3. a = DL[λ,C−∩p0,C
0 ] p0, C

0−∩p′0,
C1 ] p1, C

1−∩p′1, . . . , Cn ] pn, Cn−∩p′n, C−∪pn+1; ¬C](~t)
where for every i = 0, . . . , n + 1, pi = p′j for some j < i or pi = p0. If λI(a) is
unsatisfiable, then I |=O a; so suppose that λI(a) is satisfiable. This implies that,
for every i = 0, . . . , n, it holds that pIi ⊆ p′iI which is enforced by Ci ] pi, Ci−∩p′i in
the input signature. It then follows that there is a chain qI0 ⊆ qI1 ⊆ · · · ⊆ qIk such
that q0 = p0, qk = pn+1, and for each 1 ≤ h ≤ k, if qh = pi for some i then qh−1 is
the ‘witness’ p′ij of pi, and otherwise, i.e., if qh = p′i for some i, then qh−1 = pi; in
fact, the same chain exists in every I such that λI(a) is satisfiable, so in abuse of
notation we write q0 ⊆ q1 ⊆ · · · ⊆ qk.
As p0(~t) ∈ I, it follows that pn+1(~t) ∈ I, and therefore ¬C(~t) ∈ λI(a). Thus,
I |=O a.

c4. a = DL[λ,C−∩p0,C
0 ] p0, C

0−∩p′0, C1 ] p1, C
1−∩p′1, . . . ,

Cn ] pn, Cn−∩p′n, D ] pn+1D−∪p′n+1; ¬C](~t)
where for every i = 0, . . . , n+ 1, pi = p′j for some j < i or pi = p0 and p′n+1 = p′ij
for some j ≤ n or p′n+1 = p0. Similarly as for the form (c3), assuming that
λI(a) is satisfiable we obtain that there is a chain q0 ⊆ q1 ⊆ · · · ⊆ qk (using the
notation from above) where q0 = p0, qk = pn+1, such that pn+1(~t) ∈ I, and thus
D(~t) ∈ λI(a). Furthermore, there is a chain r0 ⊆ r1 ⊆ · · · ⊆ rk′ such that r0 = p0,
rk′ = p′n+1, and p′n+1(~t) ∈ I, thus ¬D(~t) ∈ λI(a); hence λI(a) is unsatisfiable,
which is a contradiction.
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As in all cases either ¬C(~t) ∈ λI(a) or λI(a) is unsatisfiable, it follows I |=O a. As
O and I are arbitrary, a is tautologic.

Example 6.10 (cont’d). The DL-atom a = DL[EF −∩ fr, S −∪fr, S ] fr; ¬EF ](c) is
an example of the tautologic form (c2). However, the DL-atom in the program of
Example 6.1 is not of any form (c1)–(c4), and thus in general not tautologic.

Role queries

A careful analysis reveals that the result for tautologic DL-atoms with concept instance
queries carries over to the case when the query Q(~t) is a role instance query. The
same holds for negative concept and role instance queries, when the concept names
C,D are replaced with names R1, R2 (and the predicates p, q are binary). For the
latter consider a = DL[λ; ¬R](~t) that is tautologic. Following the analysis in Proposi-
tion 6.9, which is generic in the arity of the tuple ~t, necessarily the existence of roles
R1 and R2 instead of C resp. D, and binary instead of unary input predicates p and q
can be concluded, For example, the form (c3) above for the role query ¬R1 results in
DL[γ, R1 −∩ p,R2 −∩ q,R2 ] p,R2 −∪ q; ¬R1](~t), where R1, R2 are roles and p, q are binary
predicates. More formally, the following is obtained.

Proposition 6.11. Propositions 6.6 and 6.9 hold if C and D are replaced by role names
R1 and R2, respectively (and p and q are binary instead of unary).

Thus, as an interesting consequence, there is no interference of concept and role
names in tautologic DL-atoms.

Axiomatization

Based on the results above, we obtain a calculus for the derivation of all tautologic
DL-atoms as follows.

The axioms are:

a0. DL[; Q](),

a1. DL[S −∩ p, S −∪ p; ¬S](~t),

a2. DL[S −∩ p, S′ ] p, S′ −∪ p; ¬S](~t),

where Q=S v S, Q=S v >, or Q=> 6v ⊥, S, S′ are either distinct concepts or distinct
roles, and p is a unary resp. binary predicate.

The first rule of inference is reflecting the monotonicity of DL-atoms wrt. increasing
input signatures:

Expansion

DL[λ; Q](~t)
DL[λ, λ′; Q](~t)

(e).
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The following rules state that an update predicate p may be replaced by q, if the latter
has in case of consistent update λI(a) a larger value than p:

Increase

DL[λ, S ] q, S′ ] p, S′−∩q; Q](~t)
DL[λ, S ] p; Q](~t)

(in]),
DL[λ, S−∪q, S′ ] p, S′−∩q; Q](~t)

DL[λ, S−∪p; Q](~t)
(in−∪).

Let Ktaut denote the respective calculus.

Lemma 6.12. Every ground DL-atom a of form (c1) – (c4) is derivable from axioms
a1 and a2 using the rules (e), (in]), and (in−∪).

Proof. Forms (c1) and (c2) can be obviously obtained from a1 and a2 (where (c2) with
D = C is obtained from a1 and rule (e)).

Form (c3) is obtained from the instance DL[C−∩p, C−∪p; ¬C](~t) of a1 by repeated
application of the rule (in−∪) that replaces, along the chain q0 ⊆ q1 ⊆ · · · ⊆ qk for a as
in the proof of Proposition 6.9, C−∪qh, 0 ≤ h < k with C−∪p′i, Ci ] pi, Ci−∩p′i given that
qh = pi, and by then applying rule (e) to fill up the form.

Form (c4) is obtained from the instance DL[C−∩p,D ] p,D−∪p; ¬C](~t) of a2 by simi-
larly repeated application of the rule (in]) that replaces, along the chain q0 ⊆ q1 ⊆ · · · ⊆
qk for a as in the proof of Proposition 6.9 D ] qh, 0 ≤ h < k with D ] p′i, Ci ] pi, Ci−∩p′i
given that qh = pi, and along the chain r0 ⊆ r1 ⊆ · · · ⊆ rk′ for a as in the proof of
Proposition 6.9 D−∪rh, 0 ≤ h < k′ with D−∪p′i, Ci ] pi, Ci−∩p′i given that rh = pi, and by
then applying rule (e) to fill up the form.

Since also correctness of the rules is easily established we have:

Theorem 6.13. The calculus Ktaut is sound and complete for the theory of tautologic
ground DL-atoms.

Proof. Soundness. It is easily seen that the rules (e), (in−∪), and (in]) are sound. Indeed
if a′ results from a by rule (e), then λI(a′) ⊇ λI(a); if a′ results from a by rule (in])
resp. (in−∪), then either λI(a′) is unsatisfiable or again λI(a′) ⊇ λI(a) (and in case of
satisfiability pI ⊆ qI must hold).

Completeness. The completeness of the theory follows, as regards concept queries,
from Propositions 6.6–6.9, and Lemma 6.12, and as regards roles from Proposition 6.11.

Notice that in fact Ktaut is minimal, i.e., no axiom scheme or inference rule is redun-
dant.
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6.2 Independence under Inclusion

In the previous section, we considered the existence of contradictory and tautologic DL-
atoms in DL-programs in the general case, assuming that the rules of the DL-program
are arbitrary. However, by simple analysis or by assertions, we might have information
about the relationship between rule predicates that must hold in any model or answer
set.

For example, suppose that a DL-program contains the rule

q(X)← p(X). (6.3)

It imposes an inclusion constraint on the predicates p and q, i.e., for every model I of
the program, pI ⊆ qI must hold. If p and q are input predicates for DL-atoms, then the
rule (6.3) might affect the independence behavior of a DL-atom in the program: relative
to the inclusion constraint, it might be tautologic. Similar rules might state inclusions
between binary input predicates, e.g.

q(X,Y )← p(X,Y ), (6.4)

q(Y,X)← p(X,Y ); (6.5)

also projections, e.g.
r(X)← p(X,Y ), or r(Y )← p(X,Y ), (6.6)

(of p on r) might occur. An interesting question is how the presence of such predicate
constraints influences the independence behavior, which we address in this section.

We call any rule
q(Y1, . . . , Yn)← p(X1, . . . , Xm) (6.7)

where n ≤ m and the Yi are pairwise distinct variables from X1, . . . , Xm an inclusion
constraint (IC); if n=m, we also write p ⊆ q if Yi =Xi and p ⊆ q− if Yi =Xn−i+1,
for all i= 1, . . . , n. Moreover, for the calculus for tautologic DL-atoms under inclusion
constraints as developed in this section, we consider an extended language including p−
as a name, representing for every p ∈ Po its inverse as defined above. By Cl(C) we
denote the closure of C, i.e., the set of all ICs which are satisfied by every interpretation
I such that I |= C. In particular note that p ⊆ q− |= p− ⊆ q.

Let us now consider the impact of a set C on independence. To this end, we consider
independence relative to C, i.e., the interpretations I, I ′ in Definition 6.2 must satisfy C.

Example 6.14 (cont’d). Reconsider P in Example 6.1. We can include rule (2) (also
written ex ⊆ vi) as an inclusion constraint to the set C, and also rule (4). Moreover, as
none of the fruits is known to be bitter in our context, we additionally include ex ⊆ sw in
C. The closure Cl(C) moreover contains the ICs vi(X)← so(X,Y ) and sw ← so(X,Y ).
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6.2.1 Contradictory DL-atoms

In what follows, we show that the presence of inclusion constraints C does not change
the result regarding contradictory DL-atoms as obtained for the general case.

Proposition 6.15. Let a = DL[λ; Q](t) be a ground DL-atom. Then a is contradictory
relative to a set C of inclusion constraints iff λ = ε and Q(t) is unsatisfiable.

Proof. (If) Identical to the if-part of the proof of the Proposition 6.4.
(Only If) We use the same reasoning as in Proposition 6.4. If λ 6= ε then we can

always find an interpretation I0 such that λI0(a) 6= ∅; indeed, we can use I0 = ∅, if −∩
occurs in λ, and use I0 = HBΠ, i.e., the set of all ground atoms, otherwise.

6.2.2 Tautologic DL-atoms

Next we investigate how the list of tautologies is modified when inclusion constraints are
put on the predicates involved in them.

As we have noted above, the minimal forms of tautologic DL-atoms with concept
(resp., role) queries involve only concepts and unary input predicates (resp., roles and
binary input predicates).

An inclusion constraint of the form (6.6) in C (or the DL-program) will not al-
low us to get any further tautologic forms. E.g., consider the tautologic DL-atom
DL[R −∩ p,R −∪ p; ¬R](~t) we intuitively should get that DL[R −∩ r,R −∪ p; ¬R](~t) is also tau-
tologic. However, this is not a legal DL-atom, as the role R is extended by the unary
predicate r.

Dependencies of the form (6.5) do not allow us to obtain new tautologic DL-atoms
either. For example, consider a ground DL-atom DL[R −∪ p,R −∩ p; ¬R](a, b), which has
the form of axiom a1. If we replace the first occurrence of p by q, the resulting DL-
atom DL[R −∪ q,R −∩ p; ¬R](a, b) is not tautologic. However, for a constraint (6.4), it is
tautologic; it also would be in the former case if the query argument is (a, a).

The following can be shown. For any DL-atom a = DL[λ; Q](~t) and set C of ICs, let
inpa(C) denote the set of all q(~Y )← p( ~X) in C such that p and q occur in λ. We call C
separable for a, if every ic ∈ inpa(Cl(C)) involves predicates of the same arity.

Proposition 6.16. Let a = DL[λ; Q](~t) be a ground DL-atom and C a separable set
of ICs for a. Then a is tautologic relative to C iff it is tautologic relative to C′ which
contains, depending on the type of Q(~t), the following constraints: (1) C′ = ∅, in case
of a (negated) concept inclusion; (2) every p ⊆ q in inpa(Cl(C)) where p, q are unary, in
case of a (negated) concept instance; (3) every p ⊆ q and p ⊆ q− in inpa(Cl(C)) where
p, q are binary, in case of a (negated) role instance.

Proof (sketch). Every model I of C is a model of C′. On the other hand, by the form of
the ICs, every model I ′ of C′ can be extended to an interpretation I such that I |= C.
In general, the intersection I of all models I ′′ ⊇ I ′, which is given by the answer set of
C ∪ I ′, fulfills the claim. Indeed, a fact a = q(~c) can be in I iff it is provable from I ′

using a sequence r1, r2, . . . , rk of rules from C. As all rules are unary, a can be proved

143



from some fact a′ = p(~c′) in C; unfolding the rules, we obtain a rule r of the form
q(~Y ) ← p( ~X), where ~Y = Y1, . . . , Ym are distinct variables from ~X = X1, . . . , Xn. As
C |= r and C is separable for a, it follows that m = n and thus r ∈ C′, which implies
a′ ∈ I ′. Consequently, I is an extension of I ′ as claimed.

That is, for negative role queries we must in general take inverse predicate inclusions
into account. To this end, we consider a language including for every p ∈ Pp a name
p− for its inverse (as defined in the paper). Such an inverse can be also effected by
means of inclusions q(Y,X)← p(X,Y ) and p(Y,X)← q(X,Y ) in the set C of inclusion
constraints (where q is then p− and p is q−).

Each rule q(Y1, Y2)← p(X1, X2) in C is then either an inclusion p ⊆ q or an inclusion
p ⊆ q−. Note that p ⊆ q iff p− ⊆ q− and that for unary predicates, p− = p and is thus
immaterial; furthermore, viewing ·− as an operator, (p−)− = p. We let P(−)

p = Pp∪{p− |
p ∈ Pp}. To see some examples, consider the tautologic form (c1) in Proposition 6.9.
Taking the inclusion constraint p ⊆ q into account, we obtain the following new tautologic
form:

- DL[λ, S −∩ p, S′ −∪ q; ¬S](~t).

The form (c2) yields

- DL[λ, S −∩ p, S′ −∪ q, S′ ] p; ¬S](~t), where p 6= q, S′ 6= S;

- DL[λ, S −∩ p, S′ −∪ p, S′ ] q; ¬S](~t), where p 6= q, S′ 6= S;

- DL[λ, S −∩ p, S′ −∪ q, S′ ] q; ¬S](~t), where p 6= q, S′ 6= S.

From the tautological DL-atom we get

- DL[λ, S −∩ p, S′ ] q, S′ −∩ r, S′ −∪ r; ¬S](~t), where S′ 6= S, p 6= r, q 6= r, p 6= q.

Tautologic forms emanating from (c4) are redundant here, because its modification
for the considered case is already included above. For the cases when the DL-query has
any of the forms S(~c), C v D or C 6v D, where S is either a concept or a role and C,D
are concepts, there are no new tautologies.

6.2.3 Axiomatization for Tautologies

The results presented above allow us to define rules of inference for deriving tautologies
when inclusion constraints are put on the input predicates of a DL-atom.

Inclusion DL[λ, S −∪ p; Q](~t) p ⊆ q
DL[λ, S −∪ q; Q](~t)

(i1),
(6.8)

DL[λ, S ] p; Q](~t) p ⊆ q
DL[λ, S ] q; Q](~t)

(i2).
(6.9)
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The “increase” rules are slightly adapted, in comparison to the general case by taking
into account that p ⊆ q iff p− ⊆ q−:
Increase

DL[λ, S]p; Q](~t)
DL[λ, S]q, S′]p, S′−∩q; Q](~t)

(in]),
DL[λ, S−∪p; Q](~t)

DL[λ, S−∪q, S′]p, S′−∩q; Q](~t)
(in−∪),

DL[λ, S]p; Q](~t)
DL[λ, S]q, S′]p−, S′−∩q−; Q](~t)

(in−] ),
DL[λ, S−∪p; Q](~t)

DL[λ, S−∪q, S′]p−, S′−∩q−; Q](~t)
(in−−∪),

where p, q ∈ P(−)
p are of the same arity.

We consider the following extended set of axioms compared to the case without
inclusion constraints:

a0. DL[; Q](),

a1. DL[S −∩ p, S −∪ p; ¬S](~t),

a2. DL[S −∩ p, S′ ] q, S′ −∪ q; ¬S](~t), where q ∈ {p, p−},

and Q=S v S, Q=S v >, or Q=> 6v ⊥, S, S′ are either distinct concepts or distinct
roles; moreover, p is a unary or binary predicate.

The described axioms and rules together with the expansion rule defined above, form
a calculus for the derivation of tautologic DL-atoms, which we denote by K⊆taut .

Lemma 6.17. Let a = DL[λ; Q](~t) be a ground tautologic DL-atom relative to a sepa-
rable set C of inclusion constraints for a. Then a′ = DL[λ′; Q](~t) where λ′ contains all
Si opi pi from λ such that pi has the same arity as the predicates in Q is also tautologic
(and C is separable for a′).

Proof. Consider the DL-atoms a and a′ defined as above. By Proposition 6.16, without
loss of generality we may assume that C = inpa(Cl(C)) and each predicate p occurring
in C has the arity of the predicates occurring in Q; note that p occurs in λ′. Towards a
contradiction, suppose that a′ is not tautologic. Hence there exists some O and I such
that I 6|=O a′. That is, O ∪ λI(a′) 6|= Q(~t). Hence, by monotonicity λI(a′) 6|= Q(~t), so
without loss of generality O = ∅.

Let I ′ be the extension of I such that all predicates not occurring in λ′ are empty.
Note that I ′ |= C. As λ′ ⊆ λ, it follows that λI′(a) is of the form λI

′(a) = λI
′(a′) ∪ S =

λI(a′)∪S, where S is set of negative literals whose predicates do neither occur in λI(a′)
nor in Q (they have different arity). Hence, as λI′(a) is satisfiable and λI(a′) 6|= Q(~t),
it follows that λI′(a) 6|= Q(~t). This, however means that for O = ∅, I 6|=O Q(~t), which
means that a is not tautlogic relative to C. This is a contradiction.

As an immediate consequence, we obtain:
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Corollary 6.18. Every minimal form of a tautologic ground DL-atom a = DL[λ; Q](~y)
(i.e., λ can not be replaced with λ′ ⊂ λ) relative to a separable set C of inclusion con-
straints for a, involves only predicates of the same arity as the DL-query of a.

The main result of this section, following next, is its soundness and completeness.

Theorem 6.19. The calculus K⊆taut is sound and complete for tautologic ground DL-
atoms a relative to any closed set of inclusion constraints C (i.e., such that C = Cl(C))
that is separable for a.

Proof. Soundness. From Theorem 6.13, it follows that all instances of the axiom schemata
a0–a2 are sound relative to C. Furthermore, it is not difficult to establish that its
inference rules are sound. Indeed, whenever a DL-atom a′ results from a DL-atoms
a = DL[λ; Q](~t) by any of the rules, then for every interpretation I, either λI(a′) is un-
satisfiable or λI(a′) ⊇ λI(a), and thus asO∪λI(a) |= Q(~t), it holds thatO∪λI(a′) |= Q(~t)
by monotonicity, for every ontology O.
Completeness. Assume that a = DL[λ; Q](~t) of the form (2.3) is a tautologic relative
to a closed set C of constraints that is separable for a. Without loss of generality, by
Corollary 6.18 and the expansion rule a is minimal, and thus contains only predicates
of the same arity as the DL-query Q of a, and by Proposition 6.16 we may assume that
C = inpa(C). We consider different cases according to Q.

(I) Q = C v D (Q = ¬(C v D)). By Proposition 6.16, a is a tautologic relative to C
iff it is tautologic relative to C′ = ∅. By the completeness of Ktaut for C′ = ∅ and since
K⊆taut subsumes Ktaut , a is provable in K⊆taut .

(II) Q = C or Q = ¬C. By assumption, C contains only inclusions p ⊆ q, where p and
q are unary.

Next, we argue for the DL-atoms with query C(~t) and ¬C(~t) separately.

- Q = C(~t). According to Proposition 6.6, for no λ a DL-atom DL[λ; C](~t) is
tautologic if C = ∅. In fact the situation does not change even if C 6= ∅. Indeed, the
presence of inclusion constraints p ⊆ q in C still allows us to consider interpretation
I0 = ∅ for which, as shown in the proof of Proposition 6.6, we can never find an
input signature λ of a such that λI0(a) |= C(~t). So a can not be of this form.

- Q = ¬C(~t). Similar as in the proof of Proposition 6.9, we conclude that λ must
contain some (*) C−∩p, by considering I0 = ∅, as I0 |= C. Now let I ′ ⊇ {p(~t)} be the
least interpretation such that I ′ |= C. We distinguish whether λI′(a) is satisfiable
or not.

(a) λI′(a) is satisfiable. Then ¬C(t) ∈ I ′, which implies that C −∪ q ∈ λ and that
p ⊆ q. But then a is derivable from the instance DL[C−∩p, C−∪p; ¬C](~t) of axiom
a1 using rule (i1).
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(b) λI′(a) is unsatisfiable. Hence S(~t),¬S(~t) ∈ λI
′(a) for some S ∈ Po. As

S(~t) ∈ λI′(a), it follows that (**) S ] p′ occurs in λ such that p ⊆ p′.
The presence of ¬S(~t) in λI

′(a) is due to some Si opi pi in λ where Si = S, for
which we consider the following possible cases:

(b.1) opi = −∪. Then S −∪ q ∈ λ such that p ⊆ q. But then a is derivable if S = C,
from the instance DL[C−∩p, C−∪p; ¬C](~t) of a1, using (i1) and (e), and if S 6= C
from the instance DL[C−∩p, S ] p, S−∪p; ¬C](~t) of a2 by applying the rules (i2) on
S ] p and (i1) on S−∪p, respectively.
(b.2) opi = −∩. I.e., we have S−∩pi ∈ λ, and as ¬S(~t) ∈ λI′(a), it follows that p 6⊆ pi.
Let now I ′′ ⊇ {p(~t), pi(~t)} be the least interpretation such that I ′′ |= C.
If λI′′(a) is satisfiable, then some C−∪q′ ∈ λ such that C |= pi ⊆ q′. In this case, a
is derivable from an instance DL[C−∩p, C−∪p; ¬C](~t) of a1 by applying

• rule (i1) on C−∪p for p ⊆ p′, which yields DL[C−∩p, C−∪p′; ¬C](~t); then
• rule (in−∪) on C−∪p′ for introducing S−∩pi, which yields

DL[C−∩p, C−∪pi, S]p′, S−∩pi; ¬C](~t);
• rule (i1) on C−∪pi for pi ⊆ q′, which yields

DL[C−∩p, C−∪q′, S]p′, S−∩pi; ¬C](~t);

and filling up λ with rule (e).
Otherwise, λI′′(a) is unsatisfiable, i.e., S′(~t),¬S′(~t) ∈ λI

′′(a) for some S′. This
implies that S′] p′′ ∈ λ for some p′′ such that either p ⊆ p′′ or pi ⊆ p′′, and either

(i) S′ −∪ q ∈ λ, such that p ⊆ q or pi ⊆ q, or
(ii) S′ −∩ q ∈ λ such that p 6⊆ q and pi 6⊆ q.

In case (i), we thus have C−∩p, S]p′, S−∩pi, S′]p′′, S′−∪q in λ such that p ⊆ p′, and
either (a) p ⊆ p′′ or (b) pi ⊆ p′′, as well as either (1) p ⊆ q or (2) pi ⊆ q, holds.
We can derive a from the instance DL[C−∩p, S′]p, S′−∪p; ¬C](~t) of axiom a1 by
applying, depending on the emerging four possible combinations, the following
rules:

- (a1): p ⊆ p′′ and p ⊆ q
– (i2) on S′]p for p ⊆ p′′,
– (i1) on S′−∪p for p ⊆ q, and
– fill up with rule (e);

- (b2): pi ⊆ p′′ and pi ⊆ q
– (i2) on S′]p for p ⊆ p′,
– (i1) on S′−∪p for p ⊆ p′,
– (in]) on S′]p′ to introduce S′]pi, S]p′, S−∩pi,
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– (in−∪) on S′−∪p′ to introduce S−∪pi, S]p′, S−∩pi,
– (i2) on S′]pi for pi ⊆ p′′,
– (i1) on S′−∪pi for pi ⊆ q, and finally,
– fill up with rule (e).

- (a2): p ⊆ p′′ and pi ⊆ q
– (i2) on S′]p for p ⊆ p′′,
– (i1) on S′−∪p for p ⊆ p′,
– (in−∪) on S′−∪p′ to introduce S′−∪pi, S]p′, S−∩pi,
– (i1) on S′−∪pi for pi ⊆ q, and finally,
– fill up with rule (e).

- (b1): pi ⊆ p′′ and p ⊆ q
– (i1) on S′−∪p for p ⊆ q,
– (i2) on S′]p for p ⊆ p′,
– (in]) on S′]p′ to introduce S′]pi, S]p′, S−∩pi,
– (i2) on S′]pi for pi ⊆ p′′, and
– fill up with rule (e).

In case (ii) we can continue the argument, by considering the least interpretation
I ′′′ ⊇ I ′′ ∪ {q(~t)} such that I ′′′ |= C. This I ′′′ exists and either λI′′′(a) is satisfiable
and the query is satisfied by some element C−∪q′ in λ, or λI′′′(a) is unsatisfiable and
contains some contradictory pair S′′(~t),¬S′′(~t) etc. Eventually, we must arrive at
a list of form similar to (6.1), viz.

C−∩p, S0 ] p0, S
0−∩p′0, S1 ] p1, S

1−∩p′1, . . . , Sn ] pn, Sn−∩p′n, C−∪pn+1 (6.10)

or to (6.2), viz.

C−∩p, S0 ] p0, S
0−∩p′0, . . . , Sn ] pn, Sn−∩p′n, Sn+1 ] pn+1S

n+1−∪p′n+1 (6.11)

where p0 ⊇ p, n ≥ 0, and each pi ⊇ p′j for some j < i or pi ⊇ p0 and p′n+1 ⊇ p′j for
some j ≤ n or p′n+1 ⊇ p0; that is, instead of equalities “=” between predicates we
have inclusion “⊇”.
Now in case of form (6.10), similarly as for form (6.1) in the proof of the if-part
of Proposition 6.9, we conclude that there is a chain qI0 ⊆ qI1 ⊆ · · · ⊆ qIk for the
eventual interpretation I such that q0 = p, qk = pn+1, and for each 1 ≤ h ≤ k, (*)
if qh = pi for some i and h > 1, then qh−1 is the ‘witness’ p′ij of pi, and otherwise,
i.e., (**) if qh = p′i for some i, then qh−1 = pi; again, the same chain exists in every
I such that λI(a) is satisfiable, so we simply write q0 ⊆ q1 ⊆ · · · ⊆ qk.
We then can derive a from the instance DL[C−∩p, C−∪p; ¬C](~t) of axiom a1 by
repeated application of the rules (i1) and (in−∪) along the chain q0 ⊆ q1 ⊆ · · · ⊆ qk,
where we replace C−∪p by C−∪p0 applying (i1) and then replace C ] qh, 1 ≤ h < k,
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in case (*) with C−∪pi applying (i1) and in case (**) with C−∪p′i, Ci]pi, Ci−∩p′i; after
that, we apply rule (e) to fill up the form.
In case of form (6.11), we conclude that similarly as for (6.2) and (6.10), that there
is a chain qI0 ⊆ qI1 ⊆ · · · ⊆ qIk for the eventual interpretation I such that q0 = p,
qk = p′n+1, and for each 1 ≤ h ≤ k, (*) if qh = pi for some i and h > 1, then
qh−1 is the ‘witness’ p′ij of pi, and otherwise, i.e., (**) if qh = p′i for some i, then
qh−1 = pi, and a chain rI0 ⊆ rI1 ⊆ · · · ⊆ rIk′ such that r0 = p, rk′ = pn+1, and for
each 1 ≤ h ≤ k, (*) if rh = pi for some i and h > 1, then rh−1 is the ‘witness’ p′ij
of pi, and otherwise, i.e., (**) if rh = p′i for some i, then rh−1 = pi.
We can then derive a from the instance DL[C−∩p, S ] p, S−∪p; ¬C](~t) of a2 along
these chains, by repeated application of the rules (i1), (i2), (in]), and (in−∪) along
the chains q0 ⊆ q1 ⊆ · · · ⊆ qk, and r0 ⊆ r1 ⊆ · · · ⊆ rk′ , where we first replace S]p
by S]p0 applying (i2) and S−∪p by S−∪p0 applying (i1), and then process the chain
q0 ⊆ q1 ⊆ qk using (i2) and (in−∪), and the chain r0 ⊆ r1 ⊆ · · · ⊆ rk′ using (i1) and
(in]), where the application of (in]) and (in−∪) introduces the terms Si]pi, Si−∩p′i;
finally, rule (e) is applied to fill up the form.

- Q = R(~t). Similar as the case of Q = C(~t) (cf. Propositions 6.6 and 6.11), where
all roles are binary instead of unary).

- Q = ¬R(~t). The proof for this case is similar as for the case where Q = ¬C(~t), but
here also inverse predicates p− come into play. Note that in the argument for the
concept query case, only interpretations I, I ′ etc with facts involving the query
tuple ~t play a role. For role queries, we can see that similarly interpretations with
facts over ~t = (t1, t2) and its inverse ~t− = (t2, t1) are sufficient: indeed, from any
interpretation I such that I 6|=O a we can remove all facts S(~t′), ~t′ 6= ~t,~t− and
the resulting interpretation I ′ satisfies I ′ 6|=O a. In fact, by taking into account
that I |= p(~t−) iff I |= p−(~t) it is sufficient to consider interpretations of Pp on the
query tuple ~t, coherently extended to the vocabulary P(−)

p .
The line of argumentation is then analogous as for a concept query ¬C(~t), where
one takes also inverse predicates into account. Note that a new tautologic form
emerges, viz. DL[S −∩ p, S′ ] p−, S′ −∪ p−; ¬S](~t) as in axiom a2, and that by the
equivalence of p ⊆ q and p− ⊆ q− respective variants (in−] ) and (in−−∪) of (in]) and
(in−∪) are added. The given calculus is in fact complete for the extended language.

We use our running example to illustrate the application of K⊆taut .

Example 6.20 (cont’d). Reconsider the DL-program in Example 6.1, and recall that
no ground instance of its DL-atom, in particular

a = DL[H ] vi,H −∪ sw,A −∩ ex; ¬A](pineapple)
is tautologic.
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Now let us take the predicate constraints in P into account. Recall that essentially by
the rules (2) and (3), we have that {ex ⊆ vi, ex ⊆ sw}⊆Cl(C) (which is also separable
for a).

We thus can derive a in K⊆taut given C as follows:

DL[H ] ex,H −∪ ex,A −∩ ex; ¬A](pineapple)
DL[H ] ex,H −∪ ex,A −∩ ex; ¬A](pineapple) ex ⊆ vi

DL[H ] vi,H −∪ ex,A −∩ ex; ¬A](pineapple)
(i2)

ex ⊆ sw
DL[H ] vi,H −∪ sw,A −∩ ex; ¬A](pineapple)

(i1)

The leaf of the proof tree is a DL-atom DL[H ] ex,H −∪ ex,A −∩ ex; ¬A](pineapple). It
has the form of axiom a2. Hence the initial DL-atom a is, by virtue of Theorem 6.19,
tautologic relative to C.

The results of this section can be readily used for optimization or reasoning tasks on
DL-programs that involve ground DL-atoms, especially DL-program repair computation.
They can moreover be exploited for dealing with non-ground DL-atoms. We may call
such a DL-atom a = DL[λ; Q]( ~X) independent (resp. contradictory, tautologic), if each
of its ground instances has this property. From the results above, we obtain that there
are no contradictory nonground DL-atoms, and that for proving that a is tautologic, it
is sufficient to consider a single instance a (particular constants do not matter, and for
role queries (¬)R(t1, t2), considering different constants if possible).

Example 6.21. In our running example, e.g., the instance of a for X = pineapple is
tautologic relative to the constraints; hence a is tautologic and can be removed from
rule (5).

6.3 Complexity

Let us now consider the complexity of determining whether a DL-atom a is independent.
To determine whether a is contradictory is trivial, given the simple forms of unsatisfiable
DL-queries. For determining whether a is tautologic, we can use the calculus K⊆taut
established above, and aim at a derivation of a. In the search, we need an oracle for
deciding whether ic ∈ Cl(C), for a given IC ic and C, to see whether a rule is applicable.

The complexity of this oracle is in fact the dominating factor for the search. Indeed,
the inclusion rules of K⊆taut work strictly local, in the sense that they only replace one
occurrence of an input predicate by another one, and few independent rule applications
are needed to arrive at an axiom (see below).

The complexity of deciding, given an IC ic and a set C of ICs, whether ic ∈ Cl(C),
depends on the form of the ICs. In general, the problem is decidable in polynomial
space, and it is NLogSpace-complete if the arities of the predicates in C are bounded by
a constant k. In particular, for k = 2 deciding ic ∈ Cl(C) if all predicates in ic have the
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same arity, is possible using the following inference rules:

X ⊆ Y Y ⊆ Z
X ⊆ Z

X ⊆ Y
X− ⊆ Y −

X− ⊆ Y −
X ⊆ Y (6.12)

where X,Y, Z are meta variables which denote unary (binary) predicates. On the other
hand, the problem is NLogSpace-hard for every k ≥ 1 as it subsumes graph reachability.

We have the following result.

Theorem 6.22. Given a DL-atom a and a separable set C of ICs for a, deciding whether
a is tautologic relative to C is (i) NLogSpace-complete and NLogSpace-hard even if C = ∅,
and is (ii) in LogSpace, and in fact expressible by a fixed first-order formula (hence in
AC0), if the DL query Q of a is not a negative concept resp. role query.

Proof (sketch). By the above results on K⊆taut , we need an oracle for ic ∈ Cl(C), where ic
involves only unary resp. binary predicates. Due to the special form of ICs, ic ∈ Cl(C) iff
ic ∈ Cl([C]2), where [C]2 is the set of all ICs in C that involve only unary and/or binary
predicates. Thus, by the observation above, an NLogSpace oracle is sufficient.

To prove that a = DL[λ; Q](~t) is tautologic, we can guess an instance of an axiom ai
from which we want to arrive at a by application of rules in K⊆taut . Checking that Q(~t)
matches the query of ai is easy, and we can check in case of a1, a2 that S−∩p occurs in
λ; we then can check whether S−∪p resp. S′ ] p(−), S′−∪p(−) occur in λ, and if not, in case
of a1 build nondeterministically a “chain” q0(= p) ⊆ q1 ⊆ · · · ⊆ qk such that S′−∪qk ∈ λ
and in case of a2 also a “chain” r0(= p) ⊆ r1 ⊆ · · · ⊆ rk′ such that S′ ] qk′ ∈ λ, where
for every qi, we have that either qi−1 ⊆ qi (which can be checked with the oracle), or
some pair S′′ ] q(−)

i−1, S
′′−∩q(−)

i occurs in λ and similarly, for every rj we have that either
rj−1 ⊆ rj (an oracle check), or some pair S′′]r(−)

j−1, S
′′−∩r(−)

j occurs in λ; building a chain
stops as soon as S′−∪qi ∈ λ resp. S′ ] ri ∈ λ is found (it may else stop after a certain
number of steps, but this is irrelevant here).

A simple analysis reveals that this overall algorithm is feasible, relative to the ora-
cle, in logarithmic space (one can cycle through the few guesses with constantly many
variables, and building chains as above is feasible in nondeterministic logarithmic space,
as we just need to memorize qi, p0, pn+1 resp. p′n+1, and S′). It follows that in general,
the problem is in NLogSpace.

The problem is shown to be NLogSpace-hard via a reduction from the canonical
graph reachability problem. Let G = (V,E) be a directed graph and let s, t ∈ V
be nodes. We view each node v ∈ V as a unary predicate, and define the DL-atom
a = DL[C−∩s, λ, C−∪t; ¬C](a) where λ contains for each edge (v, w) ∈ E the elements
C(v,w) ] v, C(v,w)−∩w, where C(v,w) does not occur elsewhere. Then it holds that a is
tautologic (wrt. C = ∅) iff t is reachable from s in G. Indeed, note that by its form,
a must be derived from an instance DL[C−∩s, C−∪t; ¬C](a) of a1, and that for this a
chain q0 = s ⊆ q1 ⊆ · · · ⊆ qk = t must be built to obtain C−∪t, and only the rule
(in−∪) is applicable. This chain corresponds to a path in G from s to t. Conversely from
any path s = v0, v1, . . . vk = t in G, we can build a corresponding chain with elements
C(v,w) ] v, C(v,w)−∩w in λ using the rule (in−∪).
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Finally, if Q is not a negative concept resp. role query, then for a to be tautologic it
must be an instance of a0, which is checkable in logarithmic space and also expressible
by a FOL formula φ over a relational structure (roughly, a plain SQL query over a
database) that stores in suitable relations: all triples Si opi pi in λ, using Si, opi, and pi
as constants; the query Q(~t); and all inclusions p ⊆ q(−) from Cl(C). In fact, φ can be
fixed, and the relations are easily assembled from a and C. As evaluating a fixed FOL
formula over relational structures is in AC0, we obtain the result.

6.4 Discussion and Outlook
To the best of our knowledge, the notion of independent DL-atom has not been consid-
ered before, which is of use in optimization and for reasoning tasks on DL-programs. We
investigated the forms of tautologic and contradictory ground DL-atoms in the general
case, as well as in the case when inclusion constraints on the input predicates are known.
We showed that contradictory DL-atoms have a simple form, and we presented a sound
and complete calculus for determining tautologic DL-atoms. Based on it, we determined
the complexity of deciding this problem, and showed that the problem is very efficiently
solvable in general, as well as relative to the predicate constraints. Furthermore, the
results for ground DL-atoms can be easily lifted to deal with nonground DL-atoms, and
an implementation of the calculus using logic programming is rather straightforward.
Incorporation of the latter into the dlvhex system remains for future work.

Several issues remain for further investigation. A possible extension is to consider DL
queries which allow for non-atomic concepts, respectively roles. Some of our results can
be readily extended to such queries (e.g., to conjunctive concept/role queries), but to get
a clear picture further work is needed. As an alternative, or in addition to ICs, further
information about the DL-program might be available relative to which independence
of a DL-atom can be established. Regarding predicate constraints, one issue is non-
separable sets of inclusion constraints, i.e., to permit projections among input predicates
of DL-atoms, for which the presented calculus is sound but not complete. One can
also imagine more general inclusion constraints, by relaxing the conditions to allow e.g.
repetition of arguments, or inclusion of intersections. Other possibilities are to consider
exclusion constraints, or (non-)emptiness constraints on predicates. Adopting a technical
view, we could consider arbitrary sets of constraints that describe an envelope of the set
of answer sets of the underlying DL-program. The study of different forms of constraints
remains to be done. Orthogonal to rules, one may exploit information about the ontology
O. So far, no information about the concepts (roles) in O was assumed to be available,
viewing O as blackbox under full information hiding. However, information about O
may lead to further independent DL-atoms. For example, knowing that O |= C v D
and that DL[λ,C −∪ p; Q](~t) is tautologic, we can infer that DL[λ,D −∪ p; Q](~t) is also
tautologic. Incorporating such and further information into the calculus remains for
future work.
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CHAPTER 7
Implementation and Evaluation

In this chapter we focus on the practical part of this thesis. We discuss the key imple-
mentation issues involved in deploying the repair answer set computation approaches
seen in Chapter 5, and present results demonstrating the performance and practical
relevance of the developed algorithms. The chapter is divided into two main sections.
In Section 7.1 we describe the system architecture and usage of the developed software
components for the deletion repair answer set computation. In Section 7.2 we analyze
their performance by discussing the results of the conducted experiments.

7.1 Implementation

We have implemented the repair answer set computation algorithms within the dlliteplu-
gin library of the dlvhex framework, thus providing means to effectively compute deletion
repair answer sets for DL-programs over DL-LiteA and EL ontologies.

The dlvhex framework 1 is a system for evaluating Answer Set Programs with external
computations. The system is written in C++ and it is an open source software2. The
underpinning functions for external sources can be conveniently implemented within the
plugins of the dlvhex system, which distinguishes it from other ASP solvers. There is a
wide range of such plugins already at avail, ranging from string manipulation functions
to complex plugins implementing Equilibrium-semantics of Multi-Context Systems.

The first plugin for DL-atoms3 was developed in 2007 as part of the master thesis
of T. Krennwallner [Kre07] and the PhD thesis of R. Schindlauer [Sch06]. Evaluation of
DL-atoms within this plugin is done by means of calls to the RacerPro system4. Technical
peculiarities of the communication process between the dlvhex and the RacerPro did not

1http://www.kr.tuwien.ac.at/research/systems/dlvhex
2https://github.com/hexhex
3https://github.com/hexhex/dlplugin
4http://racer.sts.tuhh.de

153

http://www.kr.tuwien.ac.at/research/systems/dlvhex
https://github.com/hexhex
https://github.com/hexhex/dlplugin
http://racer.sts.tuhh.de


allow for a smooth extension of the available plugin to repair answer set computation.
This called for the development of a new separate dlliteplugin which was created during
this thesis. It effectively evaluates and repairs DL-programs over light-weight ontologies.

The source code of the new plugin is available at https://github.com/hexhex/
dlliteplugin. The dlliteplugin uses the owlcpp5 [LRMC11] library for ontology parsing
and invokes the fact++6 system as a back-end for ontology reasoning tasks. When repair-
ing DL-programs over EL ontologies it also communicates with the REQUIEM reasoner7

for support set construction.
In what follows, we present an architectural overview of the dlliteplugin, its imple-

mentation details, installation and usage including description of available command-line
options.

7.1.1 Architectural Overview

Plugins for the dlvhex system are responsible for evaluation of the respective external
atoms, for which they are designed. In other words, plugins can be viewed as query
evaluation units. The actual answer set computation is implemented in model genera-
tors located in the main part of the dlvhex system. Model generators exploit different
optimization heuristics, and they perform particularly well for certain types of programs.
Based on the input instance analysis the dlvhex evaluation framework invokes a suitable
model generator, which is more likely to be effective on the given instance. The model
generators are generic and normally they can be used within any plugin.

The main practical goal of this work was the development of a model generator,
capable of computing repair answer sets for DL-programs. By the time this thesis
project was started there were no comparable model generators in the dlvhex system.
Besides being nontrivial, development of a generic repair model generator suitable for
any HEX-program is not necessarily practical, as useful repairs are often very much
external source/domain dependent. For these reasons, it has been decided to include
the repair model generator for DL-programs as a part of the dlliteplugin which is in
contrast the standard plugin structure.

The architectural overview of the dlliteplugin is given in Figure 7.1, where arcs model
both control and data flow of the system. The repair answer set computation proceeds
as follows:

• The user provides an input DL-program Π = 〈O,P〉 as a pair of files: program.hex
P and ontology.owl O, storing the rule part and the ontology part of the DL-
program Π respectively. The rule part P of Π is passed to the solver in 1 , where
the rules are analyzed; the DL-atoms are identified, and the dlliteplugin for treating
them is initialized. Then in 2 the replacement program Π̂ is constructed from
Π = 〈O,P〉.

5http://owl-cpp.sourceforge.net
6https://code.google.com/p/factplusplus
7http://www.cs.ox.ac.uk/isg/tools/Requiem
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OP

Π

Π̂

Figure 7.1: System architecture of the dlliteplugin for Repair Answer Set computation
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• In 3 and 4 , the dlliteplugin parses the ontology.owl file using the owlcpp
library, which is an open-source C++ library for parsing, querying, and reasoning
with OWL-2 ontologies; owlcpp provides a convenient interface for communicating
with the fact++ system, where the actual ontology reasoning tasks can be per-
formed. In our plugin fact++ is used for the ontology consistency check, which
is a necessary condition to ensure correctness of our algorithms. We did not use
the widely known OWL API8, since the latter is written in Java and for purely
technical reasons could not effectively serve our needs. Then the repair model
generator is instantiated. In the standard answer set computation approaches, the
program evaluation can be optimized by using a certain heuristics, which appropri-
ately splits the program into components and evaluates each component separately.
Our repair answer set computation algorithms do not support this program split
and extensions are nontrivial. Therefore, we assume that the program is evaluated
as a whole, which is ensured by the monolithic heuristics used in our repair setting
by default.

• In 5 and 6 , the ontology and all DL-atoms of the input program are passed
to the External Atoms block, where the support set computation is performed.
The latter is DL dependent, and consequently it differs for the DL-LiteA and EL
ontologies. We discuss the details in the next subsection.

• Once all support sets are obtained, they are represented in 7 using declarative
means. When extended with a proper representation of the ontology ABox and Π̂
in 8 , the declarative program is obtained, whose models encode the repair answer
sets and repairs of the DL-program Π. For evaluating this declarative program,
in 8 and 9 the back-end grounder and the solver of the dlvhex system are
invoked.

• Finally, in 11 the repair answer set candidates of Π are extracted. If the ontology
is in DL-LiteA, and candidate model is minimal with respect to the FLP reduct,
which is checked in 12 , then it is output to the user. If the ontology is in EL, and
the support set information based on which the repair answer set candidates are
obtained is incomplete, then some DL-atoms might need an evaluation postcheck,
which is performed in 12* , 13* . In case the check succeeds, and, moreover, the

candidate is a minimal model of the flp-reduct (check in 14* ), then it is returned
in the output.

The dlliteplugin can also be used for standard answer set computation; in this case a
standard model generator is used instead of the repair model generator (see [Red14],
[Sch06] for overviews of available model generators).

8http://owlapi.sourceforge.net
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DL[λ; Q](X)

O = 〈T ,A〉

DL-LiteA

T

Figure 7.2: Support set construction for DL-atoms over DL-LiteA ontologies

7.1.2 Implementation Details

In order to profit from existing dlvhex data structures (e.g. for parsing) and optimization
methods (such as nogood learning, etc.), we pursued a declarative ASP approach to
realize the algorithms for repair answer set computation over ontologies in DL-LiteA
and EL, which we have seen in Chapter 5. We now have a closer look at the exact
implementation details of the support set generation and the repair answer set search.
DL-programs over ontologies in DL-LiteA. Our declarative implementation of
the algorithms for DL-programs over DL-LiteA ontologies comprises both computing
complete nonground support families and searching candidate deletion repair answer
sets and deletion repairs.

First we describe our approach to computing the support families, which is depicted
in Figure 7.2. The routine for computing support families gets a DL-LiteA ontology and
a nonground DL-atom as input. After parsing the ontology O using the owlcpp library,
we compute its TBox classification. The latter is done in a declarative manner using the
program ProgTclass

, shown in Figure 7.3.
The program ProgTclass

reifies concepts (roles, existential restrictions on roles), as
well as positive replacements of their negations. Facts express subsumptions in Pos(T )
using sub predicate, role inverses using inv, role functionalities with funct, and the
duality of concepts (roles, etc.) and their opposites with op. The rule (1) of ProgTclass

transitively closes the subsumption relation, while (2) expresses contraposition for sub-
sumption. The rules (3)-(5) mimic the construction of binary and unary conflict sets
that are then stored in the predicates conf and confref respectively. These are based
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ProgTclass
=



(1) sub(X ,Y )← sub(X ,Y ), sub(Y ,Z );
(2) sub(Y ′,X ′)← sub(X ,Y ), op(X ,X ′), op(Y ,Y ′);
(3) conf (X ,Y ′)← sub(X ,Y ), op(Y ,Y ′);
(4) inv(X ′,X)← inv(X ,X ′);
(5) op(X ,Y )← op(Y ,X);
(6) confref (X)← conf (X ,Y ), op(Y,Z), inv(X,Z);


Figure 7.3: Program ProgTclass

for computing classification of T

on the theoretical results from [RRGM12]. Since the program ProgTclass
is positive,

it has a single answer set MTclass
, from which the support family S for the DL-atom

d = DL[λ; Q](X) is conveniently extracted in the following way:

• for every sub(P,Q) ∈ MTclass
, where P is a positive ontology predicate, we add

S = {P ( ~X)} to S;

• for every sub(P,Q) ∈MTclass
, where P is a replacement for an existential restriction

∃R, we add S = {R(X,Y )} to S;

• for every conf(P, P ′) ∈ MTclass
, we add {Pp(~Y ), P ′(~Y )} to S, if Pp(~c) ∈ Ad for

some c ∈ C and there is no S′ ⊂ S, such that S′ ∈ S;

• for every conf(P, P ′) ∈MTclass
, we add {Pp(~Y ), P ′p(~Y )} to S, if Pp(~c), P ′p(~d) ∈ Ad

for some ~c, ~d ∈ C and there is no S′ ⊂ S, such that S′ ∈ S;

• for every confref(P ) ∈MTclass
, we add {Pp(Y, Y )} to S, if Pp(c, d) ∈ Ad for some

c, d ∈ C;

• for every funct(P ) ∈ MTclass
, we add {Pp(Y,Z),Pp(Y,Z ′)} to S, if Pp(c, d) ∈ Ad

for some c, d ∈ C, and there is no S′ ⊂ S, such that S′ ∈ S.

Now from the definition of support sets, complete support families and the results in
[RRGM12], the following proposition is obtained:

Proposition 7.1. The support family constructed from the model M of ProgTclass
is

complete.

Proof. The program ProgTclass
intuitively computes all inclusions that follow from the

TBox (sub predicate) as well as the unary and binary conflict sets. For DL-LiteA ontolo-
gies classification can be modeled declaratively as a reachability problem, this is exactly
what the rules (1) and (2) represent. The conflict sets in turn are found by means of
the rules (3)-(6) and analysis of functional roles. The approach that we used for their
computation is proved to be complete in [RRGM12]. Given a DL-atom and all assertions
coming from its update, the computed conflict sets and subsumptions, the complete sup-
port family is straightforwardly obtained as described above. Formal elaboration of the
proof is easily possible, but we omit its details here.
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We now turn to determining the repair answer sets, for which the declarative ap-
proach is used as well. More specifically, the non-ground rules (see below) are added
to Π̂ for the purpose of filtering candidate deletion repair answer sets as done by the
algorithm SupRAnsSet described in Chapter 5. The language of Π̂ is extended to include
support set information. For every nonground DL-atom a( ~X) and its nonground support
set Sa(~Y ) with ~Y = ~X ~X ′, the following rules are added to the replacement program Π̂:

(r1) ⊥ ← ea( ~X),not Supa( ~X) (r3) Supa( ~X) ← r(Sa(~Y )),not S̄Aa (~Y )
(r2) ⊥ ← nea( ~X), Supa( ~X) (r4) S̄Aa (~Y ) ← nea( ~X), r(Sa(~Y ))

where r(Sa(~Y )) is a suitable representation of a support set Sa(~Y ) for a DL-atom a using
predicates p( ~X) for input assertions Pp( ~X), resp. pP ( ~X) (npP ( ~X)) for ABox assertions
P ( ~X) (¬P ( ~X)). S̄Aa states that the ABox part of Sa is marked for deletion if Sa∩A 6= ∅,
otherwise it is void. Furthermore, Supa is a fresh predicate not occurring in P, that
intuitively says that a has an applicable support set, i.e. its ABox part is either empty
or not marked for deletion. The resulting program intuitively prunes candidates Î, resp.
encodes deletion repair candidates, according to the SupRAnsSet algorithm presented in
Chapter 5.

We now formally prove the soundness and correctness of the described declarative
implementation.

Proposition 7.2. Let Π = 〈O,P〉 be a ground DL-program, where O is a DL-LiteA
ontology, and let a1, . . . , an be DL-atoms of Π. Let, moreover, S1, . . . ,Sn be complete
nonground support families for a1, . . . , an w.r.t. O, and let R be the set of rules of
the forms (r1)-(r4) constructed for each support set from Si covering ai, 1 ≤ i ≤ n.
Then AS(Π̂ ∪R∪ facts(A))|Π = RASweak(Π),9 where facts(A) = {pP (~c) |P (~c) ∈ A} ∪
{npP (~c) | ¬P (~c) ∈ A} is the set of facts corresponding to the assertions from A.

Proof. We separately prove inclusions AS(Π̂ ∪ R ∪ facts(A))|Π ⊆ RASweak(Π) and
AS(Π̂ ∪ R ∪ facts(A))|Π ⊇ RASweak(Π), which respectively reflect the correctness and
completeness of the provided implementation.

(⊆) Assume towards a contradiction that AS(Π̂ ∪ R ∪ facts(A))|Π 6⊆ RASweak(Π).
Then there exists an element I ∈ AS(Π̂ ∪ R ∪ facts(A)), such that I|Π 6∈ RASweak(Π).
This means that for all A′ ⊆ A, it holds that I|Π 6∈ ASweak(Π′) with Π′ = 〈T ,A′,P〉.
Consider the ABox A′′ = {P (~c) | pP (~c) ∈ I|facts(A), p̄P (~c) 6∈ I}10, which is a particular
subset of A. We have that I|Π 6∈ ASweak(Π′′) with Π′′ = 〈T ,A′′,P〉. Thus one of the
following must be true: (i) no extension of I|Π with guessed values of replacement atoms
is a model of Π̂′′, (ii) no model of Π̂′′ is a compatible set for Π′′ or (iii) there exists
I ′ ⊂ I|Π, which is a model of PI|Π,O

′′

weak .
The case (i) is irrelevant, as I|Π̂ satisfies all rules of Π̂ due to I ∈ AS(Π̂∪R∪facts(A))

and Π̂′′ = Π̂. We next show that (ii) can not hold by deriving a contradiction. Indeed,
9AS(Π̂ ∪R ∪ facts(A))|Π = {I|Π | I ∈ AS(Π̂ ∪R ∪ facts(A))}.

10p̄P correspond to the respective S̄Aa
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assume that (ii) holds, then as I|Π̂ is a model of Π̂, it is not a compatible set for Π.
Therefore there exists a DL-atom ai in Π′′, such that its real value is different from the
guessed value in I|Π̂. Suppose first that I|Π |= ai, but neai ∈ I|Π̂. By Proposition 5.28
there must exist a support set S ∈ Si, such that S is coherent with I|Π and its ABox
part SA is in A′′. If SA is nonempty, then due to the rule of the form (r4) of R we get
that S̄A must be in I, but then SA is not present in A′′. Therefore, SA must be empty,
i.e. S must contain only input assertions. However, then the body of the constraint (r2)
of R is satisfied, contradicting I ∈ AS(Π̂∪R∪facts(A)). In conclusion, this shows that
(ii) does not hold, and in particular that I|Π̂ is a compatible set for Π.

Finally, the last possibility is that (iii) holds, meaning that there is an interpretation
I ′ ⊂ I|Π which is a model of PI|Π,O

′′

weak . The interpretations I|Π and I ′ differ on the set
M = I|Π\I ′, containing only ground atoms from the language of Π. Let us now look at
the interpretation I ′′ = I\M . We know that I is an answer set of Π̂ ∪ R ∪ facts(A),
i.e. it is a minimal model of Π̂I

gl ∪ RIgl ∪ facts(A). Therefore, there must exist some
rule rIgl either in (1) Π̂I

gl or in (2) RIgl, which I ′′ does not satisfy, i.e. I ′′ |= B(rIgl) and
I ′′ 6|= H(rIgl).

Assume that (1) holds. Then the rule rIgl must involve some replacement atoms ea
occurring positively. Otherwise I ′ 6|= rIgl, and since this rule is also in PI|Π,O

′′

weak , we have
that I ′ is not a model of PI|Π,O

′′

weak , leading to a contradiction. Furthermore, we know that
I|Π̂ is a compatible set. Therefore, rI,O

′′

weak is the rule rIgl without replacement atoms in
its body; but then I ′ 6|= rI,O

′′

weak, and hence I ′ is not a model of PI|Π,O
′′

weak .
Now assume that (2) holds, i.e. there is a rule rIgl ∈ RIgl, such that I ′′ |= B(rIgl), but

I ′′ 6|= H(rIgl). The rule rIgl can not be a constraint of the forms r1, r2, since then I ⊃ I ′′ is
not an answer set of Π̂∪R∪facts(A), leading to a contradiction. Therefore, r must be of
the form r3 or r4. However, the latter is not possible either, since the set of atoms M on
which I and I ′′ differ contains only atoms from the signature of Π, and H(rIgl) does not
fall into this set, meaning that I 6|= rIgl, which contradicts to I ∈ AS(Π̂∪ facts(A)∪R).

(⊇) Suppose that I ∈ RASweak(Π), but there is no I ′ ⊇ I, such that I ′ ∈ AS(Π̂ ∪
R ∪ facts(A)). By definition of repair answer sets, some A′ ⊂ A exists, such that
I ∈ ASweak(Π′), where Π′ = 〈T ,A′,P〉. We construct the interpretation I ′ by extending
I with

• {ea | I |=O′ a}∪{nea | I 6|=O′ a}, i.e. facts reflecting the values of the replacement
atoms under I and A′;
• facts(A);
• {p̄P (~c) | P (~c) ∈ A\A′};
• Supai(~c) encoding information about support sets of ai(~c) coherent with I.

We now show that the constructed interpretation I ′ is an answer set of Π̂∪R∪facts(A),
i.e. it is a minimal model of the GL-reduct (Π̂ ∪ facts(A′) ∪R)I′gl. Assume towards a
contradiction that this is not the case. There are two possibilities: (i) either I ′ does not
satisfy some rules of the reduct, or (ii) some smaller model of the reduct exist.
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First consider (i). I ′ immediately satisfies all facts as well as all rules in Π̂I′
gl. This

means that there must be some rule rI′gl in RI
′
gl that is not satisfied, i.e. I ′ |= B(rI′gl), but

I ′ 6|= H(rI′gl). By construction of I ′ and Proposition 5.28, if ea ∈ I ′ (resp. nea ∈ I ′) then
Supa ∈ I ′ (resp. Supa 6∈ I ′), therefore r can not be of the form (r1) or (r2). Suppose that
r is of the form (r3). We have that some DL-atom a has a support set whose ABox part
is in A′ or empty. Then by construction of I ′ the head of the rule rI′gl has to be satisfied.
Therefore, the rule r must be of the form (r4). Then I 6|=O′ a for some DL-atom a, such
that there is a support set for a which is coherent with I and its ABox part is either
empty or present in A. In both cases by Proposition 5.28 we get that I |=O′ a, which
leads to a contradiction.

Let us now look at (ii), i.e. some interpretation I ′′ ⊂ I ′ exists, such that I ′′ is a model
of (Π̂ ∪R ∪ facts(A))I′gl. Note that I ′′ and I ′ can not differ only on replacement atoms,
since for each DL-atom a, either ea or nea must be in I ′′. As I ′ already contains the
corresponding replacement atoms, removal of any such atom will violate the satisfaction
of some guessing rule ea ∨ nea in Π̂I′

gl. Suppose that I ′′\I ′ contains some atoms from Π.
Consider I ′′|Π, which is a subset of I. Observe that I ′′|Π can not be a model of PI,O′weak,
because I ⊃ I ′′|Π is its minimal model. Therefore, some rule rI,O

′

weak must exist in the
reduct PI,O′weak which is not satisfied by I ′′|Π, i.e. I ′′|Π |= B(rI,O

′

weak) but I ′′|Π 6|= H(rI,O
′

weak).
By construction of the weak reduct this rule does not contain any DL-atoms. Let us look
at the corresponding rule in the reduct Π̂I′′

gl . The rule rI′′gl either does not contain any
replacement atoms or contains only positive atoms ea such that ea ∈ I ′′ (by construction
og the GL-reduct). Therefore I ′′ |= B(rI′gl), but I ′′ 6|= H(rI′gl), contradicting I ′′ |= Π̂I′

gl.
Suppose that the interpretations I ′ and I ′′ differ only on the facts over predicates

in R. We know that the rule rI′gl , where r is of the form (r1) is not present in RI′gl,
moreover, I ′′ 6|= r′I

′
gl for r′ of the form (r2). If the difference I ′\I ′′ contains Supa, then it

must contain some atoms from r(Sa) too. Moreover, these atoms must be related to the
ABox facts, which are present in I ′. This, however, means that some fact in facts(A) is
not satisfied, contradicting I ′′ |= (Π̂ ∪R ∪ facts(A))I′gl. Finally, I ′′ \ I ′ can not contain
elements S̄Aa , as then the rule rI′gl for r of the form (r4) is not satisfied by I ′′.

Observe, that our declarative implementation computes exactly the weak repair an-
swer sets. Thus, in some cases rarely met in practice [EFK+12] an additional minimality
check is needed to ensure that the weak repair answer set identified is also an flp-repair
answer set. It may happen in case of cyclic support, i.e. recursion through a DL-atom
that makes an atom true [EIL+08]. We ilustrate this by the following example:

Example 7.3. Consider a variation of Example 2.44: Π = 〈O,P〉, where

O = {Student(pat)}

P =
{
(1) man(pat)← DL[Male ] man; Male](pat);
(2) ⊥ ← DL[; Student](pat)

}
.
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Π̂ ∪R ∪ facts(A) =



(1) man(pat)← ea1 ;
(2) ⊥ ← ea2 ;
(3) ea1 ∨ nea1 ;
(4) ea2 ∨ nea2 ;
(5) Supa1 ← man(pat);
(6) ⊥ ← ea1 ,not Supa1 ;
(7) ⊥ ← nea1 , Supa1 ;
(8) Supa2 ← pStudent(pat),not p̄Student(pat);
(9) p̄Student(pat)← nea2 , pStudent(pat);
(10) ⊥ ← ea2 ,not Supa2 ;
(11) ⊥ ← nea2 , Supa2 ;
(12) pStudent(pat).


Figure 7.4: Program Π̂ ∪R ∪ facts(A) from Example 7.3

The respective logic program Π̂ ∪ R ∪ facts(A) constructed for Π is shown on
Figure 7.4, where a1 = DL[Male ] man; Male](pat), and a2 = DL[; Student](pat).

For the interpretation I = {man(pat), ea1 ,nea2 , pStudent(pat), p̄Student(pat), Supa1} we
have that PIgl contains the rules (1)-(5), (7), (9), (10’), (11) and (12), where (10’) is the
rule ⊥ ← ea2 . It holds that I is a minimal model of this reduct. We extract a repair
A′ from I. Since p̄Student(pat) ∈ I, we set A′ = A \ {Student(pat)}. Let us now look at
I|Π = {man(pat)}. We check whether I|Π is a minimal model of

PI|Π,O
′

flp = {man(pat)← DL[Male ] man; Male](pat)},

where O′ = ∅. Clearly, I|Π is a model of the reduct, but its smaller model exists, namely
I ′ = ∅. Thus I|Π is not an flp-repair answer set of Π. Observe, however, that I|Π is
a minimal model of the weak reduct PI|Π,O

′

weak = {man}, and hence I|Π is a weak-repair
answer set of Π.

DL-programs over ontologies in EL DL.

Unlike in the DL-LiteA DL, the support sets for the EL ontologies are of a rich
structure, and thus for their computation classification of T is insufficient. Apart from
inclusions A v B, where A and B are atomic, we need to identify also all inclusions
of the form C v B, where C is an arbitrarily complex concept. Thus we exploit the
REQUIEM tool [PUMH10], which produces the rewritings of the target query over the
given TBox using datalog rewriting techniques. The general workflow of the support set
computation in EL is given in Figure 7.5. As discussed in Chapter 5, there might be
exponentially many such rewritings, and each of them might be of exponential size. In
the dlliteplugin there is a possibility to limit the number and size of the rewritings that
are to be computed by REQUIEM.
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After the support sets are computed we then use a declarative approach for determin-
ing repair answer sets, in which the minimal hitting set computation is accomplished
by rules. To this end, for each DL-atom a( ~X) fresh predicates Supa( ~X), SPa (~Y ) and
SA,Pa (~Y ) are introduced, where ~Y = ~XX ′, which intuitively say that a( ~X) has some
support set, some support set with only logic program predicates, and some mixed sup-
port set, respectively (for simplicity we superficially use uniform variables). Furthermore,
rules of the following form are added to the replacement program Π̂:

(r∗1) Supa( ~X)← SPa (~Y ) (r∗5) ⊥ ← nea( ~X), SPa (~Y )
(r∗2) Supa( ~X)← SA,Pa (~Y ) (r∗6) P̄1a(~Y ) ∨ . . . ∨ P̄na(~Y )← nea( ~X), SA,Pa (~Y )

(r∗3) SPa (~Y ) ← rb(Spa(~Y )) (r∗7) evala( ~X)← ea( ~X), not Ca, not Supa( ~X)
(r∗4) SA,Pa (~Y ) ← rb(SA,Pa (~Y )), (r∗8) evala( ~X)← nea( ~X), not Ca

nd(SA,P(~Y ))

(r∗9) ⊥ ← ea( ~X), Ca,not Supa( ~X)

Here the fact Ca says that the support family for a( ~X) is known to be complete; such
information can be added by facts; we denote by COMP a set of such facts. The rules
(r∗1)-(r∗4) derive information about support sets of a( ~X) under a potential repair; rb(S)
stands for a rule body rendering of a support set S; nd(S) = not p̄P1a

(~Y ), . . . ,not p̄Pna
(~Y ),

where {pP1a
(~Y ), . . . , pPna

(~Y )} encodes the ontology part of S and p̄Pia
(~Y ) states that

the assertion Pia(~Y ) is marked for deletion. The constraint (r∗5) forbids a( ~X), if guessed
false, to have a matching support set with only input assertions; (r∗6) means that if a( ~X)
has instead a matching mixed support set, then some assertion from its ontology part
must be eliminated. The rule (r∗7) says that if a( ~X) is guessed true and completeness
of its support family is not known, then an evaluation postcheck must be performed
(evala( ~X)) if no matching support set is available; rule (r∗8) is similar for a( ~X) guessed
false. The rule (r∗9) states a DL-atom guessed true must have some support set, if its
support family is known to be complete.

The set of facts facts(A) = {pP (~c) |P (~c) ∈ A} ∪ {npP (~c) | ¬P (~c) ∈ A} encoding the
ABox assertions and COMP = {Ca | Sa is a complete support family for a} are added
to the program, and then its answer sets are computed. For each such answer set I, we
proceed with an evaluation postcheck for all atoms a(~c) for which the fact evala(~c) is
in the answer set. If the evaluation postcheck succeeds for all external atoms, then we
extract the repair answer sets of the original program from I.

We now formally show that the described approach indeed correctly computes the
repair answer sets.

Proposition 7.4. Let Π = 〈O,P〉 be a ground DL-program, where O is an EL on-
tology. Let, moreover, a1, . . . , an be DL-atoms of Π with nonground support families
S1, . . . ,Sn, and let R be the set of rules of the form (r∗1)-(r∗9) constructed for each DL-
atom. Consider the set M ⊆ AS(Π̂ ∪ R ∪ facts(A) ∪ COMP), where facts(A) =
{pP (~c) |P (~c) ∈ A} ∪ {npP (~c) | ¬P (~c) ∈ A} is the set of facts corresponding to the asser-
tions from A, and COMP = {Cai | Si is a complete support family for ai}. Suppose
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DL[λ; Q](X)

O = 〈T ,A〉

EL

T

Figure 7.5: Support set construction for DL-atoms over EL ontologies

that all evaluation postchecks for every I ∈ M succeeded. Then M|Π ⊆ RASweak(Π),
and M|Π = RASweak(Π), if the support families S1, . . . ,Sn for all DL-atoms in Π are
known to be complete.

Proof. We first show that M|Π ⊆ RASweak(Π). Suppose towards a contradiction that
there is some I ∈ M, such that I|Π 6∈ RASweak(Π). Then for all ABoxes A′, such
that A′ ⊆ A, we have that I|Π 6∈ ASweak(Π′) with Π′ = 〈T ,A′,P〉. Consider an ABox
A′′ = A\{P (~c) | p̄P (~c) ∈ I}. By our assumption I|Π 6∈ AS(Π′′) with Π′′ = 〈T ,A′,P〉.
There are several possibilities: (i) no extension of I|Π with guessed values of replacement
atoms is a model of Π̂′′; (ii) no extension of I|Π with guessed values of replacement atoms
is a compatible set; (iii) there is an interpretation I ′ ⊂ I|Π which is a model of PI|Π,O

′′

weak .
The case (i) can not hold, as Π̂ = Π̂′′ and I|Π̂ |= Π̂.

Assume that (ii) is true. Consider the interpretation I|Π̂. Towards a contradiction,
assume that it is not compatible for Π′′. Then either (1) I|Π |=O

′′
a, but nea ∈ I|Π̂, or

(2) I 6|=O′′ a, but ea ∈ I|Π̂. Let us first look at (1). As I|Π |=O
′′
a, there must exist a

support set S for it, which is coherent with I|Π̂. There are two possibilities: either S ∈ Sa
or S 6∈ Sa. In the former case S must contain ABox assertions SAa , as otherwise some
constraint of the form (r∗5) is violated. Due to the rule (r∗6) at least one assertion Pia in
SAa must be marked for deletion. Note that then Pia is not present in A′, and S is not
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a relevant support set for a. If Sa is known to be complete, then we immediately arrive
at a contradiction. Otherwise, the rule of the form (r∗8) is applied, and as the evaluation
postcheck for a succeeded by our assumption, we get a contradiction. If S 6∈ Sa then
the support family Sa is not known to be complete, and again the rule of the form r∗8
is satisfied, and due to the successful evaluation postcheck a contradiction is obtained.
Now suppose that (2) is true. As I|Π 6|=O

′
a, we know that there are no support sets for

a coherent with I|Π. If Sa is known to be complete, then the constraint r∗9 is violated,
which can not happen as I |= Π̂ ∪ R ∪ facts(A) ∪ COMP. Otherwise, the body of the
rule (r∗7) must be satisfied, and as the evaluation postcheck succeeded for the atom a,
we get a contradiction.

Finally, assume that (iii) holds, i.e. there is an interpretation I ′ ⊂ I|Π, which is
a model of PI|Π,O

′

weak . M = I|Π\I ′ contains only atoms over the signature of Π. Let us
look at I ′′ = I\M . We know that I ∈ AS(Π̂ ∪ R ∪ facts(A) ∪ COMP). Therefore,
there must exist some rule rIgl in (Π̂ ∪R ∪ facts(A) ∪ COMP)Igl, such that I ′′ |= B(rIgl),
but I ′′ 6|= H(rIgl). Observe that rIgl can not be from Π̂ or facts(A) or COMP, as then
I ′ 6|= PI|Π,O

′

weak by construction of the GL and weak reducts. Therefore, rIgl must be in RIgl.
However, the latter can not happen either, as there are no rules in RIgl which contain
atoms over the signature of Π in their heads. Therefore, I|Π ∈ AS(Π′′) holds, and we
have a global contradiction, i.e. I|Π ∈ RASweak(Π) follows.

We now consider the case when all support families are known to be comlete, and
prove that given this knowledge it holds thatM|Π = RASweak(Π). The inclusionM|Π ⊆
RASweak(Π) has already been shown in a more general case. It is left to check that
M|Π ⊇ RASweak(Π). Towards a contradiction, assume that there is an interpretation I,
such that I ∈ RASweak(Π), but there is no extension I ′ of I which is inM.

We have that there is an ABox A′, such that I ∈ AS(Π′), where Π′ = 〈T ,A′,P〉.
Let us construct an extension I ′ of I as follows:

I ′ = I ∪ {ea | I |=O
′
a} ∪ {nea | I 6|=O

′
a} ∪

{p̄P (~c) | P (~c) ∈ A\A′} ∪ facts(A) ∪ COMP ∪
{Supa | a has a support set coherent with I}.

Since by our assumption I ′ 6∈ M, one of the following must hold:

(i) I ′ 6|= (Π̂ ∪R ∪ facts(A) ∪ COMP)I′gl or
(ii) there exists I ′′ ⊂ I ′, such that I ′′ |= (Π̂ ∪R ∪ facts(A) ∪ COMP)I′gl.

First assume that (i) is true. By construction of I ′, it satisfies Π̂ and all rules of
the forms (r∗1)-(r∗4). Moreover, constraints of the form (r∗5) can not be violated, as none
of DL-atoms a, such that I 6|=O′ a could have a support set consisting only of input
assertions. The rule (r∗7) and (r∗8) are not present in the reduct, because all support
families are complete by our assumption. Thus the rule r such that I ′ 6|= rI

′
gl could only

be of the forms (r∗6) or (r∗9). If the rule r was of the form (r∗6), then there would be an
a such that I 6|=O′ a, but there is a support set for a coherent with I and containing an

165



ABox part that is present in A′. The latter can not happen by Proposition 5.28. Hence,
r must be of the form (r∗9), which can not be true either as the support family Sa for a,
such that I |=O′ a is complete, and it must contain some support set for a in Sa.

Now, let (ii) hold, i.e. some I ′′ ⊂ I ′ exists, s.t. I ′′ |= (Π̂ ∪R ∪ facts(A) ∪ COMP)I′gl.
Consider the set I ′ \ I ′′. Suppose first that I ′ \ I ′′ contains some replacement atoms.
Observe that for every DL-atom a the interpretation I ′ contains exactly one out of ea
and nea. Therefore, there must exist some DL-atom a, such that I ′′ does not contain
either ea or nea. However, then the guessing rule ea ∨ nea in Π̂I′

gl is not satisfied by I ′′,
leading to a contradiction.

Suppose that I ′\I ′′ contains some atoms from the language of Π. Then it holds
that I ′′|Π is not a model of PI,O′weak, that is there is a rule rI,O

′

weak in PI,O′weak, such that
I ′′|Π |= B(rI,O

′

weak), but I ′′|Π 6|= H(rI,O
′

weak). Consider the respective rule rI
′
gl in Π̂I′

gl. We have
that I ′′ 6|= H(rI′gl), therefore it must hold that I ′′ 6|= B(rI′gl). By construction of weak and
GL reducts the sets of positive normal atoms in B(rI′gl) and B(rI

′,O′
weak) coincide. Hence,

replacement atom ea must occur positively in B(rI′gl), such that ea ∈ I ′ \ I ′′. As we have
already argued, the latter can not happen, leading to a contradiction.

Therefore, I ′\I ′′ must contain only atoms from the language of R. If I ′\I ′′ contains
some Supa, then there is a rule of the form (r∗1) or (r∗2) that is not satisfied. If I \ I ′′
contains some atom of the form SPa then the rule (r∗3) is not satisfied. Finally, if there
is an element of the form SA,Pa in I ′\I ′′ then the rule (r∗4) is not satisfied. Hence I ′
must be a minimal model of (Π̂ ∪R ∪ facts(A) ∪ COMP)I′gl, i.e. I ′ ∈ M. Therefore,
M|Π ⊇ RASweak(Π), which proves the statement.

7.1.3 System Installation and Usage

The dlliteplugin was tested on the Linux system Ubuntu 12.04 and 14.04, and in principle
it should also work on OSx as the latter is Linux based. The plugin provides two external
atoms for querying ontology concepts and roles respectively.

As a prerequisite for dlliteplugin installation one needs to have the dlvhex system
correctly installed and configured on the machine. For installing the plugin one needs
to run the following commands from the directory of the plugin in the specified order:

• $./bootstrap.sh

This command will prepare the configure file and download all necessary libraries
for owlcpp installation (libxml, fact++ and raptor);

• $ ./configure –with-boost=[/path/to/boost-prefix] –with-owlcpp=[auto
or path/to/owlcpp/installation]

If one has already a version of boost library installed on the machine, then the full
path to boost needs to be specified. For automatic owlcpp installation and config-
uration (recommended) one needs to use the option –with-owlcpp=auto, but it is
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also possible to build owlcppmanually and run ./configure command with the op-
tion –with-owlcpp=/path/to/owlcpp, for that the Internet connection is required.
Here path/to/owlcpp points to the main directory of an owlcpp build. In this case,
owlcpp and the dlvhex must be built using the same version of boost. Moreover,
make sure that owlcpp exports all symbols such that they can be used from shared
libraries; this can be achieved by replacing the the line fvisibility=hidden of
jamroot.jam file in the owlcpp directory with fvisibility=default, and removal
of the line fvisibility-inlines-hidden.

• $ make

After following the described steps, the installation of the dlliteplugin should be suc-
cessfully completed.

7.1.4 Command-line Options

There are several command line options available which allow the user to choose an
appropriate mode of reasoning. Apart from the command line options related to the
core of the system, the dlliteplugin provides the following additional options:

• –repair=[ontology relative or full path] ensures that the repair of the DL-
program is computed with respect to the ontology specified;

• –el states that ontology is in EL and makes sure that the appropriate algorithm
based on incomplete support families is used for repair computation;

• –supnum=[int] specifies the maximal number of rewritings to be computed, from
which the support sets are then extracted and analyzed (available only with the
enabled –el option)11;

• –supsize=[int] specifies the maximal size of support sets that are constructed
and exploited for the repair computation (available only with the enabled –el
option);

• –replimfact=[int] specifies the maximal number of assertions allowed for dele-
tion;

• –repdelpred=[comma-separated set of predicates over Σ(O)] specifies the
concrete set of ontology predicates allowed for deletion;

• –repleavepred=[comma-separated set of predicates over Σ(O)] specifies the
set of ontology predicates that are protected from deletion (must not be removed);

11Multiple support sets obtained from the same rewriting are counted as a single support set when
it comes to the specified restriction. The name of the option is a bit misleading in that sense, but it is
introduced for user convenience.
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• –replimpred=[int] specifies the maximal number of predicates that can partici-
pate in the facts allowed for removal;

• –repdelconst=[comma-separated set of constants over Σ(O)] specifies the
set of constants by which the removed ABox assertions can be grounded;

• –repleaveconst=[comma-separated set of constants over Σ(O)] specifies the
set of constants that are protected from deletion (must not occur in the ABox as-
sertions to be deleted);

• –replimconst=[int] specifies the number of constants that can occur in the re-
moved assertions.

The options –repdelpred and –repleavepred (resp. –repdelconst and repleaveconst)
are dual, and they are introduced for the user’s convenience. In some cases there are just
few predicates (resp. constants) that must be left untouched, while in more restrictive
settings, on the contrary, there are just few predicates (resp. constants) that can be
removed.

7.2 Evaluation
For evaluating the developed deletion repair answer set computation algorithms based
on complete and partial support families, we have built two sets of benchmark suites con-
sisting of DL-programs over ontologies in DL-LiteA and EL respectively. The assessment
of our algorithms concerned the following aspects:

• Performance. We evaluated the performance of deletion repair answer set compu-
tation in comparison to the standard answer set computation on various bench-
marks including Network, Taxi, LUBM, OpenStreetMap and Policy. For the Fam-
ily DL-program we additionally varied the following parameters:

– size of the DL-program data part;
– size of the ontology TBox;
– number of rules in the DL-program;

• Exploiting DL-programs expressive power. We analyzed how various advanced
expressive features allowed in the DL-programs like defaults, guesses, recursive-
ness, influence the repair answer set computation running time (Network, LUBM-
diamond, LUBM-extended benchmarks, Taxi benchmark with time constraints).

• Repair quality. The selection functions introduced in Section 4.1 allow us to restrict
the repair search space to application-relevant repair candidates, thus ensuring
a certain level of quality of the results. We evaluated how the independent σ-
selection functions, like bound on the number/type of assertions eligible for deletion
influence the overall algorithm runtime (Taxi benchmark in all of the introduced
settings).
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• Effects of support family completeness. We assess the impact of the support family
completeness on the repair answer set computation running time by comparing
various settings, in which the number/size of computed support sets is unbound-
ed/bounded by an integer upon the availability of information on the support
family completeness (Policy, Open Street Map, LUBM-EL benchmarks).

• Real world data. For demonstrating the applicability of the developed algorithms
to the real world scenarios, we conducted experiments on the DL-programs built
over the Open Street Map data (Taxi with district information and Open Street
Map benchmark).

7.2.1 Platform Description

The repair answer set computation approach was evaluated on a Linux server with two
12-core AMD 6176 SE CPUs with 128GB RAM running the HTCondor load distribution
system12, which is a specialized workload management system for compute-intensive
tasks. We used the version 2.3.0 of the dlvhex system. For each run the system usage
was limited to two cores and 8GB RAM. The timeout was set to 300 seconds for each
instance. The experimental data is available at http://www.kr.tuwien.ac.at/staff/
dasha/thesis/experimental_data.zip.

Clearly, it would be natural to evaluate our algorithms by comparing their perfor-
mance with other algorithms, serving similar needs, which are implemented within the
existing systems. However, to the best of our knowledge, no comparable system de-
signed for repairing inconsistent DL-programs exists, therefore we had to proceed with
comparison to the systems for standard answer set computation.

The list of systems for DL-programs evaluation includes the following:

• The DReW system 13 [Xia14] is designed for evaluating DL-programs by means of a
rewriting to datalog. A straightforward implementation of the repair computation
was realized within the DReW system with the naive guess of the repair ABox can-
didate, followed by a check of its suitability. However, such implementation turned
out to be ineffective even on small instances, since in general the search space of
the repairs is too big for its full exploitation, and guided search is vital to ensure
scalability. We have not performed a full comparison of our implementation with
the DReW system, since in its current version negative queries and the negative
updates (operator −∪) are not supported. Note, moreover, that

• The dlplugin of the dlvhex14, which uses the RacerPro reasoner as a back-end
for evaluation of the calls to the ontology, is another candidate for comparison.
However, since the dlliteplugin used for standard answer set computation for DL-
programs over lightweight ontologies scales better then the former [EFRS14], we
use the latter for comparison in our experiments.

12http://research.cs.wisc.edu/htcondor
13http://www.kr.tuwien.ac.at/research/systems/drew/
14https://github.com/hexhex/dlplugin
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7.2.2 Evaluation Workflow

We now describe the general workflow of the experimental evaluation.

In the first step of the evaluation process we constructed benchmarks. This
was nontrivial, since first very few benchmarks already exist [Xia14] and second it is
difficult to synthesize random test instances whose conflict space would effectively reflect
realistic scenarios. We exploited the existing ontologies and aimed at building rules and
constraints on top of them in such a way that for some data parts the constructed
programs become inconsistent.

When the scenario was defined, we created shell scripts for instance generation
with certain varying parameters (e.g. data size, rules size, TBox size), specific for
each benchmark. The scripts are available at https://github.com/hexhex/dlplugin/
benchmarks. We then run the benchmarks using the HTCondor system and finally
extract the results from the log files of the runs.

For each benchmark we present our experimental results in tables. The first column
p in the tables specifies the size of the instance (varied according to certain parameters
specific for each benchmark), and the number of generated instances in round brackets.
For example, the value 10(20) in the first column states that a set of 20 instances of
with the parameter 10 were tested. The rest of the columns represent configurations,
in which the system was tested, e.g. AS (RAS) stands for normal (repair) answer set
computation. The test configuration vary from benchmark to benchmark, thus their
meaning is separately clarified where tables are presented. The cells contain combina-
tions of numbers of the form t(m)[n], where t is the total average running time, m is the
number of timeouts and n is the number of repair answer sets computed.

7.2.3 Benchmarks

For the evaluation of the developed algorithms we considered the following benchmarks.

(1) DL-programs over DL-LiteA ontologies:

(1.1) The family benchmark describes a scenario, that is built from an extended
version of Example 4.1 with ABoxes A50 and A1000 containing 50 and 1000
children and information about their families;

(1.2) The Network benchmark comprises rules with recursiveness and guessing fea-
tures over an ontology containing data about availability of nodes and edges
of a network. We considered networks with the topology of the Vienna metro
transport system having 161 nodes and its fragment with 67 nodes;

(1.3) The taxi-driver benchmark represents a driver-customer assignment problem
over an ontology with ABoxes A50 and A500 containing information about
50 and 500 customers respectively. Based on certain conditions about the
drivers, customers, their positions and intentions, the customers are assigned
to drivers, who are supposed to serve their needs;
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(1.4) The LUBM benchmark is a set of rules with various expressiveness features
built over the famous LUBM ontology15 in its DL-LiteA form with informa-
tion about one university. The original version of LUBM is in ALEHI(D)
form. For creating the DL-LiteA version of LUBM we rewrote if possible and
removed otherwise the TBox axioms that do not fall into the DL-LiteA DL.
For ABox generation we used the dedicated Combo tool16. There are several
variations of this benchmark that we considered, including a basic inconsistent
program, version of the Nixon diamond and an extended assignment scenario;

(2) DL-programs over EL ontologies:

(2.1) The policy benchmark is built from an extended version of Example 4.1, we
considered ABoxes A40, A100 and 1000 with 50, 100 and 1000 staff members
respectively;

(2.2) The OpenStreetMap benchmark contains a set of rules over a MyITS ontology,
which is an enhanced personalized route planning with semantic information
with an ABox containing data from the OpenStreetMap project17;

(2.3) The LUBM benchmark is a variant of (1.4) with an ontology in EL. Similarly
as for DL-LiteA we got rid of those axioms from the original LUBM ontology
that do not fall into the EL DL. Therefore, the ontology used for the bench-
mark (1.4) differs from the one in this benchmark in the form of some axioms
that appear in it.

The ontology statistics for each of the built benchmarks is presented in the Table 7.1.
Here the columns store information about the size of the TBox, number of columns, roles,
ABox size and number of individuals.

7.2.4 DL-programs over DL-LiteA Ontologies

Family Benchmark

The first benchmark is derived from Example 4.1. For our evaluation we have constructed
different scenarios, varying the size of the TBox, the data part as well as the rule part
of the DL-program.

1. Size of the data part. In the first experimental setting, we fixed two ABoxes
A50 and A1000, of different size, where A50 contains 50 children (7 adopted), 20 female
and 32 male adults; and twenty times that many for A1000. Every child has at most
two parents of different sex and the number of children per parent varies from 1 to 3.
Rules (11) and (12), not involved in conflicts, have been dropped from P. Instances are

15http://swat.cse.lehigh.edu/projects/lubm/
16http://code.google.com/p/combo-obda/
17http://www.openstreetmap.org/
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Benchmark Ontology expressivity TBox size Concepts Roles ABox Size Individuals

Family DL-LiteA 3 5 1
A50 312 102

A1000 6183 2021

Network DL-LiteA
3 4 2 A67 204 67

3 5 2 A161 672 161

Taxi

Basic

DL-LiteA

3 4 2
A50 259 75

A500 4370 714

Time 4 6 2 274 75

Districts 389 339 41
A50 418 93

A500 6744 723

LUBM
Basic

DL-LiteA
95 44 31 7293 1555

Diamond

Extended 101 48 31 7412 1605

Policy EL 5 8 3
A40 199 64

A100 475 148

A1000 4615 1408

OSM EL 405 356 36 4195 1537

LUBM-basic EL 94 47 28 2285 832

Table 7.1: Ontology statistics for evaluated benchmarks

varied in terms of facts over I included in P. The parameter reflecting the instance size
is p, which ranges from 10 to 100. A benchmark instance has size p if for every child c,
additional facts boy(c) and isChildOf (c, d) appear in P with a probability p/100, where
d is a random male adult non-parent. In this benchmark we have the number of facts
in P as a varying parameter, since the latter allows us to control the size of the actual
conflict part in the program.

The results for this benchmark are provided in Table 7.2. For each probability p we
generated 20 random instances with the fixed ABoxes of A50 and A1000, and evaluated
the running time for the standard answer set computation (column AS) and the repair
answer set computations (column RAS) without any restrictions on the repair (column
no_restr) and limiting the number of allowed assertions for deletion to 10 for A50 and
20 for A1000. The numbers in square brackets refer to the number of instances (out of
20 per p) for which the requested repairs were identified.

As the numbers in the second column show, all of the considered instances are incon-
sistent, which is identified by the solver within 2 milliseconds. In most cases the repairs
are found for both A50 and A1000 except for lim = 10 of A50, where the repairs are
computed only for some of the instances up to p = 40.

2. Ontology TBox size. In our second setting, we built instances based on the size of
the TBox, leaving the ontology ABox fixed to A50. The TBox axioms from Example 4.1
are extended by the inclusions P v Person for all concepts P , informally stating that
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p

A50 A1000

AS
RAS

AS
RAS

no_restr lim = 10 no_restr lim = 10
10 (20) 0.14 (0)[0] 0.22 (0)[20] 1.73 (0)[20] 63.12 (0)[0] 37.03 (0)[20] 60.21 (0)[20]
20 (20) 0.14 (0)[0] 0.23 (0)[20] 2.10 (0)[19] 62.56 (0)[0] 38.56 (0)[20] 62.19 (0)[20]
30 (20) 0.14 (0)[0] 0.24 (0)[20] 2.33 (0)[18] 62.83 (0)[0] 40.03 (0)[20] 64.27 (0)[20]
40 (20) 0.14 (0)[0] 0.25 (0)[20] 2.88 (0)[11] 63.23 (0)[0] 41.81 (0)[20] 66.81 (0)[20]
50 (20) 0.14 (0)[0] 0.25 (0)[20] 3.93 (0) [1] 63.42 (0)[0] 43.86 (0)[20] 68.87 (0)[20]
60 (20) 0.15 (0)[0] 0.26 (0)[20] 3.93 (0) [2] 63.42 (0)[0] 45.87 (0)[20] 71.63 (0)[20]
70 (20) 0.14 (0)[0] 0.27 (0)[20] 4.00 (0) [0] 63.18 (0)[0] 47.83 (0)[20] 74.14 (0)[20]
80 (20) 0.15 (0)[0] 0.28 (0)[20] 4.08 (0) [0] 63.38 (0)[0] 49.71 (0)[20] 76.35 (0)[20]
90 (20) 0.15 (0)[0] 0.29 (0)[20] 4.48 (0) [0] 63.59 (0)[0] 52.18 (0)[20] 79.14 (0)[20]

100 (20) 0.14 (0)[0] 0.30 (0)[20] 4.42 (0) [0] 63.08 (0)[0] 54.14 (0)[20] 81.81 (0)[20]

Table 7.2: Family benchmark: data size variations, fixed P and T

every individual known to be either child, adopted, male or female is a person. Moreover,
in Tn for each concept P from the signature and 1 ≤ i ≤ n with the probability p/100
(p ranges from 10 to 100) the TBox Tn contains the following inclusions:

(1) PMemberOfSocGroupi v P (2) ∃hasIDOfSocGroupi v Person.
Intuitively, (1) reflects that a P -member of a social group i is in the class P , while

(2) states that each individual having ID of a certain social group i is a person.
The evaluation results for this setting are presented in Table 7.3. The column Tmax =

n means that for the given ontology instance each out of n TBox axioms was added with
the probability p/100 to T . One can see that the repair computation is slower then the
standard answer set computation, which becomes more obvious for the setting, where
Tmax = 5000. This is due to the construction of support sets and their exploitation in
our declarative approach for repair answer set computation. In the standard setting, we
do not exploit the TBox extensively, and therefore its growing size does not have much
impact on the running time. As expected, restricting the elimination of a number of
ABox facts to k-bounded slows down the repair computation process.

3. Size of the rule part. In the third setting we evaluated the influence of the
rule part size on the algorithm performance. Apart from the rules (11) and (12) from
Example 4.1 that were excluded in the previous settings, we also added for 1 ≤ i ≤ Rmax
and for 1 ≤ j ≤ i with probability p/100 (10 ≤ p ≤ 70) the following rules:

(1) contacti(X ,Y )← contact(X ,Y ),not omit(X ,Y ) (2) omiti(X ,Y )← omit(X ,Y )
(3) contactj(X ,Y )← contacti(X ,Y ),not omitj(X ,Y ) (4) omitj(X ,Y )← omiti(X ,Y ).

The newly introduced predicate contacti(c, p) informally means that p is a contact
representative for a child c within a social group i. The rules (1)-(4) state that if a
contact for a child was identified, then this contact can be propagated to randomly
chosen social groups i and j.

The results for repair case are presented in Table 7.4. Standard answer set computa-
tion times out even for smaller instances, which is due to a large number of rules present

173



p

Tmax = 500 Tmax = 5000

AS
RAS

AS
RAS

no_restr lim = 10 no_restr lim = 10
10 (20) 0.15 (0)[0] 0.32 (0)[20] 1.95 (0)[20] 0.28 (0)[0] 3.58 (0)[20] 6.03 (0)[20]
20 (20) 0.16 (0)[0] 0.47 (0)[20] 2.17 (0)[20] 0.48 (0)[0] 12.89 (0)[20] 15.96 (0)[20]
30 (20) 0.17 (0)[0] 0.68 (0)[20] 2.47 (0)[20] 0.75 (0)[0] 27.76 (0)[20] 31.42 (0)[20]
40 (20) 0.19 (0)[0] 0.93 (0)[20] 2.78 (0)[20] 1.10 (0)[0] 48.46 (0)[20] 53.24 (0)[20]
50 (20) 0.20 (0)[0] 1.25 (0)[20] 3.19 (0)[20] 1.51 (0)[0] 76.39 (0)[20] 81.54 (0)[20]
60 (20) 0.21 (0)[0] 1.58 (0)[20] 3.56 (0)[20] 1.99 (0)[0] 108.33 (0)[20] 114.71 (0)[20]
70 (20) 0.23 (0)[0] 2.09 (0)[20] 4.18 (0)[20] 2.56 (0)[0] 146.62 (0)[20] 152.91 (0)[20]
80 (20) 0.24 (0)[0] 2.54 (0)[20] 4.68 (0)[20] 3.17 (0)[0] 191.37 (0)[20] 198.72 (0)[20]
90 (20) 0.26 (0)[0] 3.06 (0)[20] 5.28 (0)[20] 3.91 (0)[0] 241.51 (0)[20] 248.19 (0)[20]

Table 7.3: Family benchmark: TBox size variations, fixed P and A50

in the programs. For normal answer set computation we did not enable optimization
techniques which split a DL-program into independent components and evaluate each
component separately, i.e. instead of module-based a monolithic evaluation heuristics
was used. The monolithic heuristics was chosen to make the evaluation comparison fair.
The repair model generator does not support any other heuristics at the moment and
the extensions are nontrivial, which was already mentioned in the previous section.

Here the maximal number of rules that were added is specified in the column “names”.
Each out of the maximal number of rules is present in the test instance with the proba-
bility p. We can see that the growing number of rules makes an impact on the running
time of the algorithm, which is non surprising, as the added rules introduce conflicts
due to a cycle through negation. Restriction to elimination of 10 facts for Rulemax = 50
slows down the computation in comparison to the non-restricted scenario. For larger
instance size, Rulesmax = 500 the same restriction is too strict, thus no repairs are
actually found. Weakening the restriction for larger instance size (Rulesmax = 5000)
produces again some repair answer sets, though only for smaller p. For larger p timeouts
are obtained, which is natural as bearing thousands of rules even for a standard ASP
solver computing answer sets for consistent programs is time-consuming.

p
Rulesmax = 50 Rulesmax = 500 Rulesmax = 5000

RAS RASlim=10 RAS RASlim=10 RAS RASlim=20
10 (20) 0.55 (0)[20] 2.09 (0)[20] 2.56 (0)[20] 23.23 (0)[0] 64.65 (0)[20] 110.92 (0)[20]
20 (20) 0.69 (0)[20] 2.35 (0)[20] 5.22 (0)[20] 77.30 (0)[0] 257.35 (11)[9] 300.00 (20)[0]
30 (20) 0.90 (0)[20] 2.67 (0)[20] 8.50 (0)[20] 158.23 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
40 (20) 0.97 (0)[20] 2.86 (0)[20] 11.86 (0)[20] 128.87 (1)[0] 300.00 (20)[0] 300.00 (20)[0]
50 (20) 1.18 (0)[20] 3.11 (0)[20] 14.91 (0)[20] 144.71 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
60 (20) 1.29 (0)[20] 3.28 (0)[20] 17.68 (0)[20] 164.70 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
70 (20) 1.42 (0)[20] 3.19 (0)[20] 20.11 (0)[20] 186.38 (3)[0] 300.00 (20)[0] 300.00 (20)[0]

Table 7.4: Family benchmark: rule size variations, fixed T and A50
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Network Benchmark

In our next scenario, the properties of the nodes and edges in a network are described
by a fixed ontology O using predicates Blocked, Broken, Avail for nodes and forbid
for edges. The TBox encodes that if an edge is forbidden, then its endpoint must be
blocked, and if a node is known to be broken, then it is automatically blocked, moreover
blocked nodes are not available:

O = {∃forbid v Block, Broken v Block, Block v ¬Avail}.
We considered two networks of 67 and 161 nodes with respectively 117 and 335 edges.

The networks represent fragments of the Vienna public transportation system. In each
network we randomly made 30% of the nodes broken and 20% of the edges forbidden;
the larger network has in addition 47 blocked nodes. This information is stored in the
data part of O.

The experiments were run on two DL-programs Pconn and Pguess over O. Both
programs contain as facts edges and nodes of the graph, as well as randomly generated
facts determining the portion of the nodes on which a condition expressed by the rules of
the program is checked. For creating the data part of the Pconn program, we partitioned
the set of nodes randomly into two sets, i.e. the set of in nodes and the set of out nodes.
For each node n from the in set, the fact in(n) is added with probability p/100. For each
node n′ from the set of out nodes, the fact out(n′) is added with probability p′ computed
in the following way: if 0 ≤ p ≤ 20, then p′ = p ∗ 4, if 20 ≤ p ≤ 30, then p′ = p ∗ 3. Pconn
contains, moreover, the following rules:

Pconn =



(1) go(X,Y )← open(X), open(Y ), edge(X,Y );
(2) route(X,Z)← route(X,Y ), route(Y, Z);
(3) route(X,Y )← go(X,Y ),not DL[; forbid](X,Y );
(4) open(X)← node(X), not DL[; ¬Avail](X);
(5) ok(X)← in(X), out(X), route(X,Y );
(6) fail ← in(X), not ok(X);
(7) ⊥ ← fail.


Intuitively, (1)-(4) recursively determine routes over non-blocked (open) nodes; where
(3) expresses that by default a route is recommended unless it is known to be forbidden.
Rules (5)-(7) encode the requirement that each node from the in set must be connected
to at least one node from the out set via a route, which amounts to a variation of a
generalized connectivity problem.

The running times and repair results for this benchmark with the network containing
67 nodes is given in Table 7.5. The same number of repairs is computed for all of the
RAS settings, but the running times slightly vary as expected. The last column, where
only broken nodes and forbidden edges are allowed for removal, has similar running times
as the unrestricted setting. This is also the case for a larger network with 161 nodes
(Table 7.6); however in contrast to the 67-node network, this restriction does not yield
repairs. Probably one also needs to remove blocked/unavailable nodes from the ontology
in order to obtain repairs.
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p AS
RAS

no_restr lim = 3 lim = 20 Broken, forbid

2 (20) 0.10 (0)[12] 0.46 (0)[20] 0.84 (0)[20] 0.66 (0)[20] 0.46 (0)[20]
6 (20) 0.10 (0) [5] 0.45 (0)[16] 0.79 (0)[16] 0.61 (0)[16] 0.44 (0)[16]

10 (20) 0.09 (0) [3] 0.43 (0)[14] 0.76 (0)[14] 0.59 (0)[14] 0.43 (0)[14]
14 (20) 0.09 (0) [2] 0.41 (0)[10] 0.71 (0)[10] 0.54 (0)[10] 0.41 (0)[10]
18 (20) 0.09 (0) [0] 0.40 (0) [7] 0.67 (0) [7] 0.51 (0) [7] 0.40 (0) [7]
22 (20) 0.09 (0) [0] 0.41 (0) [9] 0.70 (0) [9] 0.54 (0) [9] 0.41 (0) [9]
26 (20) 0.09 (0) [0] 0.38 (0) [3] 0.63 (0) [3] 0.47 (0) [3] 0.38 (0) [3]
30 (20) 0.09 (0) [0] 0.37 (0) [2] 0.62 (0) [2] 0.46 (0) [2] 0.37 (0) [2]

Table 7.5: Network-connectivity benchmark results: A67

p
RAS

no_restr lim = 3 lim = 20 lim = 100 Broken, forbid

2 (20) 179.49 (1)[19] 280.73 (16)[0] 288.64 (17)[3] 176.06 (1)[19] 125.47 (0)[0]
4 (20) 218.80 (8)[12] 291.80 (18)[0] 295.48 (19)[1] 226.25 (8)[12] 127.68 (0)[0]
8 (20) 230.79 (9)[11] 298.39 (19)[0] 300.00 (20)[0] 232.65 (9)[11] 126.97 (0)[0]
10 (20) 258.08 (14)[5] 300.00 (20)[0] 300.00 (17)[0] 259.69 (14)[6] 125.63 (0)[0]

Table 7.6: Network-connectivity benchmark results: A161

Another setting that we considered is a benchmark over the program Pguess, which
has the same rules (1) and (2) as Pconn, while the rest of the rules are as follows:
(3*) route(X,Y )← go(X,Y ),not DL[Block ] block; forbid](X,Y );
(4*) open(X) ∨ block(X)← domain(X), not DL[; ¬Avail](X);
(5*) open(X)← node(X), notDL[; Broken](X), not block(X);
(6*) negis(X)← domain(X), route(X ,Y ), X 6= Y ;
(7*) ⊥ ← domain(X), not negis(X).

The rule (3*) has an update in the DL-atom, the rule (4*) amounts to guessing for
all selected nodes (domain predicate) not known to be unavailable, whether they are
blocked or not, i.e. it contains nondeterminism, which makes rule processing challenging.
Other nodes are open by default, unless they are known to be broken, which is encoded
in the rule (5*). Rules (6*) and (7*) check whether none of the domain nodes is isolated,
i.e. does not have a connection to any other node via a route.

The results for Pguess with networks of 67 and 161 nodes are in Table 7.7 and Table 7.8
respectively. The facts domain(n) are added for each node n with probability p/10. One
could observe a strict increase in the running time for the network with 67 nodes for
p = 2, p = 10 and standard answer set computation. The reason for such a behavior is
that some of the considered instances are in fact consistent, but because of the guessing
rules answer sets are not found within the time frame of 300 seconds, and therefore
timeouts happen. For bigger p the instances are inconsistent and the conflict is quickly
determined by the solver. The results for 161 nodes given in Table 7.8 show that the
guided search (last column) increases the number of found repairs quit a bit, and less
timeouts are hit for p = 4 and p = 8.
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p AS
RAS

no_restr lim = 3 lim = 10 limc = 10 Broken

2 (20) 180.06 (12)[0] 0.51 (0)[20] 0.91 (0)[19] 0.90 (0)[20] 0.69 (0)[20] 0.50 (0)[20]
10 (20) 15.17 (1) [0] 1.33 (0)[16] 0.89 (0) [2] 1.61 (0)[16] 0.85 (0)[16] 1.31 (0)[16]
18 (20) 0.18 (0) [0] 1.68 (0) [8] 0.90 (0) [0] 1.40 (0) [8] 0.81 (0) [8] 1.68 (0) [8]
26 (20) 0.19 (0) [0] 0.62 (0) [1] 0.97 (0) [0] 0.95 (0) [1] 0.60 (0) [1] 0.62 (0) [1]
34 (20) 0.20 (0) [0] 0.79 (0) [1] 1.04 (0) [0] 1.02 (0) [1] 0.62 (0) [1] 0.78 (0) [1]

Table 7.7: Network-guessing benchmark results: A67

p
RAS

no_restr lim = 10 limc = 100 Broken

2 (20) 178.52 (3)[15] 187.65 (2)[16] 175.64 (2)[16] 179.57 (3)[15]
4 (20) 201.89 (6)[10] 211.10 (7) [9] 213.66 (9) [7] 178.55 (3)[13]
8 (20) 212.18 (10) [2] 215.44 (10) [2] 205.77 (9) [3] 191.97 (7) [5]
10 (20) 190.58 (9) [0] 184.80 (8) [1] 191.54 (9) [0] 191.06 (9) [0]

Table 7.8: Network-guessing benchmark results: A161

O =
{

(1) Driver v ¬Cust (3) ∃worksIn v Driver
(2) EDriver v Driver (4) worksIn v ¬notworksIn

}

P=



(5) cust(X)← isIn(X ,Y ), not DL[; ¬Cust](X);
(6) driver(X)← not cust(X), isIn(X ,Y );
(7) drives(X ,Y )← cust(Y ), isIn(Y,Z ), isIn(X ,Z ),

driver(X), not omit(X ,Y );
(8) omit(X ,Y )← needsTo(Y ,Z ), DL[; notworksIn](X,Z),

DL[Driver]driver ; EDriver ](X);
(9) ok(Y )← customer(Y ), drives(X ,Y );
(10) fail ← customer(Y ), not ok(Y );
(11) ⊥ ← fail.


Figure 7.6: DL-program from Taxi-basic benchmark

Taxi-Driver Assignment Benchmark

The third experimental setting represents the taxi-driver assignment problem [EFRS14].
Imagine a system that assigns customers to taxi drivers under constraints, using (in

a simplistic form) the DL-program Π = 〈O,P〉 presented in Figure 7.6. The (external)
ontology O has a taxonomy T in (1)-(3). The logic program P has the following rules:
(5) and (6) single out customers resp. taxi drivers; (7) assigns taxi drivers to customers
in the same region; and (8) forbids drivers of electro-cars to serve needs going outside
their working region. Finally, the rules (9), (10) and a constraint (11) make sure that
each customer is assigned to at least one driver.
1. Repair Quality Assessment. One might argue that in case of inconsistency there
are not many possibilities for repairing the given system. Indeed, for instance, removing
information about the drivers seems absurd at the first glance, as it will introduce new
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individuals who are not anymore known to be drivers, and thus assumed to be customers
due to the default (5). Observe that a complete removal of driver information will not
make the system consistent, but on the contrary will introduce even more customers,
who will then possibly need to be assigned to the drivers. Therefore, it is obvious that
the guided repair search is often crucial and it should not only improve the repair quality
but also reduce the computation runtime.

In this setting we evaluated the quality of the repair computation by considering the
evaluation time of the repair computation under various independent selection functions.
The functions include restriction to a certain set of predicates for deletion (in our case
the facts with the predicate EDriver only are allowed for deletion) and limitation of the
number of removed facts, predicates and constants. Since the selection functions filter
out irrelevant repair candidates, they ensure a certain quality of the computed repairs.
While limiting the number of assertions for removal is natural and can be easily justified,
one might wonder in which cases the removal of the drivers of electro-cars is of practical
use. Here we can imagine that electro-cars have also possibility to use petrol, but for
environmental reasons this is undesired, and the government wants to reduce the petrol
usage. However, in case it is vital and some customers are left without drivers, they still
can switch back to the petrol energy supply.

For the DL-program Π, we fixed two ABoxes: A50 and A500 of the ontology O.
The ABox A50 contains 50 customers, 20 drivers (among them 19 driving electro-cars),
and 5 regions; every driver works in 2-4 regions, and the ABox A500 has 10 times as
many customers and drivers as A50. In the program P from above, facts isIn(c, r),
needsTo(c, r), goTo(d, r) for customers c, drivers d and regions r from A are randomly
added with probability p/100 under the following constraints: persons are in at most one
region; customers need to go to at most one region, and their position is known in that
case. Furthermore, driver positions are added as facts isIn(d, r) with fixed probabilities
of 0.3, 0.7 and 1 growing discretely in accordance with p.

For A50 and A500 the results are given in Table 7.9 and Table 7.10 respectively,
where the first column shows in parentheses the number of instances generated per
value p. The second and third column state results for standard and repair answer set
computation, respectively, while the rest of the columns present the running times for
repair computation under various selection functions, i.e. in the fourth and fifth column
we restricted repairs by allowing removal of only a limited number of assertions (3 and
10) and in the sixth and seventh column we computed repairs where only facts containing
2 predicates and 10 constants are eliminated. Finally in the last column the results for
removing only EDriver facts are shown.

One can see that the limitation of the number of removed assertions makes the
computation slower in comparison to the normal repair computation. For repdel =
EDriver, the guided repair computation effectively reduces the search space of the
candidates, and it helps the solver to find repairs quicker. In fact analysis of the program
reveals that most of the valid repairs exclude certain EDriver concept membership,
since they often cause the omission of driver-customer assignments and thus violation
of constraint (11). Results for a larger ABox (500 customers and 200 drivers, including
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p AS
RAS

no_restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver

10 (20) 0.69 (0)[0] 0.14 (0)[13] 0.75 (0)[11] 0.75 (0)[13] 0.31 (0)[13] 0.26 (0)[13] 0.14 (0)[13]
20 (20) 0.37 (0)[0] 0.15 (0) [8] 0.89 (0) [4] 0.87 (0) [8] 0.32 (0) [8] 0.25 (0) [8] 0.15 (0) [8]
30 (20) 0.22 (0)[0] 0.16 (0) [7] 0.92 (0) [2] 0.89 (0) [7] 0.32 (0) [7] 0.26 (0) [7] 0.16 (0) [7]
40 (20) 0.58 (0)[0] 0.18 (0) [8] 1.06 (0) [1] 1.04 (0) [8] 0.36 (0) [8] 0.28 (0) [8] 0.18 (0) [8]
50 (20) 0.46 (0)[0] 0.18 (0) [7] 1.01 (0) [2] 0.98 (0) [7] 0.36 (0) [7] 0.29 (0) [7] 0.18 (0) [7]
60 (20) 0.22 (0)[0] 0.19 (0)[11] 1.02 (0) [1] 0.99 (0)[11] 0.38 (0)[11] 0.31 (0)[11] 0.19 (0)[11]
70 (20) 0.22 (0)[0] 0.21 (0) [4] 1.00 (0) [0] 0.99 (0) [4] 0.37 (0) [4] 0.29 (0) [4] 0.20 (0) [4]
80 (20) 1.02 (0)[0] 0.22 (0) [9] 1.10 (0) [1] 1.10 (0) [9] 0.40 (0) [9] 0.33 (0) [9] 0.22 (0) [9]
90 (20) 1.30 (0)[0] 0.23 (0)[12] 1.26 (0) [0] 1.20 (0)[12] 0.44 (0)[12] 0.36 (0)[12] 0.24 (0)[12]
100 (20) 1.47 (0)[0] 0.24 (0)[13] 1.20 (0) [0] 1.15 (0)[13] 0.45 (0)[13] 0.37 (0)[13] 0.26 (0)[13]

Table 7.9: Taxi-basic benchmark results: A50

p
RAS

no_restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver

10 (20) 4.36 (0)[20] 44.06 (1)[19] 37.13 (0)[20] 6.65 (0) [20] 5.13 (0) [20] 6.50 (0) [20]
20 (20) 6.34 (0)[20] 24.05 (0)[20] 24.35 (0)[20] 8.80 (0) [20] 7.35 (0) [20] 8.94 (0) [20]
30 (20) 8.46 (0)[20] 40.88 (1)[19] 38.93 (0)[20] 11.08 (0)[20] 9.72 (0) [20] 11.58 (0)[20]
40 (20) 10.26(0)[20] 28.69 (0)[20] 28.72 (0)[20] 12.84 (0)[20] 11.60 (0)[20] 13.56 (0)[20]
50 (20) 12.64(0)[19] 31.58 (0)[19] 31.80 (0)[19] 15.47 (0)[19] 14.59 (0)[19] 16.66 (0)[19]
60 (20) 15.43(0)[20] 48.19 (1)[19] 48.28 (1)[19] 18.20 (0)[20] 18.11 (0)[20] 19.95 (0)[20]
70 (20) 18.33(0)[20] 37.61 (0)[20] 37.74 (0)[20] 20.86 (0)[20] 20.61 (0)[20] 23.49 (0)[20]
80 (20) 20.63(0)[20] 40.09 (0)[20] 40.10 (0)[20] 23.21 (0)[20] 23.16 (0)[20] 26.19 (0)[20]
90 (20) 21.81(0)[20] 54.53 (1)[19] 54.35 (1)[19] 24.34 (0)[20] 26.41 (0)[20] 27.48 (0)[20]
100 (20) 26.22(0)[20] 46.67 (0)[20] 46.73 (0)[20] 28.99 (0)[20] 29.63 (0)[20] 33.21 (0)[20]

Table 7.10: Taxi-basic benchmark results: A500

170 driving electro-cars), shown in Table 7.10, are similarly satisfactory.
2. Setting with rules involving time constraints. We modified the DL-program
from above to take into account also time slots when the drivers are on duty (see Fig-
ure 7.7). Here the TBox and the rule part are extended. The additional rules (11) and
(12) do not allow drivers to work at time slots which they are not assigned to.

The results for this setting are given in Table 7.11. The standard repair computation
results in timeout for all instances due to the inequalities in rules (8)-(10), as most of
the instances are inconsistent it takes the reasoner long to identify the conflict. For the
repair computation we can get results within a second. We considered here restrictions
on the number facts, predicates and constants that are removed. The running times
naturally increase when the restriction is too strict, and then again slightly drop for less
restrictive cases. When limiting repairs to removal of EDriver facts only, a certain speed
up in comparison to the non-restricted case is observed. The latter is non-surprising, as
the guided search as in previous setting makes the repair computation quicker.

3. Real world data.
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O =
{
(1) Driver v ¬Cust (3) EDriver v Driver
(2) ∃worksIn v Driver (4) DayDriver v ¬NightDriver

}

P=



(4) cust(X)← isIn(X ,Y ), not DL[worksIn ] goTo; ¬Cust](X);
(5) driver(X)← not cust(X), isIn(X ,Y );
(6) drives(X ,Y )← cust(Y ), isIn(Y,Z ), isIn(X ,Z ),

driver(X), not omit(X ,Y );
(7) omit(X ,Y )← needsTo(Y ,Z ,T ), not DL[; worksIn](X,Z),

DL[Driver ] driver ; EDriver ](X);
(8) omit(X ,Y )← drives(X,Y ), needsTo(X,Y, T ), day(T ),

DL[Driver ] driver ; ¬DayDriver ](X);
(9) omit(X ,Y )← drives(X,Y ), needsTo(X,Y, T ), night(T ),

DL[Driver ] driver ; ¬NightDriver ](X);
(10) night(T )← needsTo(X,Y, T ), T < 9;
(11) night(T )← needsTo(X,Y, T ), T > 21;
(12) day(T )← needsTo(X,Y, T ), T ≤ 21, T ≥ 9;
(13) ok(Y )← customer(Y ), drives(X ,Y );
(14) fail ← customer(Y ), not ok(Y );
(15) ⊥ ← fail.


Figure 7.7: DL-program from Taxi-time benchmark

Figure 7.8: Mutual relations among Vienna districts
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p
RAS

no_restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver

10 (20) 0.30 (0)[20] 2.19 (0)[20] 2.12 (0)[20] 0.62 (0)[20] 0.46 (0)[20] 0.22 (0)[20]
20 (20) 0.36 (0)[20] 2.19 (0)[20] 2.15 (0)[20] 0.68 (0)[20] 0.52 (0)[20] 0.27 (0)[20]
30 (20) 0.40 (0)[20] 2.13 (0)[20] 2.15 (0)[20] 0.72 (0)[20] 0.56 (0)[20] 0.30 (0)[20]
40 (20) 0.46 (0)[20] 2.27 (0)[20] 2.26 (0)[20] 0.79 (0)[20] 0.62 (0)[20] 0.35 (0)[20]
50 (20) 0.56 (0)[20] 2.32 (0)[20] 2.31 (0)[20] 0.88 (0)[20] 0.71 (0)[20] 0.42 (0)[20]
60 (20) 0.62 (0)[20] 2.38 (0)[20] 2.37 (0)[20] 0.94 (0)[20] 0.78 (0)[20] 0.48 (0)[20]
70 (20) 0.71 (0)[20] 2.45 (0)[20] 2.45 (0)[20] 1.03 (0)[20] 0.87 (0)[20] 0.56 (0)[20]
80 (20) 0.80 (0)[20] 2.55 (0)[20] 2.55 (0)[20] 1.13 (0)[20] 0.97 (0)[20] 0.64 (0)[20]
90 (20) 0.93 (0)[20] 2.71 (0)[20] 2.68 (0)[20] 1.26 (0)[20] 1.10 (0)[20] 0.75 (0)[20]
100 (20) 0.98 (0)[20] 2.72 (0)[20] 2.72 (0)[20] 1.30 (0)[20] 1.15 (0)[20] 0.82 (0)[20]

Table 7.11: Taxi-time benchmark results: A50

Another scenario that we considered uses the Open Street Map18 data over the
modified version of the MyITS ontology 19. This setting is modeled for demonstrating
the applicability of the repair answer set computation approach for the real world data
as well as the ability of coping with large TBoxes. The TBox of the MyITS ontology is
extended with the axioms from the previous experimental setting, while its ABox apart
from customer and driver information from above also contains the data about mutual
spatial relations among the districts of Vienna (see Figure 7.8). These relations are
stored using the predicates adjoint and disjoint. The respective fragment of the TBox
and the rules of the program are as follows:

T =

(1) Driver v ¬Cust (4) adjoint v ¬disjoint
(2) ∃worksIn v Driver (5) EDriver v Driver
(3) worksIn v ¬notworksIn



P=



(5) cust(X)← isIn(X ,Y ), not DL[; ¬Cust](X);
(6) driver(X)← not cust(X), isIn(X ,Y );
(7) drives(X ,Y )← driver(X), cust(Y ),needsTo(Y ,Z1 ), goTo(X ,Z2 ),

DL[; adjoint](Z1 ,Z2 ), not omit(X ,Y );
(8) omit(X ,Y )← DL[; EDriver ](X),needsTo(Y ,Z ),

DL[; notworksIn](X,Z);
(9) ok(Y )← customer(Y ), drives(X ,Y );
(10) fail ← customer(Y ), not ok(Y );
(11) ⊥ ← fail


Intuitively, the rule (7) states that a driver can be assigned to a customer, only if the

driver is going to a region adjoint to the one to which the customer needs to get. Similar
as in previous scenarios, some of the assignments are dropped if they involve drivers of
electro-cars aiming at the regions they are not assigned to.

The benchmark results for this setting and A50 are presented in Table 7.12 and for
A500 in Table 7.13. Unsurprisingly, the restriction on the number of assertions allowed

18http://www.openstreetmap.org/
19http://www.kr.tuwien.ac.at/research/projects/myits
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p AS
RAS

no_restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver

2 (20) 0.25 (0) [5] 4.12 (0) [5] 5.27 (0) [5] 5.32 (0) [5] 5.01 (0) [5] 4.98 (0) [5] 4.10 (0) [5]
10 (20) 0.25 (0) [0] 4.18 (0)[11] 6.19 (0) [7] 6.18 (0)[11] 5.22 (0)[11] 5.15 (0)[11] 4.13 (0) [3]
18 (20) 0.25 (0) [1] 4.24 (0)[14] 6.71 (0)[10] 6.74 (0)[14] 5.34 (0)[14] 5.19 (0)[14] 4.15 (0) [3]
26 (20) 0.25 (0) [1] 4.28 (0)[14] 7.26 (0) [9] 7.42 (0)[14] 5.50 (0)[14] 5.24 (0)[14] 4.22 (0) [5]
34 (20) 0.26 (0) [3] 4.39 (0)[19] 8.54 (0)[16] 8.52 (0)[19] 5.74 (0)[19] 5.40 (0)[19] 4.35 (0) [9]
42 (20) 0.27 (0) [5] 4.42 (0)[18] 9.35 (0)[18] 9.31 (0)[18] 5.86 (0)[18] 5.49 (0)[18] 4.51 (0)[16]
50 (20) 0.29 (0)[10] 4.49 (0)[19] 10.42 (0)[19] 10.29 (0)[19] 6.05 (0)[19] 5.54 (0)[19] 4.63 (0)[19]
58 (20) 0.32 (0)[14] 4.62 (0)[20] 11.48 (0)[20] 11.50 (0)[20] 6.33 (0)[20] 5.63 (0)[20] 4.76 (0)[20]
66 (20) 0.31 (0)[11] 4.61 (0)[20] 11.59 (0)[20] 13.42 (0)[20] 6.27 (0)[20] 5.71 (0)[20] 4.76 (0)[18]

Table 7.12: Taxi-districts benchmark results: A50

p AS
RAS

no_restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver

2 (20) 2.11 (0) [0] 9.22 (0) [7] 25.05 (0) [6] 24.91 (0) [7] 12.32 (0) [7] 10.24 (0) [6] 7.56 (0) [0]
10 (20) 2.23 (0) [0] 14.17 (0)[20] 46.37 (0)[20] 46.52 (0)[20] 20.54 (0)[20] 15.75 (0)[15] 12.16 (0) [4]
18 (20) 5.58 (0) [5] 15.96 (0)[20] 51.89 (0)[20] 52.44 (0)[20] 23.11 (0)[20] 17.93 (0)[20] 28.00 (0)[20]
26 (20) 17.95 (0)[12] 18.28 (0)[20] 55.30 (0)[20] 55.84 (0)[20] 25.57 (0)[20] 20.27 (0)[20] 31.76 (0)[20]
34 (20) 37.87 (0)[17] 20.81 (0)[20] 58.71 (0)[20] 58.51 (0)[20] 28.35 (0)[20] 22.93 (0)[20] 36.00 (0)[20]

Table 7.13: Taxi-districts benchmark results: A500

for deletion slows down the repair computation again. With the increase of this limit
the running time slightly improves. As in the previous setting the restriction of the set
of predicates allowed for deletion to EDriver does not yield much of the computation
overhead; however, in contrast to the previous setting the number of found repairs
decreases. Here apart from the information about drivers working on electra-cars, one
needs to expand the working area of the drivers too, thus removal of notworksIn facts
should again increase the number of obtained repairs.

LUBM-DL-LiteA

Our approach has been also evaluated on DL-programs over the famous LUBM ontol-
ogy20 in its DL-LiteA form. For ABox generation we used the dedicated Combo tool21.
We considered variations of rule settings including inconsistent rules, contradicting de-
faults (a version of the Nixon diamond setting) and an extended assignment problem in
combination with multiple mutually related defaults.

1. LUBM-inconsistent .
For an inconsistent setting we have built a DL-program over a DL-LiteA version

together with a fixed, generated ABox (1 university with over 532 students, 61 courses
and 29 teaching assistants).

20http://swat.cse.lehigh.edu/projects/lubm/
21http://code.google.com/p/combo-obda/
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p AS
RAS

no_restr lim = 3 lim = 20 limp = 2 limc = 20
2 (20) 83.30 (0)[11] 3.50 (0)[20] 4.91 (0)[20] 5.07 (0)[20] 4.26 (0)[20] 4.20 (0)[20]
4 (20) 70.16 (0) [6] 3.48 (0)[20] 4.94 (0)[20] 5.08 (0)[20] 4.25 (0)[20] 4.20 (0)[20]
6 (20) 53.73 (0) [0] 3.48 (0)[20] 4.86 (0)[18] 5.17 (0)[20] 4.29 (0)[20] 4.20 (0)[20]
8 (20) 56.63 (0) [1] 3.49 (0)[20] 4.78 (0)[15] 5.01 (0)[20] 4.27 (0)[20] 4.21 (0)[20]

10 (20) 53.56 (0) [0] 3.48 (0)[20] 4.82 (0)[17] 5.08 (0)[20] 4.25 (0)[20] 4.19 (0)[20]
20 (20) 54.07 (0) [0] 3.49 (0)[20] 4.43 (0) [2] 4.98 (0)[20] 4.28 (0)[20] 4.20 (0)[20]
30 (20) 53.79 (0) [0] 3.49 (0)[20] 4.38 (0) [0] 4.93 (0)[20] 4.27 (0)[20] 4.02 (0)[13]
40 (20) 54.47 (0) [0] 3.50 (0)[20] 4.40 (0) [0] 4.95 (0)[20] 4.28 (0)[20] 3.76 (0) [3]
50 (20) 54.88 (0) [0] 3.51 (0)[20] 4.42 (0) [0] 4.98 (0)[20] 4.30 (0)[20] 3.72 (0) [1]
60 (20) 53.97 (0) [0] 3.51 (0)[20] 4.40 (0) [0] 4.83 (0)[15] 4.28 (0)[20] 3.71 (0) [1]
70 (20) 54.22 (0) [0] 3.53 (0)[20] 4.46 (0) [0] 4.69 (0)[10] 4.32 (0)[20] 3.69 (0) [0]
80 (20) 54.55 (0) [0] 3.52 (0)[20] 4.47 (0) [0] 4.48 (0) [2] 4.29 (0)[20] 3.68 (0) [0]
90 (20) 53.72 (0) [0] 3.50 (0)[20] 4.41 (0) [0] 4.43 (0) [0] 4.30 (0)[20] 3.74 (0) [0]

100 (20) 53.95 (0) [0] 3.52 (0)[20] 4.42 (0) [0] 4.43 (0) [0] 4.30 (0)[20] 3.71 (0) [0]

Table 7.14: LUBM-inconsistent benchmark results

P=
{

(1) stud(X)← notDL[; ¬Student](X),DL[; TA](X);
(2) ⊥ ← DL[Student ] stud; TAof ](X ,Y ), takesexam(X ,Y )

}
Rules encode default reasoning under constraints: teaching assistants (TAs) are nor-

mally students, and TAs must not take the exam of a course they are involved with.
Facts takesExam(c1, c2) have been randomly added to the program with a probability
between 0.1 and 1.

The results for this benchmark are presented in Table 7.14. Apart from standard
answer set computation we considered RAS computation under restricted settings, where
only 3 and 20 facts (facts containing 20 constants) were allowed for deletion in lim = 3
and lim = 20 (resp. limc = 20), and 2 predicates (limp = 2). A first repair answer set
for the non-restricted case is found for all instances within 4 seconds, while detecting
inconsistency with ordinary answer set computation takes about 1 minute. One can see
that some of the smaller instances are consistent (p ranging from 2 to 6 and p = 10).
The computation of the answer sets in general in many scenarios is more time-consuming
then identification of the conflicts for inconsistent instances. Therefore, we can observe a
drop of the running time in the standard answer set case with the growth of the number
of inconsistent instances. In fact, for the same there is a decrease in running times for
lim = 3, lim = 20 and limc = 20. One can observe that with the growing p there
are less and less repair answer sets found in these columns. The absence of repairs in
our implementation amounts to the absence of answer sets in the declarative program
extended by the support set information and ontology data part as described earlier in
this chapter. This explains the decrease in running times for bigger p.

2. LUBM-diamond. We moreover considered default reasoning over the LUBM
ontology. The defaults expressed in the DL-program below state that research assistants
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O =
{

(1) RA v Student
}

P=


(2) emp(X)← notDL[Employee ] emp,Employee −∪negemp; ¬Employee](X),

DL[; RA](X);
(3) negemp(X)← notDL[Employee ] emp, Employee −∪negemp; Employee](X),

DL[; Student](X);
(4) ⊥ ← emp(X),negemp(X)


Figure 7.9: DL-program from LUBM-diamond benchmark

p
RAS

no_restr lim = 3 lim = 20 limp = 2 limc = 20 RA

2 (20) 3.36 (0)[20] 4.23 (0)[18] 4.30 (0)[20] 4.19 (0)[20] 4.19 (0)[20] 3.32 (0)[20]
6 (20) 3.82 (0)[20] 4.97 (0)[7] 5.32 (0)[20] 4.74 (0)[20] 4.67 (0)[20] 3.84 (0)[20]

10 (20) 4.92 (0)[20] 6.34 (0)[0] 6.83 (0)[20] 5.88 (0)[20] 5.83 (0)[20] 4.95 (0)[20]
14 (20) 7.54 (0)[20] 9.34 (0)[0] 9.76 (0)[20] 8.52 (0)[20] 8.48 (0)[20] 7.54 (0)[20]
18 (20) 11.48 (0)[20] 13.76 (0)[0] 14.35 (0)[20] 12.64 (0)[20] 12.49 (0)[19] 11.62 (0)[20]
22 (20) 17.89 (0)[20] 20.96 (0)[0] 21.67 (0)[19] 19.12 (0)[20] 18.95 (0)[19] 18.24 (0)[20]
26 (20) 27.83 (0)[20] 32.05 (0)[0] 32.71 (0)[18] 28.45 (0)[20] 28.34 (0)[16] 28.55 (0)[20]
30 (20) 234.05 (15)[5] 248.37 (16)[0] 248.12 (16)[4] 247.33 (16)[4] 247.54 (16)[2] 234.71 (15)[5]

Table 7.15: LUBM-diamond benchmark results

(RAs) are normally employees, while students are normally not employees; as the on-
tology entails that research assistants are students, the well-known Nixon diamond is
instantiated (see Figure 7.9).

Table 7.15 shows the results of the experiments for an automatically generated ABox,
which contains 1 university consisting of 39 RAs and 532 students. Here p is the per-
centile of the relevant domain (RAs, students, employees entailed by O), which is gen-
erated as a set of facts in the program.

Unsurprisingly, the combinatorial nature of the defaults makes the standard answer
set computation difficult and the timeouts are obtained even for relatively small in-
stances. Due to the constraint (14) many instances are inconsistent, and it takes the
solver a vast amount of time to identify the conflict, and there is no hope to obtain
a result within the timeout. Therefore, we did not include the standard AS running
times on these instances. On the other hand, due to the declarative implementation the
repair ABox is found relatively quickly for smaller p, and the results for this setting are
promising.

3. LUBM-Extended. Finally, we looked at an extended setting of the rules over the
LUBM ontology, in which an assignment problem is encoded using a number of mutually
related defaults (see Figure 7.10).

• The rules (6) - (8) encode a default, stating that all students are research assistants
unless the contrary is derived.
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O =

 (1) Student v ¬NonStudent (4)VisitPostDoc v PostDoc
(2) VisitPostDoc v ResearchAssistant (5) Student v OrgHelp
(3) VisitPostDoc v NonStudent



P =



(6) resas(X)← DL[; ResearchAssistant](X);
(7) student(X)← resas(X), notnegStudent(X);
(8) negStudent(X)← resas(X),DL[Student ] student; ¬Student](X);
(9) helps(Y,X)← resas(X),DL[; PostDoc](Y ), not omit(Y,X);
(10) omit(Y,X)← helps(Y ,X),DL[; PostDoc](X);
(11) visitPostDoc(Z)← DL[; V isitPostDoc](Z);
(12) orghelp(Z1)← DL[; OrgHelp](Z1);
(13) supports(Z1, Z)← orghelp(Z1), visitPostDoc(Z), not drop(Z1, Z);
(14) negStudent(Z1)← orghelp(Z1), not student(Z1);
(15) student(Z1)← orghelp(Z1),DL[NonStudent ] negStudent; ¬NonStudent](Z1);
(16) drop(Z1, Z)← supports(Z1 ,Z ),DL[; InternationalStudent](Z1).


Figure 7.10: DL-program from LUBM-extended benchmark

p AS
RAS

RAS lim = 20 limp = 2 limc = 20 IS

2 (20) 3.97 (0)[0] 13.98 (0)[20] 38.90 (0)[20] 16.01 (0)[20] 15.24 (0)[20] 15.20 (0)[6]
6 (20) 4.25 (0)[0] 16.16 (0)[20] 115.62 (0)[19] 18.08 (0)[20] 18.63 (0)[19] 11.16 (0)[2]

10 (20) 4.64 (0)[0] 18.95 (0)[20] 245.40 (0)[7] 20.85 (0)[20] 20.79 (0)[4] 9.12 (0)[0]
14 (20) 4.86 (0)[0] 21.50 (0)[20] 236.40 (1)[3] 23.73 (0)[20] 23.50 (0)[1] 9.53 (0)[0]
18 (20) 5.33 (0)[0] 24.86 (0)[20] 230.21 (0)[1] 27.11 (0)[20] 26.86 (0)[0] 10.15 (0)[0]
22 (20) 5.54 (0)[0] 28.21 (0)[20] 228.12 (0)[0] 30.19 (0)[20] 29.93 (0)[0] 10.36 (0)[0]
26 (20) 5.71 (0)[0] 31.50 (0)[20] 222.78 (0)[0] 33.84 (0)[20] 33.26 (0)[0] 10.75 (0)[0]
30 (20) 6.07 (0)[0] 36.88 (0)[20] 225.18 (0)[0] 38.82 (0)[20] 38.47 (0)[0] 11.45 (0)[0]
34 (20) 6.36 (0)[0] 42.18 (0)[20] 241.30 (0)[0] 44.29 (0)[20] 44.01 (0)[0] 12.22 (0)[0]
38 (20) 6.55 (0)[0] 46.07 (0)[20] 245.77 (0)[0] 47.87 (0)[20] 47.64 (0)[0] 12.41 (0)[0]
42 (20) 6.93 (0)[0] 52.50 (0)[20] 255.74 (0)[0] 54.17 (0)[20] 56.91 (0)[0] 12.94 (0)[0]
46 (20) 7.15 (0)[0] 56.98 (0)[20] 276.52 (5)[0] 58.96 (0)[20] 58.47 (0)[0] 13.35 (0)[0]
50 (20) 7.53 (0)[0] 63.96 (0)[20] 276.07 (5)[0] 65.79 (0)[20] 65.50 (0)[0] 14.18 (0)[0]

Table 7.16: LUBM-extended benchmark results

• The rule (9) assigns a postdoc to every research assistant (who is a student by
default). In case the “supposed” student has problems, there is always a person
to contact, namely assigned postdoc. These assignments are collected into a helps
predicate. It might, however, happen that a research assistant is a visiting postdoc
and thus a postdoc (axiom (2), (4) in O). In this case no help from another postdoc
is needed (rule (10)).

• Visiting postdocs do not need help with their work-related problems, but they need
support from the linguistic perspective, since they are foreigners, and often do not
know the local language. Thus a person who can provide organizational help
needs to be found for each postdoc. The rule (11) collects all visiting postdocs
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into a respective predicate. The rule (12) collects persons capable of providing
organizational help into another corresponding predicate. The rule (13) assigns
such a person to a visiting postdoc using the supports predicate.

• One needs to keep in mind that not all people who can provide organizational
help are equally good for assignments in rule (13). The latter can be international
students, even though they are believed to be not students (stated in rules (14) -
(15)).

• In (16) we eliminate all pairs, where a student, being involved in organizational help
is assigned to a visiting postdoc, and a student turns out himself to be international.

The results of the experiments are given in Table 7.16. In contrast to the Nixon
Diamond setting, the standard answer set computation algorithm outperforms the repair
answer set computation. The inconsistency in this setting is identified quicker then the
first repair is found. There are many DL-atoms without input predicates, so called outer
DL-atoms. In the standard answer set setting, for these atoms all relevant constants are
retrieved at an early stage, which speeds up the computation process. The restricted
repairs are computed in this setting too, and the results are non-surprising neither with
respect to the number of found repair answer sets nor with regard to the running times.
The stricter the limit, the less repairs are found and the more time is needed. The last
column of Table 7.16 presents the restriction of removal of the InternationalStudents
only. As one can see this guided search speeds up the computation but due to being
too restrictive it significantly reduces the number of found repairs. Note that limiting
the number of removed facts to 20 is slower then the rest of the posed restrictions,
which limit the number of predicates and constants allowed for removal. The reason for
this behavior stems from the structure of repairs, they do not involve many different
predicates, the number of facts in all repairs exceeds 20.

7.2.5 DL-programs over EL Ontologies

We now describe the benchmarks based on DL-programs built over acyclic OWL 2 EL
ontologies, which were used to analyze the algorithms based on incomplete support
families.

Access Policy Control

The first benchmark is a slight modification of Example 5.7 with an additional TBox
axiom Blacklisted v Unauthorized. We have run experiments in two settings: (a) with
complete support families and (b) with support families obtained under different re-
strictions, viz. bounded size and cardinality. We considered three ABoxes with 40, 100
and 1000 staff members, respectively, and generated facts of the form hasowner(pi , si),
and such that Staff (si),Project(pi) ∈ A. For the setting where complete support fam-
ilies were computed, we used ABoxes with 100 and 1000 staff members, respectively.
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p
Complete supp. family

p
Sup. set size restricted Sup. set number restricted

A100 A1000 sizelim=1 sizelim=3 sizelim=∞ numlim=1 numlim=3 numlim=∞
10 (20) 2.24 (0)[20] 10.42 (0)[20] A = 40
20 (20) 2.22 (0)[20] 10.25 (0)[20] 5 (20) 1.84 (0)[20] 1.83 (0)[20] 1.84 (0)[20] 61.25 (0)[0] 1.83 (0)[20] 1.84 (0)[20]
30 (20) 2.23 (0)[20] 10.23 (0)[20] 10 (20) 1.83 (0)[20] 1.83 (0)[20] 1.83 (0)[20] 61.98 (0)[0] 1.83 (0)[20] 1.83 (0)[20]
40 (20) 2.23 (0)[20] 10.25 (0)[20] 15 (20) 1.82 (0)[20] 1.82 (0)[20] 1.83 (0)[20] 61.71 (0)[0] 1.83 (0)[20] 1.82 (0)[20]
50 (20) 2.23 (0)[20] 10.27 (0)[20] 20 (20) 1.82 (0)[20] 1.82 (0)[20] 1.83 (0)[20] 62.60 (0)[0] 1.82 (0)[20] 1.83 (0)[20]
60 (20) 2.23 (0)[20] 10.27 (0)[20] 25 (20) 1.82 (0)[20] 1.81 (0)[20] 1.82 (0)[20] 63.12 (0)[0] 1.82 (0)[20] 1.82 (0)[20]
70 (20) 2.22 (0)[20] 10.26 (0)[20] 30 (20) 1.82 (0)[20] 1.82 (0)[20] 1.82 (0)[20] 63.19 (0)[0] 1.82 (0)[20] 1.83 (0)[20]
80 (20) 2.21 (0)[20] 10.29 (0)[20] 35 (20) 1.81 (0)[20] 1.82 (0)[20] 1.82 (0)[20] 63.68 (0)[0] 1.82 (0)[20] 1.82 (0)[20]
90 (20) 2.19 (0)[20] 10.45 (0)[20]

Table 7.17: Policy benchmark results

p Compl. s/f Support set size restricted Support set number restricted
sizelim=1 sizelim=2 sizelim=∞ numlim=1 numlim=2 numlim=∞

10 (20) 9.70 (0)[20] 10.18 (0)[11] 9.78 (0)[20] 9.64 (0)[20] 9.95 (0)[20] 9.70 (0)[20] 9.76 (0)[20]
20 (20) 9.43 (0)[20] 10.17 (0)[5] 9.40 (0)[20] 9.37 (0)[20] 9.72 (0)[20] 9.51 (0)[20] 9.45 (0)[20]
30 (20) 9.37 (0)[20] 10.78 (0)[0] 9.39 (0)[20] 9.39 (0)[20] 9.81 (0)[20] 9.43 (0)[20] 9.33 (0)[20]
40 (20) 9.34 (0)[20] 11.37 (0)[1] 9.33 (0)[20] 9.38 (0)[20] 10.27 (0)[20] 9.46 (0)[20] 9.35 (0)[20]
50 (20) 9.39 (0)[20] 14.01 (0)[0] 9.37 (0)[20] 9.37 (0)[20] 11.78 (0)[20] 9.59 (0)[20] 9.35 (0)[20]

Table 7.18: OpenStreetMap benchmark results

For the incomplete scenario, we used an ABox with 40 staff members. In each data
set, 32% of staff members are unauthorized and 40% are blacklisted. Instances vary
on facts hasowner(pi , si). For each si, pi such that Staff (si),Project(pi) ∈ A, a fact
hasowner(pi , si) is added to the program with probability p/100, where p ranges from
20 to 90 for the complete setting and from 5 to 35 for the incomplete one.

The total average running times (including support set computation and timeouts)
for computing the first repair answer set for these settings are shown in Table 7.17. The
columns for the incomplete case show the restriction on support sets we used in their
generation, viz. size (resp. number) of support sets bounded by 1, 3 resp. unlimited; the
latter means that in fact all support sets were computed, but the system is not aware of
the completeness.

We exploit partial completeness for the number and size restriction case, i.e. if no
more support sets for an atom are computed and the number/size limit were not yet
reached, then the support family for the considered atom is complete. One can observe
that the running times are almost constant for this setting, except for the column where
the number of support sets is limited to 1. In the latter case there are no answer
sets found and the solver needs about one minute to figure this out. The reason for
such output is the number and size of support sets coherent for an interpretation at
hand. Most of the support sets fit the limits specified. The structure of repairs on the
nonground level for all instances is the same. Therefore the repair on the nonground
level is also identified quickly, the solver realizes that the facts with a certain predicate
need to be removed, and then the size of the instance does not have much impact on the
running time.
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O =
{
(1) BuildingFeature u ∃isLocatedInside.Private v NoPublicAccess
(2) BusStop u Roofed v CoveredBusStop

}

P =


(9) publicstation(X)← DL[BusStop ] busstop; CoveredBusStop](X),

not DL[; Private](X);
(10) ⊥ ← DL[BuildingFeature ] publicstation; NoPublicAccess](X),

publicstation(X).


Figure 7.11: DL-program over OpenStreetMap ontology

Open Street Map

For the second benchmark, we added rules on top of the ontology developed in the MyITS
project,22 which enhanced personalized route planning with semantic information. The
ontology contains 4601 axioms, where 406 axioms are in the TBox and 4195 are in
the ABox. The fragment O relevant for our scenario and the rules P are shown in
Figure 7.11. Intuitively, O states that building features located inside private areas are
not publicly accessible and a covered bus stop is a bus stop with a roof. The rules P
check that public stations do not lack public access, using CWA on private areas.

We used the method in [ESSXar] to extract data from the OpenStreetMap,23 and
we constructed an ABox A by extracting the sets of all bus stops (285) and leisure
areas (682) of the Irish city Cork, as well as isLocatedInside relations between them
(9) (i.e., bus stops located in leisure areas). As the data has been gathered by many
volunteers, chances of inaccuracies may be high (e.g. imprecise gps data). As the data
about roofed bus stops and private areas is unavailable yet, we randomly made 80% of
the bus stops roofed and 60% of leisure areas private. Finally, we added for each bsi
such that isLocatedInside(bsi, laj) ∈ A the fact busstop(bsi) to P with probability p/100.
Some instances are inconsistent since in our data set there are roofed bus stops, located
inside private areas.

The results for both complete and incomplete support families are shown in Ta-
ble 7.18. Similar as in the previous benchmark, the running times do not vary much in
most of the settings. The exceptional column is column 3, which presents running times
for the case when the support set size is restricted to 1. The results witness a slight
running times increase, which is probably due to the evaluation postchecks that need to
be performed for some DL-atoms, having support sets of size larger then 1. Note that
here the support families are also not known to be complete, hence the computation is
not guaranteed to be complete either. For that reason one can see that the number of
repairs specified in column 3 differs from the number of repairs in other less restrictive
configurations.

22http://www.kr.tuwien.ac.at/research/projects/myits/
23http://www.openstreetmap.org/
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p Compl. s/f Support set size restricted Support set number restricted
sizelim=1 sizelim=2 sizelim=∞ numlim=1 numlim=2 numlim=∞

5 (20) 7.50 (0)[20] 7.79 (0)[20] 7.58 (0)[20] 7.72 (0)[20] 8.55 (0)[0] 8.56 (0)[0] 7.67 (0)[20]
15 (20) 7.34 (0)[20] 7.55 (0)[20] 7.46 (0)[20] 7.54 (0)[20] 16.74 (0)[0] 16.58 (0)[0] 7.42 (0)[20]
25 (20) 7.23 (0)[20] 7.22 (0)[20] 7.27 (0)[20] 7.25 (0)[20] 82.52 (1)[0] 82.57 (1)[0] 7.13 (0)[20]
35 (20) 7.11 (0)[20] 7.12 (0)[20] 7.11 (0)[20] 7.11 (0)[20] 184.96 (8)[0] 185.14 (8)[0] 7.08 (0)[20]
45 (20) 7.07 (0)[20] 7.07 (0)[20] 7.07 (0)[20] 7.08 (0)[20] 282.24 (18)[0] 282.24 (18)[0] 7.08 (0)[20]
55 (20) 7.08 (0)[20] 7.09 (0)[20] 7.08 (0)[20] 7.08 (0)[20] 291.10 (19)[0] 290.92 (19)[0] 7.07 (0)[20]
65 (20) 7.06 (0)[20] 7.07 (0)[20] 7.07 (0)[20] 7.06 (0)[20] 300.00 (20)[0] 300.00 (20)[0] 7.08 (0)[20]
75 (20) 7.09 (0)[20] 7.09 (0)[20] 7.08 (0)[20] 7.08 (0)[20] 300.00 (20)[0] 300.00 (20)[0] 7.08 (0)[20]
85 (20) 7.07 (0)[20] 7.09 (0)[20] 7.07 (0)[20] 7.08 (0)[20] 300.00 (20)[0] 300.00 (20)[0] 7.08 (0)[20]
95 (20) 7.08 (0)[20] 7.08 (0)[20] 7.06 (0)[20] 7.08 (0)[20] 300.00 (20)[0] 300.00 (20)[0] 7.07 (0)[20]

Table 7.19: LUBM-EL benchmark results

LUBM-EL

We have also tested our approach on a slightly extended EL version of the LUBM-
inconsistent benchmark, in which we have introduced the following new TBox axioms:

O =
{
(1) PhDStudent u ∃assists.Lecturer v TA
(2) GraduateStudent u ∃teaches.UndergraduateStudent v TA

}
The running times and computed repairs for this benchmark are provided in Ta-

ble 7.19. One can see that the repairs are identified for all instances in the support set
size limiting cases, but the restriction of the number of support sets to 1 and 2 turned
out to be too strong. As expected for the complete setting the repairs for all instances
are found quickly. One might wonder, why there is a slight drop in the running time
observed for the instances where the repairs were in the end identified.

In fact the reason for such an unexpected behavior is hidden in the instance gen-
eration properties for this benchmark. With the growing instance size, the programs
become more and more inconsistent as the conflicting data grows. On the other hand,
the growing data part introduces more and more possibilities how the instance can be
repaired in the end, which explains the decrease of the running times.

7.2.6 General Results Discussion

We have presented the results of thorough evaluation of our novel algorithms for repair
answer set computation of DL-programs over DL-LiteA and EL ontologies. We have
compared these results to standard answer set computation, as no comparable system
for inconsistency handling in DL-programs exists. The DReW system can evaluate DL-
programs over EL ontologies after transforming the input to datalog, where DL-atoms
are replaced by datalog rewritings; the latter amount to succinct representations of
support sets. However, DReW can not handle inconsistencies and how to inject repairs
efficiently is non-obvious (naive attempts fail).

Based on our experimental results the following major conclusions can be drawn:
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Scalability of algorithms. Our repair computation algorithms demonstrated the
capability of repairing DL-programs of various size within reasonable time limits. The
DL-programs with different expressive features including non-determinism, recursiveness
and defaults can be effectively handled by our repair approach. In some settings even
detecting inconsistency with a standard solver takes longer then the repair computation
(e.g. Table 7.14). In other settings (e.g. Table 7.10), despite a certain overhead for com-
putation of deletion repair answer sets compared to ordinary answer sets, the developed
algorithms still scale well in general.

Repair quality. The improvement of the repair quality numerically by bounding the
size of the ABox portion allowed for removal, naturally increases the computation time.
However, exploitation of additional domain knowledge about the possible conflict struc-
ture by forcing the solver to consider only certain types of facts, leads in many settings to
performance improvements compared to unrestricted repair search. We believe that for
larger programs with conflicts of specific kinds, the user guidance of repair computation
can drastically improve running times even further.

Partial vs complete support families. For the DL-programs over DL-LiteA on-
tologies the complete support family exploitation shows promising results. For the DL-
programs over EL ontologies, as expected using complete support families works for all
settings well in practice. Despite possible post evaluation of support sets in case of
incomplete support families the repairs are still found in many scenarios. As practice
shows the available ontologies do not contain complicated constraints on the conceptual
level, and either support sets size or number of support sets for DL-atoms often turn
out to be limited.

Applicability. The novel algorithms for deletion repair answer set computation
demonstrated their applicability for DL-programs over some real world data (Open Street
Map benchmark results in Table 7.18). While most of the other benchmarks that we
have run are synthetic, they vary widely w.r.t. the size of their TBox, ABox and the
number of rules. The capability of our algorithms of handling such diverse DL-programs
confirms the potential of our approach for real world scenarios.

Overall the obtained results are promising, and they distinctively show that the repair
approaches that we have proposed make contribution to the applicability of DL-programs
for practical settings.
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CHAPTER 8
Conclusion

This chapter concludes the thesis with a summary of the results that we obtained (Sec-
tion 8.1), and reviews directions for future research in the area (Section 8.2).

8.1 Summary

The main goal of this thesis was the development of a methodology for handling inconsis-
tencies in hybrid KBs, that combine nonmonotonic rules and DL ontologies. A prominent
example of loosely-coupled hybrid KBs are DL-programs, in which an ontology and rules
are separate, but a sophisticated information flow between them is arranged through so-
called DL-atoms that are allowed to occur in the bodies of the rules. On the one hand the
interaction between components of DL-programs makes them highly powerful systems.
On the other hand such data exchange can easily give rise to conflicts, making the overall
system inconsistent, which is undesired. In this thesis we tackled the inconsistency issue
in DL-programs. From a theoretical perspective we have proposed a repair methodology
and analyzed the complexity of repairing DL-programs. From a practical perspective we
have realized the developed algorithms for repairing DL-programs and experimentally
confirmed their effectiveness.

At the beginning of this work there was no clear definition of repair for DL-programs.
Therefore, first of all we have analyzed possible sources and reasons for inconsistencies,
and formalized the problem of repairing DL-programs by introducing the notions of
repair and repair answer set. We assumed that the rule part of the DL-program and
the ontology TBox are well-developed (as it indeed often happens), and the reasons for
inconsistencies lie in the ontology ABox. The novel notions of repair and repair answer
set are thus based on changes of the ontology data part that enable answer sets. We
have performed a careful complexity analysis, which revealed that repair answer sets do
not have higher complexity than ordinary ones (more specifically, weak and FLP answer
sets) in case if queries in DL-atoms can be evaluated in polynomial time. To ensure this
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property, we concentrated on the Description Logics DL-LiteA (which is of particular
use for ontology based data access (OBDA)) and EL. In principle, however, our general
methodology for restoring consistency can be applied to DL-programs over ontologies in
any DL, though for expressive ones its effectiveness is not any longer guaranteed.

Our refined notions incorporate criteria to select preferred repairs, with a focus on
properties that allow to extend the existing evaluation method for DL-programs. We
call such benign functions that select preferred repairs independent. At the heart of our
method there is the generalized Ontology Repair Problem (ORP). Roughly speaking, it
asks for an ABox repair for which simultaneous entailment and non-entailment of sets
of queries under possible temporary updates are ensured. While being intractable in
general, this problem can be polynomially solved in relevant and non-trivial settings. To
ensure practicality, we focused on deletion repairs, i.e. the set of possible solutions to
ORP was restricted to subsets of the original ABox. Subsequently for repairing a given
DL-program only removal of data assertions from its ontology part was allowed.

Since the naive implementation of the deletion repair answer set computation turned
out to be ineffective, we proposed its optimized variants for DL-programs accessing
DL-LiteA and EL ontologies. The algorithms are based on the novel notion of support
sets. Intuitively, a support set for a ground DL-atom is a portion of its input whose
presence settles the DL-atom’s concrete value. For DL-programs over DL-LiteA ontolo-
gies, so-called complete support families were exploited; these allow to completely avoid
ontology access during the repair computation. For DL-programs over EL DL complete
support families are too expensive to compute, since their number and size could be pos-
sibly exponential. We thus exploited only selected support sets (e.g. of bounded size),
forming partial support families. The latters form the basis for the repair algorithm in
the EL DL case.

Besides optimizations of the actual repair computation, we have briefly studied the
problem of simplifying the rules of the DL-program prior to repairing them. In particular,
we investigated the forms of tautologic and contradictory ground DL-atoms. These
have the same value regardless of the interpretation and the ontology at hand. Such
independent DL-atoms resp. rules involving them can be eliminated prior to the repair
or evaluation of DL-programs. We showed that contradictory DL-atoms have a simple
form, and we presented a sound and complete calculus for determining tautologic DL-
atoms. Based on it, we have determined the complexity of identifying independent
DL-atoms; it turned out that this problem can be solved very efficiently in general, as
well as relative to the predicate constraints.

Finally, we have implemented the developed algorithms using declarative means in
the dlvhex system, which is a tool for evaluating answer set programs with arbitrary
external computations (so-called HEX-programs). In our implementation the user can
conveniently specify the repair search space by allowing for deletion of only certain
types/number of facts from the ABox. We have, furthermore, built a set of benchmarks
for experimental assessment of our repair approach. The evaluation of the developed
algorithms on these benchmarks showed promising results. In particular, for inconsistent
DL-programs we have observed that the repair answer set computation is often quicker
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then the standard answer set computation. Moreover, user-guided restrictions put on
the repairs search do not introduce much of the time overhead.

Overall, our empirical evaluation has revealed a great potential of the novel repair
methodology for practical applications.

8.2 Outlook
The directions for future work in the considered area are manifold. They cover both
theoretical and practical aspects of our inconsistency handling approaches.

Real-world settings. The repair framework for DL-programs that we have proposed
can be effectively used to improve robustness of hybrid KBs. However, the developed
methods have not yet been tested on the real world applications. Therefore, the search
for suitable practical applications that go beyond syntactic benchmarks is an obvious
future research direction. Such instances can hint on possible optimizations of our novel
algorithms as well as their appropriate refinement towards practical settings.

Optimizations. In our algorithms we based the repair computation on the answer
sets of the replacement program, where DL-atoms were replaced by normal atoms and
additional guessing rules on their values were added. We tried to turn the answer set of
the replacement program into a repair answer set by ABox changes. To optimize this
approach one can aim at building repair answer sets incrementally e.g., by exploiting
debugging based on stepping techniques [OPT12].

In a user-interactive manner one can go through the rules of a DL-program until the
point when a conflict is identified. If the conflict occurred due to a value of a DL-atom,
one can repair the ontology ABox, and continue the stepping process further. Intelligent
backtracking will be needed here. Incremental repair answer set construction is not guar-
anteed for general program classes, but for example, for stratified DL-programs it might
be of interest. Advanced learning techniques can be used for repair computation, e.g.
cashing intermediate repairs/repair answer sets, considering correlation patters between
them, and identifying mutual dependence of values of DL-atoms might be worthwhile.
Localization and decomposition methods from databases can be exploited [EFGL07].

Module analysis. We considered the DL-programs as monolithic structures when
applying our repair techniques. It is an interesting and a relevant quest to extend the
approach for dealing with modular DL-programs. Splitting a program into separate
components that can be individually evaluated is a well-known programming technique,
which has fortunately been studied in the context of DL-programs [EFI+11]. It is not
clear, however, to which extent and for which program classes the repair methods can
be adapted for the modular setting. This challenging issue forms another possible future
research direction.

Other DLs and types of queries. In this thesis we focused on lightweight DLs. A
relevant future work is the extension of our repair algorithms for other more expressive
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DLs, e.g. SHIQ, SHOIN and other DL-queries, e.g. conjunctive queries. This is a non-
trivial task, since the complexity of such algorithms will clearly increase and advanced
techniques are needed to ensure practicability.

Repairing rules and interfaces. So far we have concentrated only on repairing
ontology data part, but it is also natural to allow changes in rules and interfaces. For
repairing rules the works on ASP debugging can be used as a starting point, but the
problem is complicated as the search space of possible changes is large. Priorities on the
rules and atoms involving them might be applied to ensure high quality of rule repairs.
The interfaces similarly admit numerous modifications, which makes this type of repair
as difficult; user interaction is most probably required.

Going beyond deletion repairs. Developing and implementing algorithms for other
types of repairs like bounded addition, etc. are of practical need. One can consider not
only selection function with an independent property, but also look at arbitrary selec-
tion functions. Computation of repairs that are globally minimal is nontrivial and the
complexity increase in comparison to deletion repairs is obvious. Intelligent techniques
can still be exploited for determining repairs of these types.

Paraconsistent semantics. In the settings where all pieces of information in a DL-
program are equally important, the repair approach might be unwanted. In these sce-
narios one has to seek for ways of reasoning in an inconsistent system. This is where the
paracosistent/paracoherent semantics comes into play. Despite its obvious importance
for applications, the problem of paraconsistent reasoning in the context of loosely-coupled
hybrid KBs has been barely studied to the best of our knowledge and its exploration
still remains.

The existing paracoherent semantics for ASP [EFM10] is based on the notions of
here-and-there (HT) interpretations and the equilibrium models. In particular, the semi-
equilibrium semantics which characterizes the programs in terms of bi-models has been
introduced. The bi-models are three-valued interpretations, where atoms can be true,
believed true or false. This paracoherent semantics for normal ASP programs has been
recently implemented within the dlvhex system in the scope of the bachelor’s final work
co-supervised by the author of this thesis [H14].

For the DL-programs, the current semantics can not be straightly extended. Indeed,
since normally DL-atoms are logically two-valued, the meaning of a DL-atom being
believed to be true is unclear. The possible flow of information between the ontology
and the logic program is also an obstacle for a smooth extension of the existing semantics.
It is not obvious how to treat the information that is believed to be true and that is
sent to the ontology, especially if the latter does not support the paraconsistent mode
of reasoning. All these important open issues are left for future work.

Other repair related problems. One can consider brave and cautious reasoning
over DL-programs, i.e. the problem of identifying whether a certain atom is entailed
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from a single of multiple repair answer sets of a DL-program. Similar semantics as
introduced for ontologies in [BBG14] can be considered for DL-programs; however, the
rules interaction in the DL-program setting poses an additional challenge.

Furthermore, instead of looking at inconsistent DL-programs, one might investigate
repair of consistent DL-programs, having answer sets that are not expected by the user.
For instance, if a user is confident that a certain atom a has to be present in any answer
set, but this is not observed in reality, he might want to fix this unwanted behavior by
some program modifications. These problems are left for future work.

Domain-specific repair. Incorporation of domain specific information into the repair
process is an important problem. It might be desired to leave some rules, interfaces
or ontology parts of a DL-program untouched. The semantically specific information
about irrefutable DL-atoms or ontology pieces can effectively control the repair process.
This calls for methods for convenient representation and effective exploitation of such
additional knowledge.

Policy for managing inconsistencies. Since there is a wide range of options on how
a DL-program could be repaired, a policy language for managing inconsistencies in DL-
programs that would guide the repair process in the user-interactive way is beneficial.
Development of such a policy is an open research issue.

Other hybrid formalisms. Last but not least one could develop methods for repair-
ing other hybrid formalisms including tight-coupling hybrid KBs or even more general
representations like HEX-programs, where instead of ontology arbitrary sources of com-
putation can be accessed from a logic program. Heterogeneity of external sources in
HEX-programs makes both repair and paraconsistent reasoning a very challenging but
interesting task.
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